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Regularity of optimal transportation maps on

compact, locally nearly spherical, manifolds∗

Philippe Delanoë and Yuxin Ge†

Abstract

Given a couple of smooth positive measures of same total mass on a
compact connected Riemannian manifold M , we look for a smooth optimal
transportation map G, pushing one measure to the other at a least total
squared distance cost, directly by using the continuity method to produce
a classical solution of the elliptic equation of Monge–Ampère type satisfied
by the potential function u, such that G = exp(grad u). This approach
boils down to proving an a priori upper bound on the Hessian of u, which
was done on the flat torus by the first author. The recent local C2 estimate
of Ma–Trudinger–Wang enabled Loeper to treat the standard sphere case
by overcoming two difficulties, namely: in collaboration with the first
author, he kept the image G(m) of a generic point m ∈ M , uniformly away
from the cut-locus of m; he checked a fourth-order inequality satisfied by
the squared distance cost function, proving the uniform positivity of the
so-called c-curvature of M . In the present paper, we treat along the same
lines the case of manifolds with curvature sufficiently close to 1 in C2

norm – specifying and proving a conjecture stated by Trudinger.

Introduction

We are interested in the regularity of the optimal transportation map G which
pushes a given positive Borel measure µ0 = ρ0dVol to another one µ1 = ρ1dVol
of same total mass on a compact connected n-dimensional Riemannian manifold
(Mn, g) with Lebesgue measure dVol, when all data are smooth and the cost-
function c is the Brenier–McCann one [5, 6, 34], namely:

∀(p, q) ∈ M2
n, c(p, q) =

1
2
d2

g(p, q),

dg standing for the geodesic distance in (Mn, g). The map G minimizes the
total cost functional

C(Φ) =
∫

Mn

c[p, Φ(p)] dµ0

among measurable maps Φ : Mn → Mn which push µ0 to µ1 (meaning µ1(B) =
µ0[Φ−1(B)] for each Borel subset B ⊂ Mn, written Φ#µ0 = µ1). The existence
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of a unique such minimizing map G is established in the landmark paper [34].
The smoothness of G is known in the following cases:

(i) anytime the densities ρ0, ρ1 are close enough in C∞(Mn) [16, p.157]; in
C0,α(Mn) for some α ∈ (0, 1) is enough to have G ∈ C1,α;

(ii) given measures µ0, µ1 as above, anytime the metric g is C∞-close enough
to a metric for which the optimal map is smooth [16, p.159]; C2,α-close
would suffice to get G ∈ C1,α;

(iii) if the metric g is flat [16] (see also [7, 8, 9, 14]);

(iv) on the standard sphere [31];

(v) if the c-curvature is positive (a 4th-order condition on the cost-function c
put forward in [33], also expressed in Equations (2)-(4) below) and if the
exponential map is non-singular on the tangent cut-locus [32].

Here, let us observe that the result (iv) implies, by naturality and uniqueness,
that the optimal transportation map G is also smooth on any manifold (Mn, g)
with constant positive curvature; this was independently observed by Young–
Heon Kim. Further regularity results in that spirit are announced in [28] (see
also Appendix C below). Besides, let us note that the second condition of
the regularity result (v) precludes positively curved simply connected manifolds
(with 1

4 -pinching if odd-dimensional) [29, 30] (see also [40, 1]).
In contrast with the preceding results, if the curvature of g is not non-negative
on Mn, one cannot expect G smooth for arbitrary smooth positive measures
µ0, µ1 [31]. Worse, it was recently shown that positive curvature alone does not
imply G smooth [27, 32].
Neil Trudinger has conjectured that the smoothness of G should be derivable
from the positivity of the curvature provided the k-th covariant derivatives of
the curvature tensor are assumed to be small enough for 1 ≤ k ≤ r with a
suitable integer r ≥ 2 (which trivially holds on the standard sphere). Con-
sidering the results (iv) and (ii) above, the issue here is to quantify how far
the curvature tensor may differ from a spherical one and to show that, indeed,
the allowed difference is the sole control required for proving the existence of a
smooth optimal transportation map G pushing µ0 to µ1. Our present work is
essentially an attempt toward such a quantification and a proof of Trudinger’s
conjecture with r = 2.
The outline of the paper is as follows. In the sequel of the Introduction, we set
up our approach of the regularity problem for optimal transportation maps, a
PDE approach, via the so-called continuity method [21]. We further state two
theorems, our main results, and infer from them several regularity corollaries
presented at once with their proofs. The main theorems are proved respectively
in Sections 1 and 2. For the reader’s convenience, we also provide some auxiliary
material required in our proofs adapted from [31] (Appendix A) and [33] (Ap-
pendix B), as well as a folklore result mentioned above in the covering spaces
setting (Appendix C).

