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On some constants related to the harmonic zeta
function

Marc-Antoine Coppo∗ and Bernard Candelpergher
Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract We study a range of constants that are closely linked to the harmonic
zeta function ζH . In addition, by means of a new representation of ζH , we derive
possibly new integral formulas for ζ(n) and ζ ′(n) and new evaluations for a variety
of integrals of the same type as those previously considered by Glasser and Manna.

Keywords Harmonic zeta function; Stieltjes constants; zeta values; digamma
function; Glasser-Manna integrals, Ramanujan summation of series.

1 Introduction
Let ζH be the harmonic zeta function defined for Re(s) > 1 by

ζH(s) :=
∞∑
n=1

Hn

ns
,

where, for all n ≥ 1,
Hn = 1 + 1

2 + · · ·+ 1
n

are the classical harmonic numbers. Four decades ago, Apostol and Vu [2] showed
that this function could be continued as a meromorphic function with a double
pole at s = 1, and an infinite number of simple poles at s = 0 and s = 1 − 2k
for each integer k ≥ 1. The Laurent expansion of the harmonic zeta function ζH
around its double pole s = 1 can be written as

ζH(s) = 1
(s− 1)2 + γ

s− 1 +
∞∑
k=0

(−1)k
k! γ

(k)
H (s− 1)k (0 < |s− 1| < 1) ,
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where γ = −Γ ′(1) is Euler’s constant, and the coefficents γ(k)
H are called harmonic

Stieltjes constants by analogy with the classical Stieltjes constants γk. A common
definition of these constants is

γk = lim
s→1

{
(−1)kζ(k)(s)− k!

(s− 1)k+1

}
(k ≥ 0) ,

where ζ(k)(s) is the kth derivative of the Riemann zeta function. From now on
and throughout the text, we will use the lighter notation γ(k) in place of γ(k)

H . An
explicit expression of γ(0) is given by the following nice formula [10, Equation (6)]:

γ(0) = 1
2γ

2 + 1
2ζ(2) = 1

2 Γ ′′(1) . (1)

Incidentally, this formula can also be generalized to the case of height 1 multiple
zeta functions ζ(s, 1, . . . , 1) [17, Corollary 4.1]. Regarding the classical Stieltjes
constants, we recall the well-known asymptotic formula

γk = lim
N→∞

{
N∑
n=1

(log n)k
n

− (logN)k+1

k + 1

}
(k ≥ 0) .

From our point of view, it should be noted that γk is nothing else than the R-sum
(i.e. the sum of the series in the sense of Ramanujan’s summation method) of
the divergent series ∑n>1

(logn)k

n
[9, p. 67]. The existence of a similar asymptotic

formula for γ(k):

γ(k) = lim
N→∞

{
N∑
n=1

Hn(log n)k
n

− (logN)k+2

k + 2 − γ (logN)k+1

k + 1

}
(k ≥ 0) ,

which results from an extension of a formula of Briggs and Buschman [4, 8],
strongly suggests that the constant γ(k) is closely linked to the R-sum of the
divergent series ∑n>1

Hn (logn)k

n
. This is indeed the case: such a relation exists al-

though it is more intricate than in the classical case. We have already encountered
in earlier studies [9, Equation (3.23)], [10, Equation (4)] the intriguing relation:

r0 = γ1 + τ1 + γ(0) − ζ(2) = γ1 + τ1 + 1
2γ

2 − 1
2ζ(2) , (2)

where
r0 :=

R∑
n≥1

Hn

n
and τ1 =

∞∑
n=1

(−1)n+1 ζ(n+ 1)
n

= −
∞∑
n=2

ζ ′(n) .

In the next section, we will see to what extent our formula (2) can be generalized
(see Proposition 1). We also mention that another natural generalization of this
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formula with Roman’s harmonic numbers Hn,k instead of Hn was given by Young
[17, Theorem 6.1 (d)]. In the subsequent section, we will use the new represen-
tation of ζH(s) provided by our Theorem 1 (which is a refinement of a formula
due to Boyadzhiev, Gadiyar and Padma [7]) to obtain new expressions of the har-
monic Stieltjes constants γ(k) (see Corollary 1). Moreover, we derive from this
representation new integral formulas for ζ(n) and ζ ′(n) (see Corollary 2) and new
evaluations for a variety of integrals of the same type as those introduced earlier
by Glasser and Manna in relation with the Laplace transform of the digamma
function [1, 15] (see Corollaries 4–6).

