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NOTE
Comparison of some isoparametric mappings
for curved triangular spectral elements
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Using the spectral element method (SEM), or more generally hp-finite elements (hp-FEM), it is possible to
solve with high accuracy various kinds of problems governed by partial differential equations (PDEs), see
e.g.[1, 2]. However, as soon as the physical domain is not polygonal, the accuracy quickly deteriorates if
curved elements are not implemented. This is the reason why various methods have been developed during the
last decades, starting from the celebrated transfinite interpolation proposed for quadrangular elements in [3].
In this note we revisit this problem for triangular elements, based on the use of Fekete points for interpolations
and of Gauss points for quadratures, i.e. when using the so-called Fekete-Gauss approximation. As detailed
in [4], such an approach shows the so-called spectral accuracy. However, differently to the quadrangles based
SEM, it does not involve diagonal mass matrices, see e.g. [5, 6, 7] and references herein for works trying to
preserve this nice property that is especially useful when addressing evolution problems with an explicit time
marching. In the frame of the Fekete-Gauss TSEM (T, for triangle), the present study clearly points out
the importance of a good choice of the bending procedure by comparing different isoparametric mappings
for the Poisson and Grad-Shafranov PDEs.

Let © be a two-dimensional domain and consider an affine finite element mesh 7; of € composed of
simplices. As well known, if €2 is not polygonal then the mesh 7}, is no-longer satisfactory if using a high order
Py approximation, where IV is the total degree of the polynomial approximation. Usually, one substitutes
an isoparametric Py mapping to the affine P; one for the triangles that should approximate the boundary
T of Q. If T € T}, is such a triangle, we assume it to be in the simple case where one of the vertices, say A,
is in © whereas the two others, A, and Ag, are on I', and that the segment AsAs is curved whereas A As
and A As remain straight, see Fig. 1. This may not be sufficient to address some more complex situations
where the whole mesh should be deformed and not only the boundary cells, see e.g.[8, 9, 10]. Here we keep
in mind the situation where the required mapping is local and not global, so that its computational cost
remains negligible.

In the frame of a nodal T'SEM, everything is given once knowing a set of interpolation points and a
set of quadrature points in the reference element 7' = {(r,s) : 7 € (=1,1),s5 € (—1,—7)}, and the images
of the interpolation points in each element T of the mesh. As first described in [4], for the Fekete-Gauss
approach matrices are set up to compute at the Gauss points of T the derivatives, with respect to r and s,
of the polynomial interpolant uy of any scalar function u defined by its values at the Fekete points. Such
matrices, say D, and Dy, are rectangular and of size m, x n,, where m, > n,, is the number of quadrature
points, generally chosen for exact integration of polynomials of degree m = 2N, and n, = (N +1)(N +2)/2
is the number of interpolation points. Then, since knowing the images of the interpolation points, one can
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compute the Jacobian matrix and determinant at the quadrature points without expressing explicitly the
isoparametric mapping from TtoT. Thus, the problem resumes to localize at best the interpolation points
in the element T'.

Four approaches are investigated hereafter:

- The bending procedure that we introduced in [11];

- The transfinite interpolation discussed for the triangles in [12];

- The harmonic extension;

- The linear elasticity approach, see e.g.[10].

Before going into the details of these different approaches, we assume to have at hand a parametric
description of the boundary of €, i.e., I" is defined by a vector function, say xr(t) = (zr(t),yr(t)), where
t € [tmin, tmax)- Then, for all the four approaches it is assumed that the boundary nodes, i.e. the interpolation
points of I', are at the intersection of the lines joining the inner vertex A; and the interpolation points of the
straight line AsAs, i.e.the edge of the element, say T, provided by the piecewise linear P; mapping. This
requires one to solve, in general using a simple numerical procedure, N — 1 (number of nodes of an edge
without the end points) generally non-linear equations. We prefer using such a geometrical approach rather
than the parametrization itself, simply because the same curve may be obtained in very different manners.
It remains to define nj, inner interpolation points, with nj, =n, — 3N = (N — 1)(N — 2)/2.
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Figure 1: Curved triangles and location of the interpolation points for the different isoparametric mappings (N = 6).