Acknowledgments: the authors are grateful to Neil Trudinger and Xu–Jia
Wang for giving them full hospitality while visiting the CMA (ANU, Can-
berra) in November–December 2006, during an Australian–French exchange
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programme (grant PHC FAST #12739WA) and for sharing with them their
expertise on the regularity issue for optimal transportation maps. The authors
would like to thank also Cédric Villani for his keen interest in the first part of
the present work which lead to a clearer statement of Theorem 1 and Erwann
Aubry for useful geometric discussions at Luminy (CIRM). The first author ben-
efited from stimulating conversations with Grégoire Loeper, Young–Heon Kim
and Robert McCann at the ICMS Workshop (Edinburgh, July 2007) where he
reported on the big-crunch argument of Proposition 1 below; he thanks Mc-
Cann, Kim and Villani for quick communication of the preprints [27, 28, 32].
The landmark reference [40] was found in [32].

The continuity method

The optimal map G has the following special form (with obvious notations
relative to the metric g):

∀m ∈ Mn, G(m) = expm(gradm u),

where the potential-function u, normalized by
∫

Mn
udVol = 0, is a c-convex

function (see [34]). Set A for the open subset of the Fréchet space

C∞
0 = {v ∈ C∞(Mn),

∫
Mn

v dVol = 0}

consisting of those functions v such that the map exp(grad v) is a diffeomorphism
of Mn to itself. One can readily verify that, for each (v, m) ∈ A × Mn, the
smoothness of exp(grad v) requires that the closed geodesic segment

{expm(t gradm v), t ∈ [0, 1]}

does not cross the cut-locus of m (henceforth denoted by Cutm); in particular,
| grad v(m)| stays bounded above strictly by the diameter of (Mn, g). Fixing
the metric g and the smooth positive measure µ0, let us consider the nonlinear
second order differential operator given by:

v ∈ A → F (v) := [ρ(v) − ρ0] ∈ C∞
0 , with ρ(v) :=

d

dVol
[exp(grad v)#µ0]

(Radon-Nikodym derivative). The operator F is elliptic of Monge–Ampère type
and it is a local diffeomorphism which is one-to-one (hence a diffeomorphism)
onto its image [16] (see also [17, Remark 6] for an Erratum of the proof of the
second part of [16, Proposition 3]). Proving that the above optimal map G is
smooth thus amounts to proving that F is onto C∞

0 . To do so, given an arbitrary
measure µ1 as above, one may use the continuity method as in [16, p.158] and
consider, for t ∈ [0, 1], the solution ut ∈ A of the pointwise equation expressing
the optimal mass transportation of µ0 to µt := tµ1 + (1 − t)µ0, namely:

exp(gradut)#µ0 = µt ⇐⇒ F (ut) = t(ρ1 − ρ0) ,(1)

arguing by connectedness on the subset T ⊂ [0, 1] of t’s such that there exists a
solution ut ∈ A. The set T obviously contains 0 and it is relatively open in [0, 1];
granted T is closed, one infers T = [0, 1] hence the map F is indeed onto (and
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G, smooth). By standard arguments [21, Section 17.4] (using the concavity of
the Monge–Ampère type operator v 
→ f(x, dv,∇d v) := F (v) with respect to
the covariant Hessian variable ∇d v, where ∇ stands for the Levi–Civita con-
nection of g), the closedness of T follows from a uniform pinching (independent
of t ∈ [0, 1]) on the eigenvalues with respect to the metric g of the symmetric
tensor ∇d ut. A uniform lower bound on these eigenvalues is already known [16,
p.154]; so the smoothness of the optimal transportation map G boils down to
carrying out a uniform upper bound on them.