2 How the constants ∑R
n>1

Hn (log n)k

n and γ(k) are
linked together

The forthcoming Proposition 1 successfully generalizes the previous relation (2).

Proposition 1. Let k be a natural number. If rk and τk are respectively defined
by

rk :=
R∑
n>1

Hn(log n)k
n

(k ≥ 0) ,

and
τk :=

∞∑
n=1

(−1)n+k ζ(n+ 1)
nk

(k ≥ 1) ,

then
r0 = γ1 + τ1 + γ(0) − ζ(2) ,

and the following relations hold true for all positive values of k:

r2k−1 = γ2k

2k +(2k−1)! τ2k+γ(2k−1) +
k∑

n=1

(2k − 1)!
(2k − 2n)!×

(22n−1 − 1)
22n−2 γ2k−2n ζ(2n) ,

(3)

and

r2k = γ2k+1

2k + 1 +(2k)! τ2k+1+γ(2k)+
k∑

n=1

(2k)!
(2k − 2n+ 1)!×

(22n−1 − 1)
22n−2 γ2k−2n+1ζ(2n)

− (2k)!(2
2k+1 − 1)

22k ζ(2k + 2) . (4)
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In particular,

r1 = 1
2γ2 + τ2 + γ(1) + γζ(2) ,

r2 = 1
3γ3 + 2τ3 + γ(2) + 2γ1ζ(2)− 7

2ζ(4) .

Example 1. Numerical evaluations of rk, τk and γ(k) for small values of k are
given below. Note that the constant τ0 is undefined.

r0 = 0.529052 . . . τ1 = 1.257746 . . . γ(0) = 0.989055 . . .
r1 = −0.078850 . . . τ2 = −1.424248 . . . γ(1) = 0.400761 . . .
r2 = −0.008095 . . . τ3 = 1.523800 . . . γ(2) = 0.971304 . . .

Remark 1. Although not used afterwards, we also mention another expression of
the constant τk which can be easily deduced from its definition:

τk = (−1)k
∞∑
n=1

1
n

Lik
(
− 1
n

)
(k ≥ 1) ,

where Lik denotes the kth polylogarithm. In particular, for k = 1, the formula

τ1 =
∞∑
n=1

1
n

log
(

1 + 1
n

)

is regained. Note that the definition of τk given here differs from that given in [10]
when k > 1.

Proof of Proposition 1. The key formula to derive the general relations (3) and
(4) is the decomposition of ∑Rn>1

Hn

ns given by [10, Theorem 1] which is reproduced
below:

R∑
n>1

Hn

ns
= π

sin(πs) ζ(s) +
∫ 1

0

ψ(x+ 1) + γ

xs
dx+ ζH(s) , (5)

where ψ(x) = d
dx

log Γ(x) is the digamma function. This formula applies to all
complex numbers s such that Re(s) < 2 and s 6= 1, 0, 1 − 2k for each integer
k > 0. Fortunately, the Laurent expansion of each component in (5) can be
written explicitly.
a) The expansion of π

sin(πs) ζ(s) at s = 1 can be obtained as follows: first, we write
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the successive equations:
−π

sin(πs) = π

sin(π(s− 1)) = exp(iπ(s− 1))
s− 1

2iπ(s− 1)
exp(2iπ(s− 1))− 1

= 1
s− 1

∑
k≥0

ikπk
1
k! (s− 1)k

∑
k≥0

ik(2π)kBk

k! (s− 1)k


= 1
s− 1 +

∑
k≥1

(−1)k
 2k∑
j=0

(
2k
j

)
2jBj

 π2k

(2k)!(s− 1)2k−1 ,

where Bj are the Bernoulli numbers. Euler’s identity:

ζ(2k) = (−1)k+122k−1B2k
π2k

(2k)! (k ≥ 1),

then allows us to rewrite this expansion as follows:

−π
sin(πs) = 1

s− 1 −
∑
k≥1

21−2k

B2k

2k∑
j=0

(
2k
j

)
2jBj ζ(2k)(s− 1)2k−1 .

