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We consider Monge's optimal transport problem posed on compact manifolds (possibly with boundary) for a lower semi-continuous cost function c. When all data are smooth and the given measures, positive, we restrict the total cost C to diffeomorphisms. If a diffeomorphism is stationary for C, we know that it admits a potential function. If it realizes a local minimum of C, we prove that the c-Hessian of its potential function must be non-negative, positive if the cost function c is non degenerate. If c is generating non-degenerate, we reduce the existence of a local minimizer of C to that of an elliptic solution of the Monge-Ampère equation expressing the measure transport; moreover, the local minimizer is unique. It is global, thus solving Monge's problem, provided c is superdifferentiable with respect to one of its arguments.

Introduction

The solution of Monge's problem [START_REF] Monge | Mémoire sur la théorie des déblais et remblais[END_REF] in optimal transportation theory, with a general cost function, has been applied to many questions in various domains tentatively listed in the survey paper [START_REF] Guillen | Five lectures on optimal transportation: geometry, regularity and applications[END_REF], including in cosmology [START_REF] Brenier | Reconstruction of the early Universe as a convex optimization problem[END_REF]. The book [START_REF] Villani | Optimal Transport, Old and New[END_REF] offers a modern account on the theory (see also [START_REF] Caffarelli | Allocation maps with general cost functions[END_REF][START_REF] Gangbo | The geometry of optimal transportation[END_REF][START_REF] Guillen | Five lectures on optimal transportation: geometry, regularity and applications[END_REF]).

In case data are smooth, manifolds compact, measures positive, maps one-to-one and the solution of Monge's problem unique, the question of the smoothness of that solution was addressed in the landmark paper [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF]. In that case, restricting Monge's problem to diffeomorphisms becomes a natural ansatz. Doing so, the use of differential geometry and the calculus of variations enables one to bypass the general optimal transportation approach and figure out directly some basic features of the solution map. Such a variational heuristics goes back to [START_REF] Appell | Mémoire sur les déblais et remblais des systèmes continus ou discontinus[END_REF] and was elaborated stepwise in [START_REF] Evans | Partial differential equations and Monge-Kantorovich mass transfer[END_REF][START_REF] Urbas | Mass transfer problems[END_REF][START_REF] Brenier | Reconstruction of the early Universe as a convex optimization problem[END_REF][START_REF] Trudinger | Optimal transportation and nonlinear partial differential equations[END_REF][START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF] (see also [START_REF] Brenier | Reconstruction of the early Universe as a convex optimization problem[END_REF]). In the present note, we take a new step in that Ph. Delanoë elaboration, by differentiating twice the total cost functional in order to express a minimum condition, not just a stationary one.

Specifically, working in the C ∞ category 1 , we are given a couple of compact connected diffeomorphic manifolds each equipped with a probability volume measure, (M, µ) and (P, ). The manifold M (resp. P ), either has no boundary or it is the closure of a domain contained in some larger manifold. We consider a domain Ω ⊂ M ×P such that, for each (m 0 , p 0 ) ∈ M ×P , the subset Ω P m 0 = p ∈ P, (m 0 , p) ∈ Ω is a domain of full measure in (P, ) and similarly for Ω M p 0 = m ∈ M, (m, p 0 ) ∈ Ω in (M, µ); no smoothness assumption bears on the boundary of Ω. We denote by Diff µ, (Ω) the subset of diffeomorphisms from M to P which push µ to , with graph lying in Ω (an obvious item missing in [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF]). The pushing condition means for a Borel map φ : M → P that, for any continuous function h : P → R, the following equality holds:

(1)

P h d = M (h • φ) dµ,
a property commonly denoted by φ # µ = . When it is satisfied by a diffeomorphism ϕ : M → P , one may use the change of variable p = ϕ(m) in the left-hand integral of (1) and infer pointwise, in any couple (x, y) of source and target charts, the so-called Jacobian equation, namely:

(2) d dy (ϕ(x)) det ∂ϕ ∂x (x) = dµ dx (x);

here, y = ϕ(x) denotes abusively the local expression of ϕ while dµ dx stands for the Radon-Nikodym derivative of the push-forward measure x # µ with respect to the Lebesgue measure dx of the chart x, and similarly for d dy . The existence of diffeomorphisms pushing µ to is well-known [START_REF] Moser | On the volume elements on a manifold[END_REF][START_REF] Banyaga | Formes volume sur les variétés à bord[END_REF][START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF] but we have to assume henceforth that the graph of at least one diffeomorphism of the sort actually lies in Ω. Under that assumption, Diff µ, (Ω) is non empty and so is Diff ,µ ( Ω), setting Ω = (p, m) ∈ P × M, (m, p) ∈ Ω . We view Diff µ, (Ω) and Diff ,µ ( Ω) as open manifolds respectively modeled on the Fréchet manifolds Diff (P ) := Diff , (P × P ) and Diff µ (M ) (see details in [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF][START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF]). Finally, we consider a function c : Ω → R, called the cost function 2 , together with the total cost functional

