Skip to Main content Skip to Navigation
Journal articles

Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach

Abstract : Citation: Girard O, Brocherie F, Morin J-B and Millet GP (2015) Neuro-mechanical determinants of repeated treadmill sprints-Usefulness of an "hypoxic to normoxic recovery" approach. To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO 2 = 20.9%), moderate (MH; FiO 2 = 16.8%) or severe normobaric hypoxia (SH; FiO 2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (−8.2%) compared to SL (−5.3%) and MH (−7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.
Document type :
Journal articles
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://hal.univ-cotedazur.fr/hal-01858849
Contributor : Jean-Benoit Morin <>
Submitted on : Monday, March 23, 2020 - 12:34:43 PM
Last modification on : Sunday, May 31, 2020 - 2:48:02 AM

File

fphys-06-00260.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Olivier Girard, Franck Brocherie, Jean-Benoît Morin, Grégoire Millet. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach. Frontiers in Physiology, Frontiers, 2015, 6, ⟨10.3389/fphys.2015.00260⟩. ⟨hal-01858849⟩

Share

Metrics

Record views

293

Files downloads

446