The bending procedure: Assume that F is the interpolation point obtained with the affine Py mapping.
Let G and G be the points at the intersections of Ay F' with the line A A3 and the boundary T, respectively.
Then, the bending procedure [11] consists of stating that F' is homothetic to F by the homothety of center
A7 and of ratio AlG/Alé, so that:

AF=2C A F and d=FF- (Alcf ~- 1A F
AlG 1G

where d stands for displacement. One notices that for this bending procedure, only the point G of I influences
the location of the interpolation point F. In order to define the inner interpolation points, one has to solve
n,, equations.

The transfinite interpolation: For the triangle, the method makes use of the barycentric coordinates,
say (A1, A2, A3). Recall that A\; = 0 stands for the edge opposite to the vertex i, \; = Constant to a line
parallel to this edge and that vertex ¢ belongs to A\; = 1. General transfinite interpolation formula are
given in [12] (different approaches are however possible, see e.g.[13]). For the triangle, if the displacement d

vanishes at the two edges A1 Ay and Aj A3, again assuming that A As is the curved edge, one has:
d()\h Ao, )\3) = )Xy d(O7 1— A3, )\3) + A3 d(O, Ao, 1 — )\2) .

This means that two points of the boundary I' influence the location of an inner interpolation point F'. They
are those at the intersections of I' with the lines parallel to A; A and A; A3 and passing by the point F'.
One notices that the method requires solving Qn; equations.



Harmonic extension: The goal is here to define the inner interpolation points by solving, for each
curved element 7', the weak form of the Laplace Dirichlet problem:

Ad=0 inT, dyr=g

with g given on A3 A3 and g = 0 on the two other sides. To resolve this vector Laplace problem, that in
fact yields two uncoupled scalar problems, one has to set up the differentiation matrices, say Dz and Dy
that allows one to compute derivatives in 7. To this end, one makes use of the differentiation matrices
D, and D, and applies the chain rule. Since the mapping from T to T is affine, the Jacobian matrix and
determinant Jacobian are constant. For the same reason, one may solve directly for the interpolation point
coordinates. Finally, one should invert a matrix of size n; X n;, in order to compute the coordinates of the
inner interpolation points. The approach is thus rather simple and in practice not costly. In [9], where global
mappings are considered, it is however outlined that the harmonic extension may fail to define a mapping.

Linear elasticity: Here the curved domain is viewed as the deformation of triangles, that is governed
by the equation of linear elasticity. Introducing the Lame coefficients A and g, the displacement field is

governed by the Navier-Cauchy equation:
pAd+ AN+ p)V(V-d)=0 inT, dl,;z=g9.

There is now a coupling between the components of the displacement field. Using the ingredients previously
described for the harmonic extension, the weak form of this elasticity problem yields a matrix system of size
Qn;. The solution of this system provides the displacements of the inner interpolation points. Again, one can
also compute directly their coordinates. Because the forcing term is zero, the mapping is here parametrized
by the ratio /(A + ) = 1 — 21, where n € (—1,0.5) is the so called Poisson ratio.

Fig. 1 shows the distribution of the interpolation points in a triangle, as obtained with the different
strategies for a polynomial approximation degree N = 6. Of course, only the inner nodes differ. In these
examples, the curved boundary is defined parametrically by : x = ¢, t € (—1,1), and y = 0.3sin(xt) (left),

y = 0.3cos(mt/2) (center) and y = —0.3 cos(nt/2) (right).
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Figure 2: Computational domain and meshes: coarse (69 elts), medium (151 elts) and fine (293 elts).