φ ∈ Diff µ, (Ω) → C(φ) = M c(m, φ(m)) dµ
and its counterpart ψ ∈ Diff ,µ ( Ω) → C(ψ) = P c(ψ(p), p) d , which satisfy the identity: C(ϕ) ≡ C(ϕ -1 ). We will occasionally require additional conditions on the cost function (anytime we do, it will be explicit) among the following ones:

c is lower semi continuous on M × P ; (3a) c(., p) is superdifferentiable on M for -almost all p ∈ P ; (3b) det(d M d P c) = 0 on Ω ; (3c) ∀m 0 ∈ M, the map p ∈ Ω P m 0 → -d M c(m 0 , p) ∈ T * m 0 M is one-to-one (3d)
and so is the map m ∈ Ω M p 0 → -d P c(m, p 0 ) ∈ T * p 0 P, ∀p 0 ∈ P .

Here, dealing with a two point function, we have set d M (resp. d P ) for the exterior derivative with respect to the argument in the manifold M (resp. P ). We refer to [20, Chapter 10] (see also [14, p.598]) for an account on the notion of superdifferentiability. As it will be clear from the proof of Proposition 1.2 below, the results of this paper would hold as well with condition (3b) replaced by the symmetric one for c(m, .) instead. Condition (3c) is a non-degeneracy condition labelled as (A2) in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF], while (3d) is a generating condition often called bi-twist [START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF][START_REF] Villani | Optimal Transport, Old and New[END_REF] (when the smoothness of the inverse maps is further assumed, it becomes condition (A1) of [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF]). A typical example of cost function for which all the conditions (3) are fulfilled is given by M = P equipped with a Riemannian metric and c is (half) the squared distance (the so-called Brenier-McCann cost function) [START_REF] Mccann | Polar factorization of maps on Riemannian manifolds[END_REF]; if so, p ∈ Ω P m means that p is not a cut point of m and the inverse maps determined by (3d) are given by the exponential map.

Assuming (3a), we consider the restricted Monge problem, namely the question: can we find ϕ ∈ Diff µ, (Ω) satisfying C(ϕ) = inf φ∈Diffµ, (Ω)

C(φ) ?

Extending the total cost functional C to the set B µ, of Borel maps from M to P pushing µ to , Monge's problem itself reads: can we find φ ∈ B µ, realizing the inf Bµ,

C ?

The outline of the paper is as follows: in Section 1, we recall what was obtained in [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF] by writing the stationary condition for the total cost C and we relate it to Monge's problem; in Section 2, we state the new results which can be obtained by expressing the minimum condition for C; except for an elementary one, the corresponding proofs are deferred till Section 3.

Preliminary results

In [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF], writing down the Euler equation of the functional C, we obtained the following result: Proposition 1.1 If ϕ ∈ Diff µ, (Ω) is stationary for C, so is ϕ -1 for C, and there exists two functions f : M → R, f : P → R, defined up to addition of constants, such that each point of the graph of ϕ is stationary for the two Ph. Delanoë point real function:

(m, p) ∈ Ω → F (m, p) = c(m, p) + f (m) + f (p).
Let us call the function f (resp. f ) so determined (up to constant addition), the c-potential of the diffeomorphism ϕ (resp. ϕ -1 ). In [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF], we assumed condition (3d), but it is not required for the proof of Proposition 1.1, indeed solely based on the Helmholtz lemma. For the reader's convenience, let us indicate the argument (see [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF] for details). We write δC = 0 with δC = M d P c(m, ϕ(m))(δϕ(ϕ(m)) dµ, where δϕ stands for a variation of the transporting diffeomorphism ϕ which keeps it on the manifold Diff µ, (Ω), that is, a vector field of a special kind on P , evaluated at the image point ϕ(m). Specifically, such a vector field V on P should be: first of all tangential to the boundary of P , if any, so that its flow send P to itself (without crossing ∂P ); moreover, its flow should preserve the volume measure or, equivalently, V should satisfy: div V = 0. In other words, the tangent space to Diff µ, (Ω) at ϕ is spanned by the tangential vectors of the form V • ϕ with V ∈ ker div . Here, the symbol div denotes the divergence operator defined by the identity: P h div V d ≡ P dh(V ) d valid for each function h : P → R and each vector field V on P (tangential, as said 3 ). Recalling (1), we thus find:

∀V ∈ ker div , P d P c(ϕ -1 (p), p)(V (p)) d = 0.
Arguing likewise on C, we further get:

∀U ∈ ker div µ , M d M c(m, ϕ(m))(U (m)) dµ = 0.
The conclusion of Proposition 1.1 now readily follows from Helmholtz lemma, which we recall (for a proof, see [START_REF] Ph | Variational heuristics for optimal transportation maps on compact manifolds[END_REF]Appendix]):

Lemma 1.1 (Helmholtz) Let (N, ν) be a measured manifold as above. A 1-form α on N satisfies: N α(Z) dν = 0 for each vector field Z ∈ ker div ν (tangential to ∂N if ∂N = ∅) if and only if α is exact.
The outcome of Proposition 1.1 for the Monge problem goes as follows:

Proposition 1.2 If (3a) (3b) (3d) hold, a diffeomorphism ϕ ∈ Diff µ, (Ω) is stationary for C if and only if it solves Monge's problem; moreover, if so, the c-potential of ϕ is c-convex.
Proof. The 'if' part is obvious, let us prove the 'only if' one with an argument of [START_REF] Mccann | Polar factorization of maps on Riemannian manifolds[END_REF]; the meaning of the last statement of the proposition will be cleared up on the way. Letting ϕ ∈ Diff µ, (Ω) be stationary for C and using Proposition 1.1, consider the function f c given by:

∀p ∈ P, f c (p) = F ϕ -1 (p), p -inf M c(m, p) + f (m) ,
called the c-transform [START_REF] Villani | Optimal Transport, Old and New[END_REF] (or supremal convolution [START_REF] Mccann | Polar factorization of maps on Riemannian manifolds[END_REF]) of f , up to the addition of the constant term F ϕ -1 (p), p . From (3a), for each p 0 ∈ P , the infimum appearing in the right-hand side is assumed at some point m 0 ∈ M . The latter satisfies:

∀m ∈ M, c(m, p 0 )+f (m)+f c (p 0 ) c(m 0 , p 0 )+f (m 0 )+ f c (p 0 ), or else: ∀m ∈ M, c(m, p 0 ) c(m 0 , p 0 )-f (m)-f (m 0 ) , which shows that the function m ∈ M → c(m, p 0 ) is subdifferentiable at m 0 . By (3b), it is thus differentiable at m 0 with d M c(m 0 , p 0 ) = -df (m 0 ). From (3d) combined with Proposition 1.1, we get m 0 = ϕ -1 (p 0 ) hence (p 0 , m 0 ) ∈ Ω and f c (p 0 ) = f (p 0 )
; since p 0 is arbitrary, we obtain: f c = f . From the latter and the definition of f c , we infer:

∀m ∈ M, F (m, .) F (m, ϕ(m))
, from what we readily conclude that f = ( f ) c with ( f ) c given by: [START_REF] Villani | Optimal Transport, Old and New[END_REF][START_REF] Guillen | Five lectures on optimal transportation: geometry, regularity and applications[END_REF]. Besides, for each map φ ∈ B µ, , integrating on M the inequality F (m, φ(m)) F (m, ϕ(m)) satisfied µ-almost everywhere yields C(φ) C(ϕ) by using [START_REF] Appell | Mémoire sur les déblais et remblais des systèmes continus ou discontinus[END_REF], which shows that ϕ solves, indeed, the Monge problem Remark 1.1 If, in Proposition 1.2, the manifold M has no boundary and we strengthen (3b) by assuming that the map m ∈ M → c(m, p) is differentiable for -almost all p ∈ P , then either C has no stationary point or Monge's problem is trivial. Indeed, if so, letting ϕ ∈ Diff µ, (Ω) be stationary for C, condition (3d) implies that, for -almost all p ∈ P , the equation p = ϕ(m) holds at any stationary point m of the function F (., p). In particular, it holds at the extrema of that function. By Proposition 1.1, the function F (., p) must be constant, equal to F ϕ -1 (p), p which is independent of p ∈ P . We infer that F is constant on M × P hence, recalling [START_REF] Appell | Mémoire sur les déblais et remblais des systèmes continus ou discontinus[END_REF], that the total cost C itself must be constant.