The first genuinely interior bound of that sort (previous bounds would re-
quire affine boundary-value data [36, pp.73-76], they were thus never really
interior) was recently derived by Ma, Trudinger and Wang [33, Theorem 4.1]
dealing, in some open subset Ω of Rn, with elliptic Monge–Ampère equations of
the form:

det
[
Aij(x, v, dv) +

∂2v

∂xi∂xj

]
= B(x, v, dv) > 0

where Aij = Aij(x, z, p) is a n × n symmetric matrix field on J1Ω (first jet
space). If v is a solution such that the so-called strict regularity condition [39]
holds, namely (using Einstein’s summation convention):

∃θ > 0,∀(ξ, ν) ∈ TxΩ × T ∗
x Ω with ν(ξ) = 0, − ∂2Aij

∂pk∂pl
ξiξjνkνl ≥ θ|ξ|2|ν|2(2)

on the subset {[x, v(x), dv(x)], x ∈ Ω} ⊂ J1Ω, they derived an upper bound
on the eigenvalues of the symmetric matrix

(
Aij(x, v, dv) + ∂2

ijv
)

in terms of
the constant θ, of the C1(Ω)-norm of v, the C2-norms of (Aij) and B, and the
distance of the point x ∈ Ω to the boundary ∂Ω (see [33, 39]).
In local charts of Mn, equation (1) reads like a Monge–Ampère equation of the
above form with a matrix field Aij(x, dv) independent of the v variable (see
[16, 31] and Appendix B below). Specifically, in a generic chart x of Mn, the
matrix (Aij) which occurs for equation (1) is given by:

∀(v, m) ∈ A× Mn,
(
Aij(x, dv) + ∂2

ijv
)
dxi ⊗ dxj = Hess(c)(v)(m) ,(3)

where x = x(m), and Hess(c)(v) denotes the c-Hessian of v, namely the covariant
symmetric 2-tensor field defined by:

Hess(c)(v)(m) := [∇d c(., q)]|[m,exp(grad v)(m)] + ∇d v(m) ,

which is known to be positive definite on Mn for each v ∈ A [16, Proposition
3][17, Remark 6]. From this definition, we see that the local quantity:

Aij(x,∇xv) := Aij(x, dv) + Γk
ij(x)∂kv

is actually intrinsic, hence globally defined (here the Γk
ij ’s stand as usual for the

Christoffel symbols of g in the chart x (cf. infra) and ∇xv := Tmx(gradm v)
with x = x(m), stands for the local expression of the gradient of v). Indeed, we
have:

Aij(x,∇xv)dxi ⊗ dxj ≡ [∇d c(., q)]|[m,exp(grad v)(m)] ,(4)

and this is the quantity which we will consider below (see (9)) in place of the
Ma–Trudinger–Wang local quantity Aij(x, dv)dxi ⊗ dxj . Importantly, in that



Regularity of optimal transport on manifolds 5

context, it follows from (4) that the left-hand side of inequality (2) is also intrin-
sic; it is sometimes called a ’cost-sectional curvature’ [31] (or c-curvature, for
short). An intrinsic definition of it, is given below (see (8)). More deeply, the
fact that the c-curvature depends on the metric g only through the cost-function

c =
1
2
d2

g, as written in [33], was recently interpreted geometrically [28].

Let us say that condition (2) holds uniformly for equation (1), whenever
this condition bearing on the matrix field Aij(x, dv) given by (3), evaluated at
[m, exp(gradut)(m)], holds at each point m ∈ Mn with a constant θ > 0 inde-
pendent of (m, t) ∈ Mn×[0, 1]. Assuming it does (cf. infra), the Ma–Trudinger–
Wang interior estimate will be shown (in Appendix B) to imply an upper bound
on the eigenvalues of the tensor Hess(c)(ut)(m). Let us emphasize here that the
latter may not be enough to infer an upper bound on ∇d ut. Indeed, on the
standard n-sphere, (n − 1) eigenvalues of [∇d c(., q)]|[m,exp(grad ut)(m)] are equal
to: | gradut| cot(| gradut|)(m), hence they diverge to −∞ as | gradut|(m) tends
to π, or else, as the image-point of m by exp(gradut) gets close to a conjugate
point of m (its antipode, here). The latter occurence was ruled out in [18]. It
enabled Loeper to complete the proof of the smoothness of G after checking the
strict regularity condition (2) on the standard sphere [31].
Here, we wish to investigate along the same lines the trickier case of a metric g
with variable curvature.