In the rest of the paper the different isoparametric mappings are compared for the Poisson equation,
—Au = f, with exact solution ., = cos(10z) cos(10y) so that f = 200 uc,, and, from an example given in

[14], for the Grad-Shafranov PDE

1
=V (—Vu)=f,
T
with )
_ k(1 o 5 1 59 99 _1+k
Uey = 2pgq<4(aﬁ PO+ ety —avp ’f’;mpsqx

In both cases the boundary I' of the computational domain is defined by

D= {(z,y): 2> =p* +2apg(t),y = Iiag sin(t),0 <t < 2n}, g(t) = cos(t) + 0.75exp(—2(t — m)?)



and Dirichlet boundary conditions are used. Moreover, as in [15, 16] we take p = 1, a = 0.32, kK = 1.7 and
g = 1, but with g(¢) # cos(t) to obtain a non convex domain that includes different types of curved elements.
For the Grad-Shafranov problem, the 1/(px) value at the Gauss points is computed by interpolation of ()
from the Fekete to the Gauss points, so that it is exact for non deformed triangles. For the linear elasticity
extension, as in [10] we use n = 0.4, yielding p/(A + 1) = 0.2. Computations have also been carried out
without curving the boundary triangles, then (i) assigning to the boundary points of the straight edge the
corresponding values of u,, on the curved boundary or (ii) simply using ue,, just like if the computational
domain was a polygon.
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Figure 3: Max norm of the error vs the polynomial degree N for the Laplace (at left) and Grad-Shafranov (at right) problems,
using the coarse (top), medium (middle) and fine (bottom) meshes.

Computations have been carried out for the three P; meshes shown in Fig. 2 and for the polynomial
approximation degrees N € {1,2,3,6,9}. With uy for the numerical solution and {x} for the interpolation
points, log-log plots of the I error, € = maxy, |un — tes|(xr)/ maxy |tes|(xr), with respect to the polynomial
degree N are shown in Fig. 3. Of course, if the boundary triangles are not curved then the results are bad
for the real domain and on the contrary excellent for the polygonal one. If curved elements are involved,



the convergence curves look more algebraic than exponential, with however high convergence rates. One
notices that for N < 2 all methods show the same accuracy, since then there is no inner interpolation
point. With respect to the polygonal case, the loss of accuracy may be attributed to a failure of the Gauss
quadrature formula: Indeed, since the Jacobian matrix and determinant are no longer constant in each
element, polynomials of degree greater than 2N are numerically integrated. We have checked that this was
negligible, since using values m > 2N yields no valuable gain in accuracy, see Table 1. For curved elements
the differentiation matrices are however no-longer a simple combination of the matrices D, and D, defined
for the reference element, which implies a sensitive loss of accuracy. With respect to the standard SEM,
i.e. based on quadrangular elements, the fact that the interpolation and quadrature points do not coincide
certainly constitutes another source of inaccuracy, see e.g.the SEM results in [15]. From the results of
this Note, the bending and the transfinite interpolation methods appear to be less satisfactory for elements
of high degree, especially in the Grad-Shafranov case, since a slow-down in the decrease of the error is
clearly observed. Our explanation is that isoparametric mappings based on PDEs are more consistent than
those based on interpolations, in the sense that the locations of the inner nodes do not only result from
some particular points of the actual boundary but from its polynomial interpolant, which indeed defines the
boundary of the computational domain. One may conjecture that such a conclusion could extend to the
tetrahedron and to T'SEM approximations different from the Fekete-Gauss one.

m 12 14 16 18
Laplace | 3.8025 107 | 4.0246 10~* | 4.0065 10~* | 4.0078 10~
Gr. Shaf. | 2.4653 107° | 2.6421 10~° | 2.6306 10~° | 2.6313 10~°

Table 1: Max norm of the error for the Laplace and Grad-Shafranov problems for m > 2N, using the transfinite interpolation,
the medium mesh and for N = 6.
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