SECOND ORDER VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON COMPACT MANIFOLDS

Philippe Delanoë 1
1 Géométrie et Analyse
JAD - Laboratoire Jean Alexandre Dieudonné
Abstract : We consider Monge's optimal transport problem posed on compact manifolds (possibly with boundary) for a lower semi-continuous cost function $c$. When all data are smooth and the given measures, positive, we restrict the total cost ${\cal C}$ to diffeomorphisms. If a diffeomorphism is stationary for ${\cal C}$, we know that it admits a potential function. If it realizes a local minimum of ${\cal C}$, we prove that the $c$-Hessian of its potential function must be non-negative, positive if the cost function $c$ is non degenerate. If $c$ is generating non-degenerate, we reduce the existence of a local minimizer of ${\cal C}$ to that of an elliptic solution of the Monge--Ampére equation expressing the measure transport; moreover, the local minimizer is unique. It is global, thus solving Monge's problem, provided $c$ is superdifferentiable with respect to one of its arguments.
Type de document :
Article dans une revue
Advances in Calculus of Variations, 2012, 5 (3), pp.329-344. 〈10.1515/acv.2011.017〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.univ-cotedazur.fr/hal-00613698
Contributeur : Philippe Delanoë <>
Soumis le : mercredi 28 septembre 2011 - 15:02:07
Dernière modification le : vendredi 12 janvier 2018 - 01:54:32

Fichier

Delanoe_2ndVarHeurist-Monge.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Philippe Delanoë. SECOND ORDER VARIATIONAL HEURISTICS FOR THE MONGE PROBLEM ON COMPACT MANIFOLDS. Advances in Calculus of Variations, 2012, 5 (3), pp.329-344. 〈10.1515/acv.2011.017〉. 〈hal-00613698v2〉

Partager

Métriques

Consultations de la notice

193

Téléchargements de fichiers

95