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Abstract

A perturbation scheme to find approximate solutions of a generalized spec-

tral problem is presented. The spectral problem is generalized in the sense that the

“eigenvalues” searched for, are not real numbers but operators in a non-commutative

ring, and the associated “eigenfunctions” do not belong to an Hilbert space but are

elements of a module on the non-commutative ring. The method is relevant wher-

ever two sets of degrees of freedom can be distinguished in a quantum system. This

is the case for example in rotation-vibration molecular spectroscopy. The article

clarifies the relationship between the exact solutions of rotation-vibration molecu-

lar Hamiltonians and the solutions of the effective rotational Hamiltonians derived

in previous works. It also proposes a less restrictive form for the effective dipole

moment than the form considered by spectroscopists so far.

1 Introduction

In two previous articles [1,2], we have presented and applied a method which generalizes

Rayleigh-Schrödinger perturbation theory to the case where “eigenvalues” are not ele-

ment of the field of real numbers but are element of a ring spanned by, non necessarily
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commuting, operators, and where “eigenfunctions” are not elements of a Hilbert space

but element of a module over a ring. The method was applied to the Watson Hamilto-

nian for the ro-vibrational motion of polyatomic molecules [3,4], however it is relevant

wherever the perturbation, εH1, depends upon extra degrees of freedom which do not

appear in the unperturbed Hamiltonian, H0. In particular, it can be used for other types

of ro-vibrational Hamiltonians if the part that does not contain rotational coordinates

and momenta in these Hamiltonians, is treated as the unperturbed Hamiltonian.

Numerical results for the rotational levels of methane in its vibrational ground state

demonstrate the speed of convergence of our approach where the unperturbed Hamilto-

nian is the (J = 0)-Hamiltonian with respect to traditional approaches starting from the

vibrational harmonic Hamiltonian [5–7], see Tab. 1.

The relative accuracy of our predicted energy levels obtained at order 4 of perturbation

with respect to the levels of an effective Hamiltonian derived from observed spectra,

was better than 2.10−5, see Tab. 2. It was further shown in [2] that the Q-branch calcu-

lated from our energy levels was accurate enough to usefully complement the HITRAN

database [8], in particular when extrapolating methane spectra at high temperature.

However, the relationship between the solutions of the effective, rotational Hamiltonian

derived ab initio, and the exact eigenstates of the initial rotation-vibration Hamiltonian

was not clearly established. The purpose of this article is to propose a theoretical frame

which clarifies this relationship and allows one to develop a general, effective observable

theory when two sets of degrees of freedom can be distinguished in a quantum system.

The rest of the paper is organised as follows: In Section II, we introduce the general

theoretical setting of our new approach to obtain effective observables, including effective

Hamiltonian. In section III, we derive perturbational formula for effective Hamiltonians

in this setting. Other observables such as the electric dipole moment are also considered.

We conclude that our generalized perturbation theory is on firm theoretical ground and

future applications are outlined.
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2 Effective observables

Let us consider a general problem where the degrees of freedom (dof) of a physical

system can be splitted into two subsets. We assume that all the degrees of freedom are

distinguishable, so the Hilbert space required for the quantum treatment of the system

is a tensor product, V = Vx ⊗ Vy of two Hilbert spaces of square integrables functions,

Vx and Vy, corresponding respectively to the two sets of dof. In Dirac notation, kets

on V (resp. on Vx, Vy) will be denoted by | · · · 〉, (resp. | · · · 〉x, | · · · 〉y). We denote by

H(X, Y ) the Hamiltonian of the system, where X is a set of operators acting on the first

family of dof associated with variables x, and Y a set of operators acting on the other

family of dof associated with variables y. In the case of a molecular rotation-vibration

Hamiltonian, X can be the set of vibrational coordinates and their conjugate momenta,

X = {(Qi)i, (Pk)k}, Y , the set of Euler angles in the Eckart frame and their conjugate

momenta, Y = {θ, χ, φ, Pθ, Pχ, Pφ)}. The identity on Vx (respectively Vy) is written Idx

(respectively Idy). Let (ψn)n, (respectively (ΨK)K), be a normalized Hilbertian basis set

of Vx (respectively Vy), we have: Idx =
∑

n
|ψn〉〈ψn|, (respectively Idy =

∑

K
|ΨK〉〈ΨK |). A

basis of V is obtained by taking the tensor product of basis functions, (ψn ⊗ ΨK)n,K .