Morover, the latter expression can be simplified thanks to the identity
k∑
j=0

(
k

j

)
2jBj = 2kBk(

1
2) = 2(1− 2k−1)Bk (k ≥ 2) .

Hence, the expansion of π

sin(πs) at s = 1 is given by

π

sin(πs) = − 1
s− 1 −

∞∑
k=1

22k−1 − 1
22k−2 ζ(2k)(s− 1)2k−1 .

On the other hand, the expansion of ζ(s) at s = 1 is

ζ(s) = 1
s− 1 + γ +

∞∑
k=1

(−1)k
k! γk(s− 1)k ,

where γk are the Stieltjes constants. The expansion of π
sin(πs) ζ(s) is then obtained

by Cauchy product. We have
π

sin(πs) ζ(s) = − 1
(s− 1)2 −

γ

(s− 1) + γ1 − ζ(2)

−
(1

2γ2 + γζ(2)
)

(s− 1) +
(1

6γ3 + γ1ζ(2)− 7
4ζ(4)

)
(s− 1)2

−
( 1

24γ4 + 1
2γ2ζ(2) + 7

4γζ(4)
)

(s− 1)3

+
( 1

120γ5 + 1
6γ3ζ(2) + 7

4γ1ζ(4)− 31
16ζ(6)

)
(s− 1)4 − · · · (6)
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In (6), the coefficient of (s− 1)2k and (s− 1)2k−1 are respectively

γ2k+1

(2k + 1)! +
k∑
j=1

γ2k−2j+1

(2k − 2j + 1)! ×
(22j−1 − 1)

22j−2 ζ(2j)− (22k+1 − 1)
22k ζ(2k + 2) ,

and
− γ2k

(2k)! −
k∑
j=1

γ2k−2j

(2k − 2j)! ×
(22j−1 − 1)

22j−2 ζ(2j) .

b) The well-known Taylor series expansion of the digamma function:

ψ(x+ 1) + γ =
∞∑
n=1

(−1)n+1ζ(n+ 1)xn (|x| < 1),

allows us write ∫ 1

0

ψ(x+ 1) + γ

xs
dx =

∞∑
n=1

(−1)n+1 ζ(n+ 1)
n− (s− 1) .

This leads to the following expansion:∫ 1

0

ψ(x+ 1) + γ

xs
dx =

∞∑
k=0

( ∞∑
n=1

(−1)n+1 ζ(n+ 1)
nk+1

)
(s− 1)k

=
∞∑
k=0

(−1)k
k! × k! τk+1 (s− 1)k (|s− 1| < 1). (7)

c) To obtain the expansion of
R∑
n>1

Hn

ns
at s = 1, we proceed as follows: first we

write the identities
Hn

ns
= Hn

n
e−(s−1) logn =

∞∑
k=0

(−1)k
k! × Hn(log n)k

n
(s− 1)k ,

so that
R∑
n>1

Hn

ns
=
R∑
n≥1

( ∞∑
k=0

(−1)k
k! × Hn(log n)k

n
(s− 1)k

)
.

Moreover, [9, Theorem 9] allows us interchange ∑Rn>1 and ∑∞k=0. This leads to the
expansion:

R∑
n>1

Hn

ns
=
∞∑
k=0

(−1)k
k!

 R∑
n≥1

Hn(log n)k
n

 (s− 1)k =
∞∑
k=0

(−1)k
k! rk (s− 1)k . (8)

The desired formulas (3) and (4) can then be easily obtained by combining the
previous expansions (6), (7), and (8).
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3 A new expresssion of ζH(s) and its implications
In this section, we give a new expression of the harmonic zeta function (Theorem 1)
from which follows a new evaluation of the harmonic Stieltjes constants (Corollary
1). By means of this new representation of ζH , we can also derive new integral
formulas for ζ(n) and ζ ′(n) (Corollary 2), and new evaluations for Glasser-Manna
type integrals (Corollaries 4–6).

