Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes
Abstract
Aims In the current study we investigated the effects of resisted sprint training on sprinting performance and underlying mechanical parameters (force-velocity-power profile) based on two different training protocols: (i) loads that represented maximum power output (L opt) and a 50% decrease in maximum unresisted sprinting velocity and (ii) lighter loads that represented a 10% decrease in maximum unresisted sprinting velocity, as drawn from previous research (L 10). Methods Soccer [n = 15 male] and rugby [n = 21; 9 male and 12 female] club-level athletes were individually assessed for horizontal force-velocity and load-velocity profiles using a battery of resisted sprints, sled or robotic resistance respectively. Athletes then performed a 12-session resisted (10 × 20-m; and pre-post-profiling) sprint training intervention following the L 10 or L opt protocol.
Domains
Life Sciences [q-bio]Origin | Publisher files allowed on an open archive |
---|
Loading...