∀m ∈ M, ( f ) c (m) = F (m, ϕ(m)) -inf P c(m, p) + f (p) . So f = (f c ) c , a property of f called c-convexity

Second order results

When the cost function c does not fulfill the assumption of Proposition 1.2, it is worth observing that the variational heuristics presented so far is incomplete since no local minimum condition is expressed yet for the total cost C. It is our aim in the present note to write down that minimum condition and to derive from it further properties of minimizing diffeomorphisms. Before stating our results, we require a notion of c-Hessian. 

Hess c,Φ (h)(x 0 ) := ∂ 2 ∂x i ∂x j [c(x, y 0 ) + h(x)] at x = x 0 ,
where, if x 0 = x(m 0 ), we have set y 0 = y(Φ(m 0 )).

If ϕ ∈ Diff µ, (Ω) is stationary for the total cost C, Proposition 1.1 shows that the couple (ϕ, f ), with f the c-potential of ϕ, fulfills the assumption of Definition 2.1. In that case, for simplicity, we will simply speak of the c-Hessian of f and denote it by Hess c (f ). We would define likewise the c-Hessian of the c-potential f of ϕ -1 by the local expression (sticking to the notations used in the preceding definition):

Hess c ( f )(y 0 ) := ∂ 2 ∂y i ∂y j c(x 0 , y) + f (y) at y = y 0 ,
where, if y 0 = y(p 0 ), x 0 = x ϕ -1 (p 0 ) . We are in position to state our first result: Theorem 2.1 Let ϕ ∈ Diff µ, (Ω) be stationary for the total cost C. The following properties are equivalent (still setting f for the c-potential of ϕ and f for that of ϕ -1 ):

(i) the second variation of C at ϕ is non negative;

(ii) ∀U ∈ ker div µ , M Hess c (f )(U, U ) dµ 0; (iii) ∀V ∈ ker div , P Hess c ( f )(V, V ) d 0.
Assuming that C admits a local minimum at ϕ, we will infer the pointwise non negativity of the c-Hessians of f and f from the conclusions (ii)(iii) of Theorem 2.1, arguing by contradiction with suitable localized divergence free vector fields. The resulting statement goes as follows:

Corollary 2.1 If the total cost C admits a local minimum at ϕ ∈ Diff µ, (Ω), the c-Hessian of the c-potential of ϕ is non negative, and so is that of ϕ -1 .

At this stage, let us record a related result, usually derived from the optimality of the mass transfer plan (I × ϕ) # µ by means of Kantorovich relaxation and duality [START_REF] Guillen | Five lectures on optimal transportation: geometry, regularity and applications[END_REF], according to which the Hessian of the function F considered in Proposition 1.1 is non negative at each point of the graph of ϕ.

Specifically, since F is stationary on that graph, its Hessian is a quadratic form field intrinsically defined there [15, pp.4-5], and it is elementary to derive from Corollary 2.1 the Corollary 2.2 If the total cost C admits a local minimum at ϕ ∈ Diff µ, (Ω), the Hessian of F is non negative at each point of the graph of ϕ.

Proof. Indeed, Hess(F ) vanishes along the graph Γ ϕ = (m, ϕ(m)), m ∈ M ⊂ Ω while transversally, in the direction of M , it is given by Hess c (f ). Specifically, let (m, p) ∈ M × P lie in Γ ϕ , take a basis (e 1 , . . . , e n ) of T m M and another one (f 1 , . . . , f n ) of T p P , set dϕ(e i ) = n j=1 J j i f j and:

J = J j i 1 i,j n , C = (d M d P c)(e i , f j ) 1 i,j n , H = Hess c (f )(e i , e j ) 1 i,j n , H = Hess c ( f )(f i , f j ) 1 i,j n
.

The matrix of Hess(F )(m, p) in the basis B 0 = (e 1 , . . . , e n , f 1 , . . . , f n ) is the block matrix Hess(F )

B 0 = H C t C e
H (where t C stands for the transpose of C). Besides, the following matrices identities hold 5 : H = -CJ, H = -t CJ -1 . We thus find:

Hess(F ) B 0 = C 0 0 t C -J I I -J -1 ,
from what we infer that the matrix of Hess(F )(m, p) in the new basis B 1 = (e 1 , . . . , e n , Je 1 , . . . , Je n ) is equal to:

(4a) Hess(F ) B 1 = I 0 I t J Hess(F ) B 0 I I 0 J = H 0 0 0 .
Alternatively, using at (m, p) the new basis B 2 = (J -1 f 1 , . . . , J -1 f n , f 1 , . . . , f n ), we would find:

(4b) Hess(F ) B 2 = t J -1 I 0 I Hess(F ) B 0 J -1 0 I I = 0 0 0 H .

