CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2 - Université Côte d'Azur Access content directly
Journal Articles Annals of Mathematics Year : 2016

CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2

Abstract

We prove that given a Hitchin representation in a real split rank 2 group G 0 , there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we obtain a parametrization of the Hitchin components by a Hermitian bundle over Teichmüller space. The proof goes through introducing holomorphic curves in a suitable bundle over the symmetric space of G 0. Some partial extensions of the construction hold for cyclic bundles in higher rank.
Fichier principal
Vignette du fichier
Rank2Minimal.pdf (337.02 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01329436 , version 1 (09-06-2016)

Identifiers

  • HAL Id : hal-01329436 , version 1

Cite

François Labourie. CYCLIC SURFACES AND HITCHIN COMPONENTS IN RANK 2. Annals of Mathematics, 2016, 184 (2). ⟨hal-01329436⟩
60 View
105 Download

Share

Gmail Facebook X LinkedIn More