Main results; corollaries and their proofs

Before stating our results, loosing no generality, let us scale the metric g so that
its sectional curvature K satisfies:

min
Mn

K = 1 .(5)

Remark 1 For later use, let us record the consequences of the normalization
(5) for the geometry and topology of Mn. By Myers theorem [13], it implies:

D := diam(Mn) ≤ π(6)

and π1(Mn) is finite (setting henceforth diam(S) for the diameter of a subset
S ⊂ Mn measured in Mn with the distance dg). Let us set:

ηM :=
(

1 − D

π

)
∈ [0, 1) .

If π1(Mn) is not trivial, the topology creates a gap for ηM ; specifically, the
Grove–Shiohama diameter sphere theorem [24] implies: ηM ≥ 1

2 . If Mn is
simply connected, the Toponogov maximal diameter theorem [13, p.110] implies
ηM > 0 unless (Mn, g) is isometric to the standard unit n-sphere, and no gap
occurs anymore (as shown by the example of an ellipsoid, see Remark 3 below).

The (open) geodesic ball of radius r centered at m ∈ Mn will be denoted by
B(m, r) and the volume of a Borel subset S ⊂ Mn for the Lebesgue measure
dVol, by Vol(S).
In section 1 below, we will prove an extension of the result of [18] required for
implementing the Ma–Trudinger–Wang estimate on simply connected manifolds
(see Remark 3):
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Theorem 1 Assume that the manifold Mn is simply connected and that the
sectional curvature of the metric g (normalized by (5)) satisfies: K < 1.44.
Setting ε := 1 − 1√

maxMn K
< 1

6 and

C1 := sup
ρ∈[0, 1

6 ],q∈Mn

ρ−n/2 Vol [B(q, 5πρ)]
Vol

[
B(q, D

√
ρ)

] ,

assume on g the further sectional curvature pinching condition: εn/2C1 < 1.

For t ∈ [0, 1], set ρt :=
dµt

dVol
. If the measures µ0, µ1 satisfy the inequality:

max[0,1]×Mn
ρt

minMn ρ0
<

1
C1 ηn/2

(7)

for some η ∈
(

ε,
1
6

)
, then:

| gradut| ≤ (1 − η)D ,

and
∀m ∈ Mn, dg[exp(gradut)(m),Cutm] ≥ (η − ε)π.

Section 2 will be devoted to proving a fairly general c-curvature estimate on
compact positively curved manifolds (Theorem 2 below), essential for any sub-
sequent proof of the regularity of the optimal transportation map G. We require
further notations. We set Cut for the closed subset of TMn defined by:

Cut = {(m, v) ∈ Mn × TmMn, expm(v) ∈ Cutm} ,

and consider the open connected component of TMn \ Cut containing the zero
section, let us denote it here (for convenience) by:

NoCut := {(m, v),∀t ∈ [0, 1] and (m, tv) /∈ Cut} ,

which thus satisfies: ∂(NoCut) ⊂ Cut. For η ∈ (0, 1), we also set:

NoCutη := {(m, v) ∈ NoCut, |v| ≤ (1 − η)π} .

Remark 2 As already pointed out, for each (u, m) ∈ A × Mn, the couple
(m, gradm u) must lie in NoCut. However, a priori estimates on the solutions ut

of equation (1) will require more, namely that the image-point expm(gradm ut)
stays uniformly away from the first conjugate point of m on the corresponding
geodesic, and this will be checked below via a comparison device with the (con-
stant curvature 1) spherical case. The reader may anticipate that, conceivably, it
will require the existence of some uniform η > 0 such that | gradm ut| ≤ (1−η)π
and, from Remark 1, that the simply connected case will be the only difficult
one. In the latter case, though, Klingenberg’s theorem [30] shows that, even
though η may get small, any point (m, v) in NoCutη will stay uniformly away
from Cut, provided the curvature is sufficiently pinched. So much for motivating
the notation NoCutη.