Theorem 1. For all complex numbers s in Cr Z, we have

ζH(s) = π cot(πs) ζ(s) + ζ(s+ 1) + Γ(1− s)Φ(s) (9)

with
Φ(s) := − 1

2iπ

∫ π

−π
x
(
Log(1 + eix)

)s−1
dx , (10)

where Log denotes the principal value of the complex logarithm.

Proof. Let z = Log(1+eix) = log
(
2 cos(x2 )

)
+ ix

2 , −π < x < π. When x varies from
−π to π, the variable z traverses the path L defined by the parametric equations
Re z = log(2 cos(x/2)) and Im z = x/2. This path extends from −∞ below the
line Im z = 0, passes through the point (log 2, 0), then extends back to −∞ above
the line Im z = 0. Since L is homotopic to the Hankel contour C defined in [6, 7],
then by means of [7, Equation (25)], we have, for s ∈ Cr Z, the representation

ζH(s) = π cot(πs) ζ(s) + ζ(s+ 1) + Γ(1− s)φ(s)− ψ(1− s)ζ(s)− ζ ′(s) , (11)

where
φ(s) := 1

2iπ

∫
L

zs−1ez

ez − 1Log
(
ez − 1
z

)
dz .

We now show that the equations (9) and (11) are equivalent. To do this, we
proceed as follows. Differentiation of the integral representation

ζ(s) = Γ(1− s)
2iπ

∫
L

zs−1ez

1− ez dz

[6, Equation (2.4)], leads to the following identity:

ψ(1− s)ζ(s) + ζ ′(s) = Γ(1− s)
2iπ

∫
L

zs−1ezLog(z)
1− ez dz (s 6= 1, 2, 3, . . .) (12)

[6, Equation (2.7)]. Splitting the right-hand member of (12), we can write

1
2iπ

∫
L

zs−1ezLog(z)
1− ez dz = φ(s)− Φ(s) , (13)
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with
Φ(s) = 1

2iπ

∫
L

zs−1ez

ez − 1Log(ez − 1) dz .

From (12) and (13), we deduce the identity

Γ(1− s)φ(s)− ψ(1− s)ζ(s)− ζ ′(s) = Γ(1− s)Φ(s) .

Moreover, the substitution

z = Log(1 + eix), −π < x < π ,

in the contour integral defining Φ gives this function the equivalent form (10),
proving that (9) and (11) are equivalent equations.

3.1 New formulas for γ(k)

We deduce from (9) an expression of γ(k) which seems to us more meaningful than
the one given by Kargin et al. [16, Equation (21)].

Corollary 1. For any non-negative integer n, let Ln and ξn be defined as follows:

Ln := Φ(n)(1) = − 1
2iπ

∫ π

−π
xLogn(Log(1 + eix)) dx ,

and
ξn := (−1)n Γ(n)(1) = (−1)n

∫ +∞

0
e−x logn(x) dx .

Then we have
γ(0) = −L1 − γ1 − ζ(2) , (14)

and, for all positive integers k, the following general relations hold true:

γ(2k−1) = −ζ(2k−1)(2)− γ2k

2k + 1
2k

2k−1∑
n=0

(
2k
n

)
ξn L2k−n

+
k∑

n=1

2(2k − 1)!
(2k − 2n)! γ2k−2n ζ(2n) , (15)

and

γ(2k) = ζ(2k)(2)− γ2k+1

2k + 1 −
1

2k + 1

2k∑
n=0

(
2k + 1
n

)
ξn L2k+1−n

+
k∑

n=1

2(2k)!
(2k + 1− 2n)! γ2k+1−2n ζ(2n)− 2(2k)! ζ(2k + 2) . (16)

8



Moreover, it follows from (14) and (1) the explicit evaluation:

L1 = − 1
2iπ

∫ π

−π
xLog(Log(1 + eix)) dx = −3

2ζ(2)− 1
2γ

2 − γ1 . (17)

Example 2. Applying formulas (15), (16) to the case k = 1 and using (17) above,
we then obtain

γ(1) = −ζ ′(2)− 1
2γ

3 − 1
2γ2 + 1

2L2 + 1
2γζ(2)− γγ1 ,

and

γ(2) = ζ ′′(2) + 1
2γ

4 − 1
3γ3 −

1
3L3 − γL2 + (2γ2 + 5γ1)ζ(2) + γ2γ1 −

1
10(ζ(2))2 .

