A Complement to Laurent expansion of harmonic zeta functions - Université Côte d'Azur Access content directly
Preprints, Working Papers, ... Year : 2022

A Complement to Laurent expansion of harmonic zeta functions

Bernard Candelpergher
  • Function : Author

Abstract

We complement an earlier article dedicated to harmonic zeta functions by outlining a method for obtaining closed-form expressions of the Laurent series coefficients of the harmonic zeta function ζ_H about its pole at s = 1. These coefficients are named harmonic Stieltjes constants by analogy with the classical case.
Fichier principal
Vignette du fichier
AppendiceV1.pdf (264.4 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03602568 , version 1 (09-03-2022)

Identifiers

  • HAL Id : hal-03602568 , version 1

Cite

Marc-Antoine Coppo, Bernard Candelpergher. A Complement to Laurent expansion of harmonic zeta functions. 2022. ⟨hal-03602568⟩
26 View
39 Download

Share

Gmail Facebook X LinkedIn More