Regularity of optimal transport on manifolds 7

Given (m0, v0) ∈ NoCut and two orthogonal unit vectors (ξ, ν) ∈ (Tm0Mn)2, let
us define intrinsically the associated c-curvature by:

C(m0, v0)(ξ, ν) := −Dd[v 
→ A(m0, v)(ξ)]|v=v0(ν, ν) ,(8)

where D stands for the canonical flat connection in Tm0Mn and ξ 
→ A(m0, v)(ξ)
stands for the quadratic form on Tm0Mn given for (m0, v) ∈ NoCut by:

A(m0, v)(ξ) = ∇d[m 
→ c(m, expm0
(v))]|m=m0(ξ, ξ) .(9)

By formal analogy with the expressions occuring in the spherical case [18, 31],
let us set (using, of course, on Tm0Mn the norm defined by gm0):

A(m0, v)(ξ) := |ξ|2 − (1 − |v| cot |v|)
[
|ξ|2 − (gm0(ξ, v))2

|v|2
]

,

and define C(m0, v0)(ξ, ν) by formula (8) computed with A(m0, v)(ξ) instead
of A(m0, v)(ξ). We will require the latter calculation (first treated in [31]); for
convenience, it is provided in Appendix A below.

Finally, we set Riem for the Riemann curvature tensor of the metric g, viewed
as an endomorphism valued 2-form on Mn and, given vector fields U, V, W , we
write Riem(U, V )W for the resulting vector field. It is convenient to define a
further tensor of the former sort, namely:

Cur1(U, V )W := g(W, V )U − g(W, U)V .

Anytime a metric has constant curvature K = 1, it satisfies: Riem = Cur1. We
set Scal for the scalar curvature of g and recall the definition of the concircular
curvature tensor [4]:

Concirc := Riem− Scal
n(n − 1)

Cur1 .

In dimension 2, this tensor identically vanishes; when n > 2, its vanishing is
equivalent for g to having constant curvature.

We further set ‖.‖C2(Mn,g) for the C2-norm of tensor fields on Mn, calculated
with the metric g and its Levi–Civita connection ∇. Dealing with the various
estimates derived in Section 2, we will say that a constant is ”under control”
whenever it only depends on: the dimension n, diam(Mn), the metric tensor
g and ‖Riem ‖C2(Mn,g). Actually, due to the curvature assumptions made on
(Mn, g), each constant under control C occuring in the proofs below will be
some universal function of the sole dimension n (with polynomial growth in the
variable

√
n, cf. Remark 6).

The following result provides a curvature control in terms of which the c-
curvature can be bounded below, thus quantifying and proving Trudinger’s
conjecture:

Theorem 2 Let (Mn, g) be a compact connected n-dimensional Riemannian
manifold satisfying (5) and

‖Riem−Cur1‖C2(Mn,g) ≤ δ ,(10)
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for some real δ > 0. Let (m0, v0) ∈ NoCut; so |v0| = (1 − η0)π for some
η0 ∈ (0, 1]. Assume δ is small enough such that:

2
√

n − 1
|v0|

sin |v0|
δ ≤ 1

2
.(11)

There exists a constant C2 ≥ 1 under control (thus independent of (m0, v0, η0, δ))
such that, for each couple of orthogonal unit vectors ξ ⊥ ν in Tm0Mn, the
following inequality holds:∣∣C(m0, v0)(ξ, ν) − C(m0, v0)(ξ, ν)

∣∣ ≤ C2
δ

η4
0

.(12)

It is a standard exercise to verify that the curvature statement (10) can be
written equivalently as follows (with another constant δ of same order):

‖Concirc‖C2(Mn,g) ≤ δ, if n > 2,

or:
‖K − 1‖C2(Mn,g) ≤ δ, if n = 2;

we will use below the more convenient form (10).

We are now in position to derive a smoothness result, namely:

Corollary 1 Let (Mn, g) be a compact simply connected n-dimensional Rie-
mannian manifold satisfying (5) and (10) with δ small enough such that:

1 − 1√
1 + δ

<
1

C
2/n
1

(13)

(where C1 is the constant defined in Theorem 1) and:

δ < min
[

5
64π2C2

,
1

24
√

n − 1

]
(14)

(where C2 is the constant occuring in (12)). Let (µ0, µ1) be smooth positive

Borelian measures on Mn of same total mass satisfying (7) for some η ∈
(

ε,
1
6

)
with ε = 1 − 1√

maxMn K
. Assume furthermore that η is large enough such that

the following inequalities hold:

δ ≤ 1
4
√

n − 1
η ,(15)

δ <
1

π2C2
η3(1 − η) .(16)

Then the optimal transportation map G (pushing µ0 to µ1) is smooth.