Let us assume that H(X, Y ) is dominated by a term of the form, H0(X) ⊗ Idy. By

“dominated” we mean that the discrete spectrum eigenvalues of H0(X) ⊗ Idy are only

slightly modified by the operator H1(X, Y ) := H(X, Y ) − H0(X) ⊗ Idy, so that they

can be related to the eigenvalues of H(X, Y ) without ambiguities. We introduce a real

parameter ε ∈ [0, 1], and define a parametrized Hamiltonian,

H(X, Y, ε) = H0(X) ⊗ Idy + εH1(X, Y ), (1)

connecting H(X, Y, 0) = H0(X) ⊗ Idy and H(X, Y, 1) = H(X, Y ).

Since we are free to choose the basis set of Vx, we can take for (ψn)n an orthonormal set

of eigenvectors of H0. We label this set with positive integers and denote the associated

eigenvalues by (νn)n. For simplicity, we assume that the eigenstates of H0(X) are non-

degenerate. The version of the method for (quasi-) degenerate eigenstates of H0(X) will
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be explored in a forthcoming articles.

Our goal is to solve the eigenvalue equation,

H(X, Y )φ = Eφ, (2)

For ε = 0, we have,

(H0(X) ⊗ Idy)|ψn ⊗ ΨK〉 = νn|ψn ⊗ ΨK〉 ∀K, (3)

so, the eigenspaces are degenerate of dimension, dimVy. We note that we can also write

the following identity,

(H0(X) ⊗ Idy)|ψn〉x ⊗ Idy = νn|ψn〉x ⊗ Idy. (4)

For some fixed n, suppose that the dimVy eigenstates (ψn ⊗ ΨK)K of H0(X) ⊗ Idy are

in one-to-one correspondance with dimVy eigenstates of H(X, Y ), denoted by (φn,K)K .

The φn,K ’s can be expanded on the tensorial product basis set as,

φn,K =
∑

n′,K′

c
n,K
n′,K′ ψn′ ⊗ ΨK′ . (5)

Defining dimVx linear operators on Vy, Ψn′(Y ), by

∀n′,∀ΨK , Ψn′(Y )ΨK :=
∑

K′

c
n,K
n′,K′ ΨK′ , (6)

and then, a so-called ”effective wave operator“ from Vy onto Vx ⊗ Vy, φn(Y ) , by

φn(Y ) =
∑

n′

ψn′ ⊗ Ψn′(Y ), (7)

Eq.(5) assumes a peudo-factored form,

φn,K = φn(Y )ΨK . (8)

Then we see that solving Eq.(2) for the dimVy eigenpairs (En,K , φn,K)K at once, amounts

to finding the operator φn(Y ) for some basis ΨK that need not be specified in the first

4



place, and an eigenvalue operator En(Y ) acting on Vy by En(Y )ΨK = En,KΨK , such

that,

H(X, Y )φn(Y ) = φn(Y )En(Y ). (9)

Then, applying the operators of both members to the ΨK ’s basis functions, Eq.(2) is

recovered for the (En,K , φn,K)K eigenpairs.

The effective wave operator, together with its Hermitic conjugate which satisfies,

φ†
n(Y )H(X, Y ) = E†

n(Y )φ†
n(Y ), (10)

where the operators act on Vy on the left, allows one to derive for any ”observable“, i.e.

Hermitian operator, O(X, Y ), acting on Vx ⊗ Vy, an effective operator, On(Y ), acting

solely on Vy, by,

On(Y ) = 〈φ†
n(Y )O(X, Y )φn(Y )〉x, (11)

where we extend the notation 〈· · · 〉x here to signify that integration is carried over the

x-variables only,

〈ψ1 ⊗Ψ1(Y )|ψ2 ⊗Ψ2(Y )〉x :=
(∫

dx ψ̄1(x)ψ2(x)
)

Ψ1(Y )Ψ2(Y ) ≡ 〈ψ1|ψ2〉xΨ1(Y )Ψ2(Y ).

(12)

Note that On(Y ) is Hermitian by construction. For O(X, Y ) = H(X, Y ), we have from

Eqs.(9) and (10),

Hn(Y ) = 〈φ†
n(Y )φn(Y )〉xEn(Y ) = E†

n(Y )〈φ†
n(Y )φn(Y )〉x. (13)

If the (φn,K)K ’s are orthonormal for the scalar product 〈· · · 〉 :=
∫

· · · dx dy, and the

ΨK ’s are orthonormal for the scalar product 〈· · · 〉y :=
∫

· · · dy, then the φn(Y ) of Eq.(7)

satisfy,

〈φ†
n(Y )φn(Y )〉x = Idy. (14)

