Regularity of optimal transport on compact, locally nearly spherical, manifolds

Abstract : Given a couple of smooth positive measures of same total mass on a compact connected Riemannian manifold $M$, we look for a smooth optimal transportation map $G$, pushing one measure to the other at a least total squared distance cost, directly by using the continuity method to produce a classical solution of the elliptic equation of Monge--Ampère type satisfied by the potential function $u$, such that $G =\exp(\grad u)$. This approach boils down to proving an \textit{a priori} upper bound on the Hessian of $u$, which was done on the flat torus by the first author. The recent local $C^2$ estimate of Ma--Trudinger--Wang enabled Loeper to treat the standard sphere case by overcoming two difficulties, namely: in collaboration with the first author, he kept the image $G(m)$ of a generic point $m\in M$, uniformly away from the cut-locus of $m$; he checked a fourth-order inequality satisfied by the squared distance cost function, proving the uniform positivity of the so-called $c$-curvature of $M$. In the present paper, we treat along the same lines the case of manifolds with curvature sufficiently close to 1 in $C^2$ norm -- specifying and proving a conjecture stated by Trudinger.
Type de document :
Article dans une revue
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2010, Volume 2010 (Issue 646), pp.65-115. 〈10.1515/crelle.2010.066〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.univ-cotedazur.fr/hal-00276524
Contributeur : Jean-Louis Thomin <>
Soumis le : mercredi 30 avril 2008 - 10:06:15
Dernière modification le : vendredi 12 janvier 2018 - 01:51:44
Document(s) archivé(s) le : vendredi 28 mai 2010 - 18:03:23

Fichier

RegularOT.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Philippe Delanoé, Yuxin Ge. Regularity of optimal transport on compact, locally nearly spherical, manifolds. Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2010, Volume 2010 (Issue 646), pp.65-115. 〈10.1515/crelle.2010.066〉. 〈hal-00276524〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

102