From Corollary 2.1, the non negativity of Hess(F )(m, p) appears obvious in either new basis

Remark 2.1 The formulas (4) show that the following equivalence hold at each point of the graph of a diffeomorphism ϕ ∈ Diff µ, (Ω) stationary for the total cost C:

Hess(F ) 0 ⇐⇒ Hess c (f ) 0 ⇐⇒ Hess c ( f 0 .

5 easily checked by differentiating at (m, p) the identity: dF ≡ 0 on Γϕ

Ph. Delanoë

From now on, condition (3c) is assumed; let us figure out its impact on the preceding results. If (3c) holds, the implicit function theorem provides, for each (m 0 , p 0 ) ∈ Ω, setting α 0 = -d M c(m 0 , p 0 ), neighborhoods U 0 of p 0 in P and W 0 of (m 0 , α 0 ) in T * M , and a map E (m 0 ,p 0 ) c : W 0 → U 0 such that:

α ≡ -d M c m, E (m 0 ,p 0 ) c (m, α) .
Following [START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF], maps like E (m 0 ,p 0 ) c may be called local c-exponential maps. Observe that, for any (m 1 , p 1 ) close enough to (m 0 , p 0 ) in Ω such that, setting α 1 = -d M c(m 1 , p 1 ), the point (m 1 , α 1 ) lies in W 0 , the maps E (m 0 ,p 0 ) c and E (m 1 ,p 1 ) c coincide on W 0 ∩W 1 . If M is simply connected, one can thus extend uniquely the map E (m 0 ,p 0 ) c to a neighborhood W (m 0 ,α 0 ) of a global section of T * M passing through α 0 at m 0 and call it the (m 0 , p 0 )-determination of the c-exponential map on M . With these notions at hand, Corollary 2.1 can be strengthened as follows:

Corollary 2.3 If condition (3c) holds and C admits a local minimum at ϕ ∈ Diff µ, (Ω), the c-Hessian of the c-potential f of ϕ must be positive definite, and so must be that of ϕ -1 ; in particular, the local minimum of C must be strict. Moreover, the Jacobian equation (2) satisfied by ϕ, written locally in terms of f via a local exponential map, reads as a Monge-Ampère equation of elliptic type.

Remark 2.2 From Corollary 2.3 combined with (4a), or (4b), using the compactness of M , we infer the existence of a neighborhood N ϕ of Γ ϕ in Ω such that F > F Γϕ on N ϕ \ Γ ϕ . This local result, obtained under (3c), should be compared to the global one, namely F Γϕ = inf M ×P F , derived from the conditions (3) but (3c), in the course of the proof of Proposition 1.2.

Finally, if the conditions (3c) (3d) hold, all local c-exponential maps coincide with the one (just denoted by E c ) globally defined by the generating condition. If so, we can improve the preceding results and, ultimately, reduce the solution of Monge's problem to the construction of an elliptic solution of a Monge-Ampère equation. Specifically, we will prove: 3 Proofs of the second order results

Proof of Theorem 2.1

Let ϕ ∈ Diff µ, (Ω) be stationary for C and, for t a small real parameter, let t → ϕ t ∈ Diff µ, (Ω) be an arbitrary path such that ϕ 0 = ϕ. We can uniquely write ϕ t = ξ t • ϕ with t → ξ t ∈ Diff (P ) such that ξ 0 = the identity of P . In particular, ξ0 is a tangential vector field on P lying in ker div (setting as usual ξ0 (p) = ∂ ∂t ξ t (p) t=0 ). We will prove the equivalence (i) ⇐⇒ (ii) by establishing the equality:

(6) d 2 dt 2 C(ϕ t ) t=0 = P Hess c ( f )( ξ0 , ξ0 ) d .
Using arbitrary source and target charts x, y, and the Einstein summation convention, one routinely finds:

d dt C(ϕ t ) = M ∂c ∂y i (x, ϕ t (x))
∂ϕ i t ∂t (x) dµ(x) where dµ(x) = dµ dx (x)dx, then the second variation expression:

d 2 dt 2 C(ϕ t ) = M ∂c ∂y i (x, ϕ t (x)) ∂ 2 ϕ i t ∂t 2 (x) + ∂ 2 c ∂y i ∂y j (x, ϕ t (x)) ∂ϕ i t ∂t (x) ∂ϕ i t ∂t (x) dµ(x).
Here, to spare the unfamiliar reader, we did not use a global linear connection (on P ) to compute the second derivatives which occur in the integrand. Doing so, we must be careful, as explained in the following remark.