It is therefore legitimate to impose this constraint when solving Eq.(9) for φn(Y ). Then,

one obtains,

Hn(Y ) = En(Y ) = E†
n(Y ), (15)

and other effective observables On(Y ) are also properly normalized.
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3 Explicit perturbational formulas

In the following, we set without loss of generality n = 0, and we drop the index n in all

effective operators. We are now going to solve Eq.(9) in a Rayleigh-Schrödinger fashion,

that is to say, we expand the effective eigenvalue and eigenfunction operators as a power

series of ε,

E(Y ) = ν0Idy + εE(1)(Y ) + ε2E(2)(Y ) + ε3E(3) + ε4E(4) + ..., (16)

φ(Y ) = ψ0 ⊗ Idy + εφ(1)(Y ) + ε2φ(2)(Y ) + ε3φ(3)(Y ) + ε4φ(4)(Y ) + .... (17)

Inserting these expression in Eq. (9) and identifying the terms with the same power of

ε, we obtain Eq.(4) for k = 0, and for all k > 0,

(H0(X) − ν0) ⊗ Idyφ
(k)(Y ) +H1(X, Y )φ(k−1)(Y ) =

k−1
∑

i=0

φ(i)(Y )E(k−i)(Y ), (18)

(with φ(0)(Y ) = ψ0 ⊗ Idy and E(0)(Y ) = ν0Idy).

We do not impose the effective eigenvalue operator, E(Y ), to be diagonal in the first

place. We have not attempted either, to impose a generalization of the widely used

”intermediate“ normalization conditions. Instead, in order to obtain normalized effective

observables, we impose the set of conditions,

∀k > 0, 〈
k
∑

i=0

εiφ(i)†(Y )|
k
∑

i=0

εiφ(i)(Y )〉x = Idy + o(εk, Y ). (19)

where the notation o(εk, Y ) means that lim
ε→0 ε

−ko(εk, Y ) = 0y, the null operator on Vy. In

addition, we choose the following ”phase“ conventions, which are actually, Hermiticity

conditions for the operators tensorized with ψ0 in the expansion, Eq.(7), of the corrective

terms to the effective wave operator,

∀k > 0, 〈φ(0)†(Y )|φ(k)(Y )〉x = 〈φ(k)†(Y )|φ(0)(Y )〉x. (20)

Conditions Eqs. (19,20) are enough to determine unambiguously, by recursion, an effec-

tive wave operator, Eq. (17), satisfying Eq. (18) at any order. More precisely, Eq. (18) al-
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lows one to determine the E(k)(Y )’s and the operators tensorized with ψn, for n 6= 0 in the

expansions, Eq.(7), of the φ(k)(Y )’s, whereas Eqs. (19,20) determine 〈φ(0)†(Y )|φ(k)(Y )〉x

and 〈φ(k)†(Y )|φ(0)(Y )〉x which in turn determine the operators tensorized with ψ0 in the

same expansions.

Then, effective observables, O(Y ), as defined in Eq.(11), can be expanded as a series in

ε,

O(Y ) = O(0)(Y ) + εO(1)(Y ) + ε2O(2)(Y ) + · · · + εnO(n)(Y ) + · · · , (21)

where the nth-order term has the following expression,

O(n)(Y ) =
n
∑

k=0

〈φ(k)†(Y )|O(X, Y )|φ(n−k)(Y )〉x. (22)

and is Hermitian. However, for O(X, Y ) = H(X, Y ), taking into account Eqs. (18,19),

one easily obtains

H(n)(Y ) =
n
∑

i=0

n−i
∑

k=0

〈φ(k)†(Y )|φ(n−i−k)(Y )〉xE
(i)(Y ) = E(n)(Y ),

(23)

which implies by the way that E(n)(Y ) is Hermitian.

For n = 0, the above expressions are simply,

O(0)(Y ) = 〈ψ0 ⊗ Idy|O(X, Y )|ψ0 ⊗ Idy〉x, (24)

H(0)(Y ) = ν0Idy, (25)

higher order expressions of H(n)(Y ) = E(n)(Y ) and φ(n)(Y ) are derived below.

3.1 First order:

For k = 1, Eq. (18) becomes

(H0(X) − ν0) ⊗ Idyφ
(1)(Y ) +H1(X, Y )φ(0)(Y ) − φ(0)(Y )E(1)(Y ) = 0. (26)
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Multiplying by ψ̄0(x) ⊗ Idy and integrating over dx, i.e. projecting onto 〈φ(0)†(Y )| =

〈φ(0)(Y )|, we obtain, since 〈φ(0)†(Y )|φ(0)(Y )〉x = Idy,

E(1)(Y ) = 〈φ(0)†(Y )|H1(X, Y )|φ(0)(Y )〉x = 〈ψ0 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x. (27)

in agreement with our previous works [1,2].