Numerical evaluations of the constants L2 and L3 are

L2 = −1.924491 . . . and L3 = 7.158075 . . .

Proof of Corollary 1. The key formula to derive the relations (14), (15) and (16) is
the representation of ζH(s) given by (9). Fortunately, the Laurent series expansion
of each component in (9) can be written explicitly.
a) The Laurent expansions of π cot(πs) and ζ(s) at s = 1 are respectively

π cot(πs) = 1
s− 1 −

∑
k≥1

2ζ(2k)(s− 1)2k−1 ,

and
ζ(s) = 1

s− 1 + γ +
∑
k≥1

(−1)k
k! γk(s− 1)k ,

where the coefficents γk are the Stieltjes constants. The expansion of π cot(πs) ζ(s)
is then obtained by Cauchy product:

π cot(πs) ζ(s) = 1
(s− 1)2 + γ

s− 1 − γ1 − 2ζ(2)−
(
−1

2γ2 + 2γζ(2)
)

(s− 1)

+ 1
2

(
−1

3γ3 + 4ζ(2)γ1 − 4ζ(4)
)

(s− 1)2

− 1
6

(
−1

4γ4 + 6ζ(2)γ2 + 12γζ(4)
)

(s− 1)3 + · · · (18)

b) It follows from the definition of ξk as (−1)k Γ(k)(1) that the Laurent expansion
of Γ(1− s) at s = 1 is given by

Γ(1− s) = − 1
s− 1 − γ −

∞∑
k=2

ξk
k! (s− 1)k−1 (|s− 1| < 1) ,
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On the other hand, the function Φ defined by (10) is an entire function of s
with Φ(1) = L0 = 0, and the definition of Lk as Φ(k)(1) implies that the Taylor
expansion of Φ(s) at s = 1 is given by

Φ(s) =
∞∑
k=1

Lk
k! (s− 1)k .

The Laurent expansion of Γ(1− s)Φ(s) then follows by Cauchy product:

Γ(1− s)Φ(s) = −L1 −
(1

2L2 + γL1

)
(s− 1)

+ 1
2

(
−1

3L3 − γL2 − 2γ(0)L1

)
(s− 1)2

− 1
6

(1
4L4 + γL3 + 3γ(0)L2 + (2ζ(3) + 3γζ(2) + γ3)L1

)
(s− 1)3 + · · · (19)

c) The Taylor expansion of ζ(s+ 1) at s = 1 can be written as follows:

ζ(s+ 1) = ζ(2) +
∞∑
k=1

(−1)k
k! (−1)kζ(k)(2) (s− 1)k . (20)

By assembling equations (18), (19) and (20) above, we obtain, by identifying the
constant term, the relation (14). In the same way, the general formulae (15) and
(16) are derived by identifying the coefficients of higher degree.

Remark 2. a) The constants ξn involved in formulae (15)–(16) have a closed form
expression in terms of Euler’s constant γ and ζ(2), . . . , ζ(n) [3, 11]. More precisely,
we have ξ0 = 1, ξ1 = γ, ξ2 = γ2 + ζ(2) = 2γ(0), and by the recursion formula [11,
Equation (2.2)]

ξn+1 = γξn +
n∑
k=1

n!
(n− k)! ζ(k + 1) ξn−k (n ≥ 1),

we also have

ξ3 = γ3 + 3γζ(2) + 2ζ(3) , ξ4 = γ4 + 6γ2ζ(2) + 8γζ(3) + 3 (ζ(2))2 + 6ζ(4) , etc.