Remark 3.1 Taken separately, the local scalar terms ∂c ∂y i (x, ϕ t (x))

∂ 2 ϕ i t ∂t 2 (x) and ∂ 2 c
∂y i ∂y j (x, ϕ t (x)) ∂t 2 c(m, ϕ t (m)). Therefore these terms cannot be integrated separately (unless the deformation ξ t is supported in the domain of a single chart of P , of Ph. Delanoë course). Still, in each couple of source and target charts, splitting the local expression ∂ 2 ∂t 2 c(x, ϕ t (x)) of the global function into the above non invariant terms can be done in a unique way, by using the canonical flat connection of the P chart. Anytime we will have to integrate on a manifold a global real function splitting uniquely into a sum of non invariant local terms, we will stress that the integral should not be split by putting the sum between braces, as done above. As long as they are written in the same charts, the addition of two such sums {a 1 + a 2 } + {b 1 + b 2 } may, of course, be written between a single pair of braces

∂ϕ i t ∂t (x) 
{a 1 + a 2 + b 1 + b 2 }.
Back to our proof, using ϕ t = ξ t • ϕ and recalling (1), we infer at t = 0:

(7) d 2 dt 2 C(ϕ t ) t=0 = P ξi 0 ∂c ∂y i (ϕ -1 (y), y) + ξi 0 ξj 0 ∂ 2 c ∂y i ∂y j (ϕ -1 (y), y) d (y),
where d (y) = d dy (y)dy and ξi

0 = ∂ 2 ∂t 2 ξ i t (y)| t=0 .
To proceed further, we note that the integral P f (ξ t (y)) d (y) is independent of t. Differentiating it twice with respect to t at t = 0, we get:

0 = P ξi 0 ∂ f ∂y i (y) + ξi 0 ξj 0 ∂ 2 f ∂y i ∂y j (y) d (y).
Adding this vanishing integral to the right-hand side of (7), applying the last part of Remark 3.1 and recalling the stationary point equation:

∂c ∂y i (ϕ -1 (y), y) + ∂ f ∂y i (y) ≡ 0,
derived at once from Proposition 1.1, we obtain (6) as desired.

A similar argument would yield:

d 2 dt 2 C(ϕ -1 t ) t=0 = M Hess c (f )( ζ0 , ζ0 ) dµ,
with the vector field ζ0 ∈ ker div µ obtained by writing ϕ -1

t = ζ t • ϕ -1 for a unique path t → ζ t ∈ Diff µ (M ).
It would imply the other equivalence (i) ⇐⇒ (iii), since C(ϕ -1 ) ≡ C(ϕ) is a local minimum of C as well. The proof of Theorem 2.1 is complete.

Proof of Corollary 2.1

Strategy Let ϕ ∈ Diff µ, (Ω) realize a local minimum of the total cost C and let f : M → R denote its c-potential, as provided by Proposition 1.1. Arguing by contradiction, we suppose the existence of a point m 0 ∈ M such that the quadratic form associated to the symmetric bilinear one Hess c (f )(m 0 ) : T m 0 M × T m 0 M → R can take negative values. We will contradict property (ii) of Theorem 2.1 by constructing a vector field U ∈ ker div µ supported near m 0 such that M Hess c (f )(U, U ) dµ < 0. A similar argument would hold for ϕ -1 , of course. We will proceed stepwise, choosing a good chart at m 0 , constructing the vector field U in that chart and evaluating the above integral; we set n = dim M .

Choice of a chart We pick any chart y of P at ϕ(m 0 ) but a special chart x of M centered at m 0 , namely a chart which pushes the measure dµ to the canonical Lebesgue measure dx. The existence of such µ-adapted charts, to call them so, is well-known [START_REF] Banyaga | Formes volume sur les variétés à bord[END_REF][START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF] and timely, here, to transform the div µ operator on M into the usual div operator of R n (up to sign) that is, the divergence operator associated to the measure dx (simply denoted by div below). Since the orthogonal group O(n) preserves the measure dx, we may further choose the chart x such that the matrix H ij (0) of Hess c (f )(m 0 ) is diagonal, with eigenvalues λ 1 λ 2 . . . λ n (each repeated with its multiplicity). Under our assumption: λ 1 < 0. Since the unimodular group SL(n, R) preserves the measure dx, we may rescale the chart x in order to have: λ 1 -3 and, ∀i ∈ {2, . . . , n}, λ i 1 2 . Let the chart x be fixed so and let x → H ij (f )(x) denote the local expression of the map m → Hess c (f )(m). The inequality: 2 , combined with the continuity of the map (x, v) → H ij (f )(x)v i v j as (x, v) varies near x = 0 with v of length 1 (say), implies the existence of a real ε > 0 such that:

∀v ∈ R n , H ij (f )(0)v i v j -3(v 1 ) 2 + 1 2 n i=2 (v i )
(8) ∀(x, v) ∈ R n ×R n , max 1 i n |x i | ε ⇒ H ij (f )(x)v i v j -2(v 1 ) 2 + n i=2 (v i ) 2 .
Construction of a divergence free vector field The vector field on R n given by w(

x) = x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 satisfies div(w) = 0. The flow of w preserves any function h : R n → R factoring through a function H : [0, ∞)×R n-2 → R as: h(x) = H( (x 1 ) 2 + (x 2 ) 2 , x 3 , . . . , x n ). Any such function h thus satisfies div(hw) = 0. Let us fix a cut-off function α : [0, ∞) → [0, 1] equal to 1 on [0, ε/2], vanishing on [ε/ √ 2, ∞)
, decreasing in-between, and consider the function h : R n → R given by:

h(x) = α (x 1 ) 2 + (x 2 ) 2 n i=3 α |x i | .
We know that div(hw) = 0 and that the vector field hw is supported in the open box

B n ε = x ∈ R n , max 1 i n |x i | < ε . Since the chart x is µ-adapted,
Ph. Delanoë we may view hw as the expression in that chart of a div µ free vector field U in M supported in the inverse image x -1 (B n ε ) ⊂ M .

Calculation of an integral Let us consider the integral M Hess c (f )(U, U )dµ which is equal to:

B n ε h 2 (x)H ij (f )(x)w i w j dx. From (8), it is bounded above by: 2 ∞ 0 α 2 (ρ)dρ n-2 B 2 ε α 2 (x 1 ) 2 + (x 2 ) 2 -2(x 2 ) 2 + (x 1 ) 2 dx 1 dx 2 .
Note that the function (x 1 , x 2 ) → α (x 1 ) 2 + (x 2 ) 2 vanishes outside the Euclidean ball of radius ε centered at 0; using polar coordinates (r, θ) in R 2 \ {0}, we thus find that the last integral is equal to:

ε 0 α 2 (r)r 3 dr × 2π 0 cos 2 θ -2 sin 2 θ dθ ≡ -π ε 0 α 2 (r)r 3 dr.
We conclude that M Hess c (f )(U, U )dµ is bounded above by a negative real, namely by -π 2 ∞ 0 α 2 (ρ)dρ n-2 ε 0 α 2 (r)r 3 dr, contradicting property (ii) of Theorem 2.1, as desired.

Proof of Corollary 2.3

Let again ϕ ∈ Diff µ, (Ω) realize a local minimum of the total cost C. Fix an arbitrary point m 0 ∈ M and take a µ-adapted chart x of M centered at m 0 and a -adapted chart y of P centered at p 0 = ϕ(m 0 ). From (3c) and the definition of E (m 0 ,p 0 ) c , the map x → y = ϕ(x) is defined near x = 0 by the equation:

(9) ∂f ∂x i (x) + ∂c ∂x i (x, y) y=ϕ(x) = 0.
Differentiating the latter yields (sticking to the notation Hess

c (f ) = H ij (f )dx i ⊗ dx j ): H ij (f )(x) = - ∂ 2 c ∂y k ∂x i (x, y) y=ϕ(x) ∂ϕ k ∂x j (x).
Taking determinants, recalling that the symmetric matrix H ij (f )(x) is non negative (by Corollary 2.1) and using (2), we obtain a local Monge-Ampère equation satisfied by f , namely:

det (H ij (f )(x)) = det ∂ 2 c ∂y k ∂x i (x, y) y=ϕ(x)
, where y = ϕ(x) is given by [START_REF] Evans | Partial differential equations and Monge-Kantorovich mass transfer[END_REF]. From (3c), the right-hand side of this equation nowhere vanishes; so the matrix H ij (f )(x) must be positive definite. So must be the c-Hessian of f throughout the manifold M , since the point m 0 is arbitrary. Finally, as is well-known, the positive definiteness just obtained implies, indeed, the ellipticity of the Monge-Ampère equation; from [START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF], it also shows that C(ψ) > C(ϕ) for any ψ = ϕ close enough to ϕ in Diff µ, (Ω). A similar argument would hold for ϕ -1 .