Projecting onto 〈ψk ⊗ Idy|, different from 〈ψ0 ⊗ Idy|, we obtain the operator Ψ
(1)
k (Y )

tensorized with ψk in the expansion, Eq.(7), of the first order correction to the effective

wave operator, φ(1)(Y ),

〈ψk ⊗ Idy|φ
(1)(Y )〉x =

〈ψk ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
ν0 − νk

. (28)

The normalization and Hermiticity conditions impose that the operator Ψ
(1)
0 (Y ) ten-

sorized with ψ0 is zero, so that,

φ(1)(Y ) =
∑

k 6=0

ψk ⊗
〈ψk ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x

ν0 − νk

. (29)

3.2 Second order:

For k = 2, Eq. (18) becomes

(H0(X)− ν0)⊗ Idyφ
(2)(Y )+H1(X, Y )φ(1)(Y )−φ(1)(Y )E(1)(Y ) = φ(0)(Y )E(2)(Y ). (30)

Projecting onto 〈φ(0)†(Y )|, we obtain,

E(2)(Y ) = 〈φ(0)†(Y )|H1(X, Y )|φ(1)(Y )〉x

=
∑

k 6=0

〈ψ0 ⊗ Idy|H1(X, Y )|ψk ⊗
〈ψk ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x

ν0 − νk

〉x

=
∑

k 6=0

〈ψ0 ⊗ Idy|H1(X, Y )|ψk ⊗ Idy〉x〈ψk ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
ν0 − νk

. (31)

So, H(2)(Y ) agrees again with our previous works [1,2].

Projecting onto 〈ψk1 ⊗ Idy|, gives
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〈ψk1 ⊗ Idy|φ
(2)(Y )〉x =

〈ψk1 ⊗ Idy|H1(X, Y )|φ(1)(Y )〉x − 〈ψk1 ⊗ Idy|φ
(1)(Y )〉xE

(1)(Y )

ν0 − νk1

=
∑

k2 6=0

〈ψk1 ⊗ Idy|H1(X, Y )|ψk2 ⊗ Idy〉x〈ψk2 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)(ν0 − νk2)

−

〈ψk1 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x〈ψ0 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)

2
. (32)

From Eq.(19) at order 2,

〈φ(0)†(Y )|φ(2)(Y )〉x + 〈φ(2)†(Y )|φ(0)(Y )〉x + 〈φ(1)†(Y )|φ(1)(Y )〉x = 0 (33)

and Eq.(20), we deduce,

〈φ(0)†(Y )|φ(2)(Y )〉x = −
1

2
〈φ(1)†(Y )|φ(1)(Y )〉x

= −
1

2

∑

k1 6=0

〈ψ0 ⊗ Idy|H1(X, Y )|ψk1 ⊗ Idy〉x〈ψk1 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)

2
. (34)

So the second order effective wave function is,

φ(2)(Y ) =
∑

k1 6=0

ψk1 ⊗





∑

k2 6=0

〈ψk1 ⊗ Idy|H1(X, Y )|ψk2 ⊗ Idy〉x〈ψk2 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)(ν0 − νk2)

−

〈ψk1 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x〈ψ0 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)

2

)

−
1

2
ψ0 ⊗

∑

k1 6=0

〈ψ0 ⊗ Idy|H1(X, Y )|ψk1 ⊗ Idy〉x〈ψk1 ⊗ Idy|H1(X, Y )|ψ0 ⊗ Idy〉x
(ν0 − νk1)

2
.(35)

We continue our careful derivation of the perturbation formulas at the next two orders,

as new interesting details show up. Hereafter, we alleviate the notation by setting,

H1(Y )i,j := 〈ψi ⊗ Idy|H1(X, Y )|ψj ⊗ Idy〉x, (36)

so for example, we have

E(1)(Y ) = H1(Y )0,0 (37)

E(2)(Y ) =
∑

k 6=0

H1(Y )0,kH1(Y )k,0

ν0 − νk

. (38)
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3.3 Third order:

Repeating the algebraic procedure outlined at the previous orders, we have,

(H0(X)−ν0)φ
(3)(Y )+H1(X, Y )φ(2)(Y )−φ(2)(Y )E(1)(Y )−φ(1)(Y )E(2)(Y ) = φ(0)(Y )E(3)(Y ),

(39)

from which we deduce,

E(3)(Y ) = 〈φ(0)†(Y )|H1(X, Y )|φ(2)(Y )〉x − 〈φ(0)†(Y )|φ(2)(Y )〉xE
(1)(Y )

=
∑

k1,k2 6=0

H1(Y )0,k1H1(Y )k1,k2H1(Y )k2,0

(ν0 − νk1)(ν0 − νk2)

−
1

2

∑

k1 6=0

H1(Y )0,k1H1(Y )k1,0H1(Y )0,0 +H1(Y )0,0H1(Y )0,k1H1(Y )k1,0

(ν0 − νk1)
2

.

