Rayleigh-Schroedinger perturbation theory generalized to eigen-operators in non-commutative rings

Abstract : A perturbation scheme to find approximate solutions of a generalized spectral problem is presented. The spectral problem is generalized in the sense that the ``eigenvalues'' searched for, are not real numbers but operators in a non-commutative ring, and the associated ``eigenfunctions'' do not belong to an Hilbert space but are elements of a module on the non-commutative ring. The method is relevant wherever two sets of degrees of freedom can be distinguished in a quantum system. This is the case for example in rotation-vibration molecular spectroscopy. The article clarifies the relationship between the exact solutions of rotation-vibration molecular Hamiltonians and the solutions of the effective rotational Hamiltonians derived in previous works. It also proposes a less restrictive form for the effective dipole moment than the form considered by spectroscopists so far.
Type de document :
Article dans une revue
Journal of Mathematical Chemistry, Springer Verlag (Germany), 2011, 49 (4), p. 821-835. 〈10.1007/s10910-010-9779-y〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.univ-cotedazur.fr/hal-00506483
Contributeur : Patrick Cassam-Chenaï <>
Soumis le : mardi 27 juillet 2010 - 19:34:39
Dernière modification le : vendredi 12 janvier 2018 - 01:48:33
Document(s) archivé(s) le : mardi 23 octobre 2012 - 11:31:20

Fichier

genpert-v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Patrick Cassam-Chenaï. Rayleigh-Schroedinger perturbation theory generalized to eigen-operators in non-commutative rings. Journal of Mathematical Chemistry, Springer Verlag (Germany), 2011, 49 (4), p. 821-835. 〈10.1007/s10910-010-9779-y〉. 〈hal-00506483〉

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

132