CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2 - Université Côte d'Azur
Journal Articles Annals of Mathematics Year : 2016

CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2

Abstract

We prove that given a Hitchin representation in a real split rank 2 group G 0 , there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we obtain a parametrization of the Hitchin components by a Hermitian bundle over Teichmüller space. The proof goes through introducing holomorphic curves in a suitable bundle over the symmetric space of G 0. Some partial extensions of the construction hold for cyclic bundles in higher rank.
Fichier principal
Vignette du fichier
Rank2Minimal.pdf (337.02 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01329436 , version 1 (09-06-2016)

Identifiers

  • HAL Id : hal-01329436 , version 1

Cite

François Labourie. CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2. Annals of Mathematics, 2016, 184 (2). ⟨hal-01329436⟩
70 View
114 Download

Share

More