A clever reformulation of this result is

ξn = Pn(γ, ζ(2), . . . , ζ(n)) (n ≥ 2) ,

where the polynomials Pn are defined by the exponential generating function

exp
( ∞∑
k=1

xk
tk

k

)
=
∞∑
n=0

Pk(x1, x2, . . . , xn) t
n

n! .
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b) By means of a theorem of Ramanujan [12, Theorem 4] whose proof is given in
[5, p. 224], we can write the following identity:

(−1)nζ(n)(2) = n! + γn +
∞∑
k=1

(−1)k
k! γk+n (n ≥ 1) .

3.2 New formulas for ζ(n) and ζ ′(n)
The relation between Φ(s) and ζH(s) resulting from formula (9) when written in
a neighborhood of s = n (for an integer n ≥ 2) enables to derive new formulas for
ζ(n) and ζ ′(n).

Corollary 2. For all integers n ≥ 2, we have

ζ(n) = (−1)n
(n− 1)! ×

1
2iπ

∫ π

−π
x
(
Log(1 + eix)

)n−1
dx , (21)

and

ζ ′(n) = (−1)n
(n− 1)! ×

1
2iπ

∫ π

−π
xLog

(
Log(1 + eix)

) (
Log(1 + eix)

)n−1
dx

+ ζH(n)− ζ(n)ψ(n)− ζ(n+ 1) . (22)

Proof of Corollary 2. For n ≥ 2, we can write

π cot(πs) ζ(s) = ζ(n)
s− n

+ ζ ′(n) + O(s− n) ,

Γ(1− s) = (−1)n
(n− 1)!

( 1
s− n

+ (γ −Hn−1)
)

+ O(s− n) ,

and

Γ(1− s) Φ(s) = (−1)n
(n− 1)!

Φ(n)
s− n

+ (−1)n
(n− 1)! (Φ′(n) + Φ(n)(γ −Hn−1)) + O(s− n) .

By applying formula (9) around s = n, we deduce the equation

ζH(n) + O(s− n) =
(
ζ(n) + (−1)n

(n− 1)!Φ(n)
)

1
s− n

+ (−1)n
(n− 1)! (Φ′(n) + Φ(n)(γ −Hn−1)) + ζ ′(n) + ζ(n+ 1) + O(s− n) .

This leads to the identities

ζ(n) + (−1)n
(n− 1)!Φ(n) = 0 ,

11



and
ζH(n) = (−1)n

(n− 1)! (Φ′(n) + Φ(n)(γ −Hn−1)) + ζ ′(n) + ζ(n+ 1) ,

thus proving formulas (21) and (22).

Remark 3. It should be noted that our formula (21) for ζ(n) is similar to but dif-
ferent from [6, Equation (2.6)] which, after substitution z = Log(1+eix), translates
into

ζ(n) = (−1)n−1

(n− 1)! ×
1

2π

∫ π

−π
Log

(
Log(1 + eix)

) (
Log(1 + eix)

)n−1
dx .

Corollary 3. For all positive integers n, we have

Φ(2n+ 1) = (2n)! ζ(2n+ 1) , (23)

(−1)n Φ(2n) = (−1)n−1 (2n− 1)! ζ(2n) = B2n

4n (2π)2n , (24)

and

Φ′(2n) = (2n−1)! [nζ(2n+1)−ζ(2n)ψ(2n)−
n−1∑
k=1

ζ(2n−k) ζ(k+1)−ζ ′(2n)]. (25)

Proof of Corollary 3. By Euler’s formula [5, p. 252], we have

ζH(2n) = (n+ 1) ζ(2n+ 1)−
n−1∑
k=1

ζ(2n− k) ζ(k + 1) ,

and thus formulas (23)–(25) derive from (21) and (22).

Example 3. Applying (23), (24) and (25) to the case n = 1, we obtain

Φ(3) = 2ζ(3) = ζH(2) = − 1
2iπ

∫ π

−π
xLog2(1 + eix) dx ,

−Φ(2) = ζ(2) = 1
2iπ

∫ π

−π
xLog(1 + eix) dx = π2

6 ,

Φ′(2) = ζ(3)− ζ(2)(1− γ)− ζ ′(2) .