Proof of Theorem 2.2

Let ϕ ∈ Diff µ, (Ω) be a local minimizer of C. By Proposition 1.1 and (2), it must admit a c-potential f : M → R solving equation [START_REF] Caffarelli | Allocation maps with general cost functions[END_REF]. Furthermore, from Corollary 2.3 and its proof, the c-Hessian of f must be positive definite, so f is an elliptic solution of [START_REF] Caffarelli | Allocation maps with general cost functions[END_REF]. As such, it is unique up to addition of a constant, as readily shown by a maximum principle argument [2, p.97].

Conversely, let f solve (5) with ϕ(m) ≡ E c (m, df (m)), the graph of ϕ lying in Ω and Hess c (f ) non negative at some point m 0 ∈ M . From (5) read at m 0 and (3c), we see that Hess c (f )(m 0 ) must be positive definite; the positive definiteness of Hess c (f ) now spreads to the whole of M due to [START_REF] Caffarelli | Allocation maps with general cost functions[END_REF]. At each m ∈ M , using adapted charts at m and ϕ(m) as above, the definition of the map ϕ yields ( 9) from what we infer, by differentiation and combination with [START_REF] Caffarelli | Allocation maps with general cost functions[END_REF], that (2) holds. Integrating (2) over M shows that ϕ(M ) has full measure in (P, ); so [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF] implies that ϕ pushes µ to . Since the latter are volume measures, the map ϕ : M → P must be onto7 as it is easy to check using (1) and, by the inverse function theorem, it must be a local diffeomorphism, thus a covering map. If M is orientable, since µ and have equal total mass, a degree argument shows that ϕ must be 1-sheeted hence, indeed, a diffeomorphism. In the non orientable case, one can argue similarly using the orientation covers of M and P , and infer again that ϕ must be a diffeomorphism (exercise). So ϕ ∈ Diff µ, (Ω). Finally, from the definition of ϕ and the proof of Proposition 1.1, we know that ϕ -1 ∈ Diff ,µ ( Ω) is stationary for C. From the positive definiteness of Hess c (f ) combined with the analogue of ( 6) for C at ϕ -1 , we see that C admits at ϕ -1 a strict local minimum. Since C(ϕ) ≡ C(ϕ -1 ), so does C at ϕ.

Definition 2 . 1

 21 Let Φ : M → P be a map whose graph lies in Ω and h : M → R a function related to Φ by the equation d M c(m, Φ(m)) + dh(m) = 0 on M . The (c, Φ)-Hessian of h is the covariant symmetric 2-tensor on M , denoted by Hess c,Φ (f ), intrinsically 4 defined, in any couple of source and target charts (x, y), by:

Theorem 2 . 2

 22 If the cost function satisfies (3c) (3d), there exists at most one local minimizer ϕ ∈ Diff µ, (Ω) of the total cost functional C. If it exists, it should read m → ϕ(m) = E c (m, df (m)) for some c-potential f with Hess c (f ) positive definite on M and f elliptic solution of the Monge-Ampère equation: (5) d dy (ϕ(x)) det Hess c (f )(x) = det ∂ 2 c ∂y k ∂x i (x, y) y=ϕ(x) dµ dx (x) Conversely, if f solves (5) with 6 , ∀m ∈ M, ϕ(m) = E c (m, df (m)) ∈ Ω P m and Hess c (f ) non negative at one point, the map ϕ : M → P must lie in Diff µ, (Ω) and be a local minimizer of the total cost C. Furthermore, if (3a) (3b) hold, f is c-convex and the diffeomorphism ϕ actually solves the Monge problem associated to C. The next section contains successively the proofs of Theorem 2.1, Corollary 2.1, Corollary 2.3, and Theorem 2.2 (except for its last part, straightforward here from Proposition 1.2).

  are not invariant under a change of charts, unlike their sum, indeed equal to the global real function: m ∈ M → ∂ 2

the Hessian of a function at a stationary point is intrinsic[15, pp.4-5] 

the first condition is sometimes called stay-away (away, from the singular locus of c) and, if M has a boundary, it is also part of what yields the second boundary value condition (see the last footnote of the paper)

in particular, if ∂M is non empty, ϕ sends ∂M to ∂P (expressed in terms of f , this is sometimes called the second boundary value condition)
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