(40)

Note that H3(Y ) may be different from our previous formula [1,2] or its corrected version

[9], if H1(Y )0,0 does not commute with the H1(Y )0,k1 ’s. However, in our previous appli-

cation to the methane ground state, H1(Y )0,0 was a Casimir operator of the Lie algebra

spanned by the angular momentum operators, and was actually commuting with the

H1(Y )0,k1 ’s. So, the formula in this context were correct and our numerical applications

would be unaffected.

〈ψk1 ⊗ Idy|φ
(3)(Y )〉x =

〈ψk1 ⊗ Idy|H1(X, Y )|φ(2)(Y )〉x − 〈ψk1 ⊗ Idy|φ
(2)(Y )〉xE

(1)(Y ) − 〈ψk1 ⊗ Idy|φ
(1)(Y )〉xE

(2)(Y )

ν0 − νk1

=
∑

k2,k3 6=0

H1(Y )k1,k2H1(Y )k2,k3H1(Y )k3,0

(ν0 − νk1)(ν0 − νk2)(ν0 − νk3)

−
∑

k2 6=0

H1(Y )k1,k2H1(Y )k2,0H1(Y )0,0 + 1
2
H1(Y )k1,0H1(Y )0,k2H1(Y )k2,0

(ν0 − νk1)(ν0 − νk2)
2

−
∑

k2 6=0

H1(Y )k1,k2H1(Y )k2,0H1(Y )0,0 +H1(Y )k1,0H1(Y )0,k2H1(Y )k2,0

(ν0 − νk1)
2(ν0 − νk2)

+
H1(Y )k1,0H1(Y )0,0H1(Y )0,0

(ν0 − νk1)
3

, (41)
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〈φ(0)†(Y )|φ(3)(Y )〉x = −
1

2

(

〈φ(1)†(Y )|φ(2)(Y )〉x + 〈φ(2)†(Y )|φ(1)(Y )〉x
)

= −
∑

k1,k2 6=0

H1(Y )0,k1H1(Y )k1,k2H1(Y )k2,0

2(ν0 − νk1)(ν0 − νk2)

(

1

ν0 − νk1

+
1

ν0 − νk2

)

+
∑

k1 6=0

H1(Y )0,k1H1(Y )k1,0H1(Y )0,0 +H1(Y )0,0H1(Y )0,k1H1(Y )k1,0

2(ν0 − νk1)
3

(42)

The third order effective wave function, φ(3)(Y ), is easily obtained from Eqs. (41) and

(42).

3.4 Fourth order:

(H0(X) ⊗ Idy − ν0)φ
(4)(Y ) +H1(X, Y )φ(3)(Y ) − φ(3)(Y )E(1)(Y )−

φ(2)(Y )E(2)(Y ) − φ(1)(Y )E(3)(Y ) = φ(0)(Y )E(4)(Y ). (43)

At this order, we just give the expression of the effective Hamiltonian operator E(4)(Y ),

E(4)(Y ) =
∑

k1,k2,k3 6=φ0

H1(Y )0,k1
H1(Y )k1,k2

H1(Y )k2,k3
H1(Y )k3,0

(ν0 − νk1
)(ν0 − νk2

)(ν0 − νk3
)

−
1

2

∑

k1,k2 6=φ0

H1(Y )0,0H1(Y )0,k1
H1(Y )k1,k2

H1(Y )k2,0 + H1(Y )0,k1
H1(Y )k1,k2

H1(Y )k2,0H1(Y )0,0

(ν0 − νk1
)(ν0 − νk2

)

(

1

ν0 − νk1

+
1

ν0 − νk2

)

−

(

∑

k1 6=φ0

H1(Y )0,k1
H1(Y )k1,0

(ν0 − νk1
)

)(

∑

k1 6=φ0

H1(Y )0,k1
H1(Y )k1,0

(ν0 − νk1
)2

)