3.3 New formulas for Glasser-Manna type integrals
The relation between Φ(s) and ζH(s) resulting from formula (9) when written in
a neighborhood of s = −n (for a non-negative integer n) enables to derive new
formulas for Glasser-Manna type integrals.
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Corollary 4. We have

Φ(0) = 1
2π

∫ π

−π

ix

Log(1 + eix) dx = 1
2 log(2π)− 1

2γ + 1
2 , (26)

and

Φ′(0) = 1
2π

∫ π

−π

ixLog(Log(1 + eix))
Log(1 + eix) dx

= 1
2γ1 + 1

4 log2(2π) + 1
4γ

2 − 1
2γ −

1
2γ log(2π)− 7

8ζ(2) + β , (27)

where β is the linear coefficient in the Laurent expansion of ζH at s = 0.
Proof of Corollary 4. Around 0, we have the decomposition given by (9):

ζH(s) = ζ(s+ 1) + π cot(πs) ζ(s) + Γ(1− s)Φ(s) ,

and the expansion [10, Equation (8)]

ζH(s) = 1
2s + 1

2γ + 1
2 + βs+ O(s2) .

On the other side, we have the expansions

ζ(s+ 1) = 1
s

+ γ − γ1 s+ O(s2) ,

π cot(πs) ζ(s) = − 1
2s −

1
2 log(2π) + (1

2γ1 −
1
4 log2(2π) + 1

4γ
2 + 7

8ζ(2))s+ O(s2) ,

Γ(1− s)Φ(s) = Φ(0) + (Φ′(0) + γΦ(0)) + O(s2) .

By identifying the constant coefficient in the expansion of the right-hand member
of (9), we deduce the equation

1
2γ + 1

2 = γ − 1
2 log(2π) + Φ(0) ,

which is equivalent to (26). In the same way, formula (27) is derived by identifying
the linear coefficient in the expansion of the right-hand member of (9).
Remark 4. We derive from [17, Corollary 4.2] the following evaluation of the
constant β which appears in formula (27):

β = −γ[2]
1 (0)− γ1 = 1 + 1

2γ −
1
4γ

2 − γ1 + 1
4ζ(2)−

∞∑
n=2

|bn|
(n− 1)2 = 1.589935 . . . ,

where bn are the Bernoulli numbers of the second kind defined by way of their
generating function

x

log(x+ 1) =
∞∑
n=0

bn x
n (|x| < 1).
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Remark 5. Formula (26) appears in a slightly different but equivalent form in
[15, Proposition 3.4], due to the identities

Φ(0) = 1
π

∫ π

−π

ix dx

2 log(2 cos(x2 )) + ix
= 2
π

∫ π

0

x2

x2 + 4 log2(2 cos(x2 ))
dx .

Corollary 5. We have

Φ(−1) = 1
2π

∫ π

−π

ix

Log2(1 + eix)
dx = log(A)− 1

12γ + 7
24 , (28)

where A = exp( 1
12 − ζ

′(−1)) is the Glaisher-Kinkelin constant, and for all integers
n ≥ 2,

(2n− 1)! Φ(1− 2n) = log(An)− B2n

2n γ +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2 , (29)

with log(An) := H2n−1B2n

2n − ζ ′(1− 2n).1

Example 4.

Φ(−3) = 1
2π

∫ π

−π

ix

Log4(1 + eix)
dx = 1

6 log(A2) + 1
720γ + 1

320 .

Proof of Corollary 5. Around s = −1, we have the expansion [10, Equation (9)]

ζH(s) = − 1
12(s+ 1) −

1
12γ −

1
8 + O(s+ 1) .

On the other side, we have

ζ(s+ 1) = −1
2 + O(s+ 1) ,

π cot(πs) ζ(s) = ζ ′(−1) + O(s+ 1) ,
Γ(1− s)Φ(s) = Φ(−1) + O(s+ 1) .

