A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones - Université Côte d'Azur
Journal Articles IEEE Transactions on Automatic Control Year : 2009

A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones

Abstract

A control approach is proposed for a class of underactuated vehicles in order to stabilize reference trajectories either in thrust direction, velocity, or position. The basic modeling assumption is that the vehicle is propulsed via a thrust force along a single body-fixed direction and that it has full torque actuation for attitude control (i.e., a typical actuation structure for aircrafts, Vertical Take-Off and Landing (VTOL) vehicles, submarines, etc.). Additional assumptions on the external forces applied to the vehicle are also introduced for the sake of control design and stability analyses. They are best satisfied for vehicles which are subjected to an external force field (e.g., gravity) and whose shape induces lift forces with limited amplitude, unlike airplanes but as in the case of many VTOL drones. The interactions of the vehicle with the surrounding fluid are often difficult to model precisely whereas they may significantly influence and perturb its motion. By using a standard Lyapunov-based approach, novel nonlinear feedback control laws are proposed to compensate for modeling errors and perform robustly against such perturbations. Simulation results illustrating these properties on a realistic model of a VTOL drone subjected to wind gusts are reported.
Fichier principal
Vignette du fichier
RR-6453.pdf (1004.33 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00415854 , version 1 (11-09-2009)

Identifiers

  • HAL Id : hal-00415854 , version 1

Cite

Minh-Duc Hua, Tarek Hamel, Pascal Morin, Claude Samson. A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones. IEEE Transactions on Automatic Control, 2009, VOL. 54 (NO. 8), pp.1837-1853. ⟨hal-00415854⟩
487 View
1602 Download

Share

More