+
1

2

∑

k1 6=φ0

H1(Y )20,0H1(Y )0,k1
H1(Y )k1,0 + H1(Y )0,k1

H1(Y )k1,0H1(Y )20,0

(ν0 − νk1
)3

, (44)

which shows that H4(Y ) may be different from our previous formula in [1,2], if H1(Y )0,0

does not commute with the H1(Y )k1,k2 ’s. Again, this does not affect our previous appli-

cation to the methane ground state, since in this case, H1(Y )0,0 was a Casimir operator

commuting with all the H1(Y )k1,k2 ’s.
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3.5 Effective electric dipole moment

Beside the Hamiltonian, an observable of prime interest in molecular spectroscopy is the

electric dipole moment, as it serves to compute line intensities. It is a typical example of

observable that can be expressed in terms of linear combination of tensor products of X

and Y -dependent operators: if the X and Y -sets are those mentionned at the beginning

of Section 2, it writes,

µf (X, Y ) =
∑

α=x,y,z

µα(X) ⊗ λfα(Y ) (45)

Where µf (X, Y ) is the electric dipole moment operator along the f -axis in the laboratory

frame, µα(X), the electric dipole moment operator along the α-axis in the Eckart frame,

and λfα(Y ) the direction cosines depending upon the Euler angles, (~ = 1 in this article).

The first orders of the effective dipole moment µf (Y ) follow from Eq.(22) and are given

below:

Order 0

µ
(0)
f (Y ) =

∑

α=x,y,z

〈φ(0)†(Y )|µα(X) ⊗ λfα(Y )|φ(0)(Y )〉x =
∑

α=x,y,z

〈ψ0|µα(X)|ψ0〉xλfα(Y )

(46)

Order 1

µ
(1)
f (Y ) =

∑

α=x,y,z

〈φ(1)†(Y )|µα(X) ⊗ λfα(Y )|φ(0)(Y )〉x + 〈φ(0)†(Y )|µα(X) ⊗ λfα(Y )|φ(1)(Y )〉x

=
∑

α=x,y,z

∑

k1 6=0

〈ψk1|µα(X)|ψ0〉x
ν0 − νk1

H1(Y )0,k1λfα(Y ) +
〈ψ0|µα(X)|ψk1〉x

ν0 − νk1

λfα(Y )H1(Y )k1,0

(47)

12



Order 2

µ
(2)
f (Y ) =

∑

α=x,y,z

〈φ(1)†(Y )|µα(X) ⊗ λfα(Y )|φ(1)(Y )〉x+

〈φ(2)†(Y )|µα(X) ⊗ λfα(Y )|φ(0)(Y )〉x + 〈φ(0)†(Y )|µα(X) ⊗ λfα(Y )|φ(2)(Y )〉x

=
∑

α=x,y,z





∑

k1,k2 6=0

1

(ν0 − νk1)(ν0 − νk2)
(〈ψk1|µα(X)|ψk2〉xH1(Y )0,k1λfα(Y )H1(Y )k2,0+

〈ψ0|µα(X)|ψk1〉xλfα(Y )H1(Y )k1,k2H1(Y )k2,0 + 〈ψk1|µα(X)|ψ0〉xH1(Y )0,k2H1(Y )k2,k1λfα(Y ))−
∑

k1 6=0

〈ψ0|µα(X)|ψk1〉x
(ν0 − νk1)

2
(λfα(Y )H1(Y )k1,0H1(Y )0,0 +H1(Y )0,0H1(Y )0,k1λfα(Y ))−

〈ψ0|µα(X)|ψ0〉x
2

∑

k1 6=0

1

(ν0 − νk1)
2

(λfα(Y )H1(Y )0,k1H1(Y )k1,0 +H1(Y )0,k1H1(Y )k1,0λfα(Y ))



 .

(48)

Clearly, any observable that can be decomposed as in Eq.(45) would give effective oper-

ator contributions of the same form as Eqs.(46-48).

Application to methane

In the case of a non linear molecule described by the Eckart-Watson Hamiltonian [3],

one can set H0(X) to the (J = 0)-Eckart-Watson Hamiltonian and,

H1(X, Y ) =
∑

α,β=x,y,z

1

2
Mαβ ⊗ ΠαΠβ −Mαβπα ⊗ Πβ. (49)

where M is a 3 by 3 symmetrical matrix depending only upon normal coordinates (it

is usually denoted by µ but we have reserved this symbol for the dipole moment); π is

the so-called ”Coriolis coupling operator“ depending upon normal coordinates and their

conjugate momenta that is to say, only upon operators in set X; Π is the total angular

momentum, the sole quantity depending upon operators in set Y .