Formula (28) is then deduced by identifying the constant coefficient in the expan-
sion of the right-hand member of (9). In the same way, from [10, Proposition 2],
the Laurent expansion around s = 1− 2n for n ≥ 2 is given by

ζH(s) = ζ(1− 2n)
s+ 2n− 1 −

B2n

2n γ+ H2n−1B2n

2n +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2 +O(s+2n−1)

which, by the same method, allows us to deduce formula (29).
1The numbers An are called generalized Glaisher-Kinkelin constants (cf. [13]).
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Corollary 6. For all positive integers n, we have

(2n)! Φ(−2n) = −ζ ′(−2n) + (2n+ 1) B2n

4n , (30)

from which follows the reflection formula:

2(2n)! Φ(−2n) = (−1)n+1(2π)−2n Φ(2n+ 1) + (2n+ 1) B2n

2n . (31)

Example 5.

2Φ(−2) = 1
π

∫ π

−π

ix

Log3(1 + eix)
dx = −ζ ′(−2n) + 1

8 = 1
4π2 ζ(3) + 1

8 . (32)

Proof of Corollary 6. Around s = −2n, we have

ζH(s) = −B2n

4n + B2n

2 + O(s+ 2n) .

On the other side, we have the expansions

ζ(s+ 1) = −B2n

2n + O(s+ 2n) ,

π cot(πs) ζ(s) = ζ ′(−2n) + O(s+ 2n) ,
Γ(1− s)Φ(s) = (2n)!Φ(−2n) + O(s+ 2n) .

By identifying the constant coefficient in the expansion of the right-hand member
of (9), we obtain formula (30). Moreover, the well-known identity

−2ζ ′(−2n) = (−1)n+1 (2π)−2n (2n)! ζ(2n+ 1)

and the relation
Φ(2n+ 1) = (2n)! ζ(2n+ 1)

given by (23) enable to deduce formula (31) from (30).
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Appendix: Evaluation of Glasser-Manna integrals
with shifted Mascheroni series
For any natural number k, let us consider the series

σk :=
∞∑

n=k+1

|bn|
n− k

,

where bn are the Bernoulli numbers of the second kind defined by means of their
generating function

x

log(x+ 1) =
∞∑
n=0

bn x
n = 1 + x

2 −
x2

12 + x3

24 −
19x4

720 + · · ·

For positive values of k, the series σk are called shifted Mascheroni series [14]. The
nice identities σ0 = γ and σ1 = 1

2 log(2π)− 1
2γ−

1
2 are well-known [14, Proposition

2]. The first one is a classical result due to Mascheroni, and the second allows us
to deduce from formula (26) the following evaluation:

1
2π

∫ π

−π

ix

Log(1 + eix) dx = 4
π

∫ π/2

0

x2

x2 + log2(2 cos(x))
dx = σ1 + 1 = 1.13033 . . .

(A1)
This formula was first given by Glasser and Manna [15, Proposition 3.3] in a
slightly different but equivalent form. Moreover, thanks to the simplest special
cases of the following formula arising from [14, Proposition 3]:

n∑
k=1

(−1)n+kk!S(n, k)σk+1 = −ζ ′(−n)− Bn+1

n+ 1 (γ +Hn+1 −Hn) (n ≥ 1) ,

(A2)
with S(n, k) denoting the Stirling numbers of the second kind, we can easily derive
from formulas (28) and (32) above further evaluations of the same kind, such as

1
2π

∫ π

−π

ix

Log2(1 + eix)
dx = σ2 + 5

12 = 0.49232 . . . (A3)

and

1
π

∫ π

−π

ix

Log3(1 + eix)
dx = −σ2 + 2σ3 + 1

8 = 0.15544 . . . (A4)

More generally, it is possible to deduce from (A2) the following identities that are
nothing more than reinterpretations of formulas (29) and (30) in terms of shifted
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Mascheroni series σk. These are

(2n− 1)!
2π

∫ π

−π

ix

Log2n(1 + eix)
dx =

2n−1∑
k=1

(−1)k+1k!S(2n− 1, k)σk+1

+ B2nH2n

2n +
2n−1∑
k=0

(
2n− 1
k

)
Bk B2n−k

(2n− k)2 (n ≥ 2), (A5)

and

(2n)!
2π

∫ π

−π

ix

Log2n+1(1 + eix)
dx =

2n∑
k=1

(−1)kk!S(2n, k)σk+1 + (2n+ 1) B2n

4n
(n ≥ 1). (A6)
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