Comparison of some isoparametric mappings for curved triangular spectral elements

Abstract : Using the spectral element method (SEM), or more generally hp-finite elements, it is possible to solve with high accuracy various kinds of problems governed by partial differential equations (PDEs). However, as soon as the physical domain is not polygonal the accuracy quickly deteriorates if curved elements are not implemented. For the Fekete-Gauss TSEM (T, for triangle), i.e. that makes use of Fekete points for interpolation and Gauss points for quadrature, the importance of a good choice of the bending procedure is pointed out by comparing different isoparametric mappings for the Poisson and Grad-Shafranov PDEs.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2016, 316, pp.573-577. 〈10.1016/j.jcp.2016.04.038〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.univ-cotedazur.fr/hal-01307076
Contributeur : Richard Pasquetti <>
Soumis le : lundi 17 octobre 2016 - 14:42:57
Dernière modification le : jeudi 3 mai 2018 - 13:32:58

Fichier

note_revised_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Richard Pasquetti. Comparison of some isoparametric mappings for curved triangular spectral elements. Journal of Computational Physics, Elsevier, 2016, 316, pp.573-577. 〈10.1016/j.jcp.2016.04.038〉. 〈hal-01307076〉

Partager

Métriques

Consultations de la notice

319

Téléchargements de fichiers

237