If the molecule is a spherical top molecules such as methane main isotopologue, the

matrix elements 〈ψ0|µα(X)|ψ0〉x = 0 for all α, for symmetry reasons, therefore there is

no zero order effective dipole moment, and the last term in the second order contribution

is also zero.
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By symmetry, the x, y, z directions are equivalent, so, it is only necessary to determine

the z-term of the Eq.(47) to obtain the first order contribution to the effective dipole

moment, the x, y-terms being obtained by circular permutation of the x, y, z indices.

Given the irreducible representations of the group Td carried by µ(X) and Π, the z-

component has the simple form,

∑

k1 6=0

〈ψk1|µz(X)|ψ0〉xH1(Y )0,k1

ν0 − νk1

=
θz

xy

2
(ΠxΠy + ΠyΠx), (50)

where, θxy
z is just a real number. This expression is of the same form as the one obtained

by Watson [10] and the notation θxy
z with the factor 1

2
matches that of this author.

The first order expression has been used in all spectroscopic studies to date. Higher order

corrections have been considered by Ozier [11], however, as far as we are aware, they

have never been retrieved from experiment nor calculated. Ozier implicitly assumed that

the dipole moment operator in the laboratory frame can be cast in the form,

µf (Y ) =
∑

α=x,y,z

λfα(Y )µ̃α(Y ) + µ̃α(Y )λfα(Y ) (51)

and expanded µ̃α(Y ) as a power series of the Πx,Πy,Πz operators in [11]. However, if

our first order expression can assume the form of Eq.(51) by setting µ̃z(Y ) =
θz
xy

2
(ΠxΠy +

ΠyΠx), and similarly for the other components, this is no longer the case at order 2. In

particular, the first term in the right hand side of Eq.(48) has the λfα(Y )’s operators

in between two Y -dependent operators and the commutators that are needed to bring

them on the sides do not necessarily cancel off. Furthermore, the remaining terms writes

as
∑

α=x,y,z
λfα(Y )µ̃α(Y ) + µ̃†

α(Y )λfα(Y ) and µ̃†
α(Y ) can be different from µ̃α(Y ).

In fact, symmetry considerations gives the following form for the z-term in Eq.(48),

14



λfz(Y )
[

c1(ΠxΠy + ΠyΠx) + ic2Πz(Π
2
x − Π2

y) + ic3(Π
2
x − Π2

y)Πz

ic4(Πx(ΠzΠx + ΠxΠz) − Πy(ΠyΠz + ΠzΠy)) + ic5((ΠzΠx + ΠxΠz)Πx − (ΠyΠz + ΠzΠy)Πy)

+c6(ΠxΠy + ΠyΠx)(Π
2
x + Π2

y) + c7(Π
2
x + Π2

y)(ΠxΠy + ΠyΠx)+

c8(ΠxΠy + ΠyΠx)Π
2
z + c9Π

2
z(ΠxΠy + ΠyΠx)

+c10((ΠzΠx + ΠxΠz)(ΠyΠz + ΠzΠy) + (ΠyΠz + ΠzΠy)(ΠzΠx + ΠxΠz))]

+c11Πxλfz(Y )Πy + ic12Πzλfz(Y )(Π2
x − Π2

y)

+ic13(Πxλfz(Y )(ΠzΠx + ΠxΠz) − Πyλfz(Y )(ΠyΠz + ΠzΠy))

+c14(Π
2
x + Π2

y)λfz(Y )(ΠxΠy + ΠyΠx) + c15Π
2
zλfz(Y )(ΠxΠy + ΠyΠx)

+c16((ΠzΠx + ΠxΠz)λfz(Y )(ΠyΠz + ΠzΠy) + hermitic conjugate, (52)

where c1, · · · , c16 are real coefficients. The commutation property of the angular mo-

menta [3], [Πα,Πβ] = −ieαβγΠγ, with eαβγ the unit antisymmetrical tensor, allows one

to simplify the above expression, showing that there are six redundant coefficients among

c1, · · · , c10, since one obtains:

λfz(Y ) [(c1 − 2c3 − 3c4 − c5 − 4c6 + 4c8 + 3c10)(ΠxΠy + ΠyΠx)

+i(c2 + c3 + 2c4 + 2c5 + 4c6 − 4c8 − 8c10)Πz(Π
2
x − Π2

y)

+(c6 + c7)(Π
2
x + Π2

y)(ΠxΠy + ΠyΠx) + (c8 + c9 + 4c10)Π
2
z(ΠxΠy + ΠyΠx)

]

+c11Πxλfz(Y )Πy + ic12Πzλfz(Y )(Π2
x − Π2

y)

+ic13(Πxλfz(Y )(ΠzΠx + ΠxΠz) − Πyλfz(Y )(ΠyΠz + ΠzΠy))

+c14(Π
2
x + Π2

y)λfz(Y )(ΠxΠy + ΠyΠx) + c15Π
2
zλfz(Y )(ΠxΠy + ΠyΠx)

+c16((ΠzΠx + ΠxΠz)λfz(Y )(ΠyΠz + ΠzΠy) + hermitic conjugate. (53)

In the third line of expression (53), one could easily make appear (Π2
x + Π2

y + Π2
z) so

that the fourth order terms in factor of λfz(Y ) would ressemble the related expression

in [11]. However, expresion (53) is much more complex than that considered by Ozier.

In particular there are third order terms that do not cancel off, either because there is a

λfz(Y ) in the middle or because the expression that could be identified to µ̃z(Y ) is not

Hermitian.

A numerical application using these expression up to second order with comparison to a

recent experiment [12], is to appear soon [13].
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V. CONCLUSION

We have presented and effective observable theory for quantum systems with two distin-

guishable sets of dof, which put on a firm ground the generalized perturbation method

proposed and applied in previous studies. The present work shows that the eigenvalues

of the effective Hamiltonian will converge to the exact energies of the complete Hamil-

tonian, when the perturbation series converges. Exact eigenstates can also be obtained

from the effective eigen-operators, as defined in the theory, by applying them to the

eigenfunctions of the effective Hamiltonian.

We have also derived explicit expressions for effective observable such as the dipole

moment up to order 2. In the case of the methane vibrational ground state, it has been

shown that the effective rotational dipole moment is a more complex operator than

previously anticipated. At the first order of our perturbation theory, as in the case of

a single contact transformation [10,14,15], we do find that the laboratory-fixed effective

dipole moment operator is a symmetrized scalar product of a direction cosine vector and

an other vector of Hermitian operators which can be interpreted as a body-fixed effective

dipole moment. However, this interpretation seems no longer possible at order 2, because

the operators that one could identify with body-fixed effective dipole components are

not Hermitian, and in addition, there are also terms where direction cosine operators

are in between angular momentum operators with no prospect of simplification by using

their commutation relations [16].

A numerical test of our dipole moment formulas using ab initio data, with a careful as-

sessment of the contributions of the different terms and of their convergence, is currently

in progress. Given the high interest of methane in high resolution spectroscopy and in

space sciences [17,18,12], our formulas could also be used by spectroscopists to refined

their experimental data with a more detailed effective dipole moment expression.
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Tables

Van Vleck Perturbation Our method STDS

ord2 ord4 ord6 ord0 ord2 ord4

J = 1 10.59973 10.44174 10.44237 10.63296 10.48010 10.48008 10.481648

J = 2 31.79918 31.32521 31.32439 31.89887 31.43746 31.43742 31.442121

31.79918 31.32521 31.32463 31.89887 31.43772 31.43769 31.442387

J = 3 63.59837 62.65041 62.64064 63.79775 62.86645 62.86635 62.875779

63.59837 62.65041 62.64162 63.79775 62.86749 62.86742 62.876841

63.59837 62.65041 62.64285 63.79775 62.86879 62.86877 62.878169

Table 1

Convergence of methane rotational levels (in cm
−1) in the vibrational ground state with per-

turbation order. Van Vleck Perturbation theory was applied to a PES with 12 force constants

adjusted on experimental vibrational wave numbers [19], the computational effort to go beyond

J = 3 was found too heavy. Our generalized Rayleigh-Schrödinger perturbative predictions are

purely ab initio and were made up to J = 18 in [1], and up to J = 30 in [2]. The last column

coresponds to the levels derived from experiment, obtained with the STDS package [20]..
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[21] [22] [19] our work STDS

J = 1 10.47 10.430 10.44237 10.48165 10.481648

J = 2 N/A N/A 31.32439 31.44213 31.442121

N/A N/A 31.32463 31.44240 31.442387

J = 3 N/A N/A 62.64064 62.87581 62.875779

N/A N/A 62.64162 62.87689 62.876841

N/A N/A 62.64285 62.87824 62.878169

J = 4 − 18 N/A N/A N/A largest relative difference 2.10−5

Table 2

Energies in cm
−1 of methane rotational levels in its vibrational ground state predicted by

different approaches. In [19] 12 force constants were adjusted on experiment. In our work [1]

(fifth column) a global scaling factor of 1.0002535 accounting for the error in the equilibrium

distance was applied to all levels. The last column corresponds to the prediction of the STDS

package [20] from an effective Hamiltonian, fitted on experimental transitions, accurate to 10−5

cm−1 .
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