Here, the requirement (14) implies (16) and (15) when η = 1
6 , and the inequality

ε = 1 − 1√
maxMn K

< 1
6 .

In the particular case of an ovaloid Σf in Rn+1 represented as a radial graph
over the unit sphere: m ∈ Sn → M ∈ Σf with −−→

OM = ef(m)−−→Om, the curvature
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assumptions (13)(15)(16) which, together with condition (7) on the measures
µ0, µ1, yield strict regularity (in Trudinger’s sense [39]) for equation (1), amount
to smallness conditions on the C4-norm of the function f .

Proof. Condition (10) implies K ≤ 1 + δ; so, the two pinching conditions of
Theorem 1 hold, respectively due to (14) and (13). Using the continuity method
and fixing t ∈ T (cf. supra), we may thus apply Theorem 1 to ut and conclude
that the section gradut of TMn ranges in NoCutη. Now we wish to apply
Theorem 2 at (m0, v0) with v0 = exp(gradut)(m0). We may do so because (15)
implies condition (11). Fixing an arbitrary couple of orthogonal unit vectors
ξ ⊥ ν in Tm0Mn, inequality (12) implies:

C(m0, v0)(ξ, ν) − C(m0, v0)(ξ, ν) ≥ −C2
δ

η4
0

where η0 ∈ [η, 1] is given by | gradut|(m0) = (1 − η0)π. Combining it with the
spherical case inequality:

C(m0, v0)(ξ, ν) ≥ 1
π2

max
(

1,
1 − η0

η0

)
(17)

(proved in Appendix A below), we get the lower bound: C(m0, v0)(ξ, ν) ≥ θ0

with

θ0 =
1
π2

max
(

1,
1 − η0

η0

)
− C2

δ

η4
0

.

We can improve this bound by writing

θ0 =
1
η4
0

{
1
π2

max[η4
0 , η3

0(1 − η0)] − C2 δ

}
and by noting that the map

η0 ∈ [η, 1] → max[η4
0 , η3

0(1 − η0)]

is increasing, equal to η3(1 − η) for η0 = η < 1
6 ; we thus find:

η4
0θ0 ≥ θ :=

1
π2

η3(1 − η) − C2 δ .

Under assumption (16), the latter right-hand side is strictly positive hence we
obtain for the c-curvature the uniform lower bound:

C(m0, v0)(ξ, ν) ≥ θ > 0 .(18)

In other words, the strict regularity condition (2) holds uniformly for equation
(1). The Ma–Trudinger–Wang interior estimate [33] thus provides an upper
bound on the eigenvalues with respect to g of the covariant symmetric 2-tensor
Hess(c)(ut)(m) (see Appendix B). A uniform upper bound on ∇d ut follows, due
to Theorem 1, which implies that (setting UMn for the unit-sphere bundle) the
function:

(m, ξ) ∈ UMn → A(m, gradm ut)(ξ)

is bounded below uniformly with respect to t ∈ [0, 1] (see e.g. [15, Lemma
2.3]). As explained above, it yields the closedness of the set T of deformation
parameters t for which the continuity equation (1) admits a solution ut ∈ A (cf.
supra). So T = [0, 1] and the optimal transportation map G = exp(gradu1) is
smooth, as desired.
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Remark 3 Unless (Mn, g) is isometric to the standard unit sphere, the constant
ηM introduced in Remark 1 is strictly positive. However, its value depends on
the curvature pinching parameter δ and may vanish with him in such a way
that condition (16) of Corollary 1 no longer holds with η = ηM . Indeed, if we
take for (Mn, g) the ellipsoid of revolution of R3 given by:

x2 + y2

r2
+ z2 = 1, with r < 1,

then (5) is satisfied and we find max
M2

K =
1
r4

hence δ ≥ 1
r4

− 1, while the

expansion of the right-hand side of the inequality:

1 − ηM =
D

π
≥ 1

π

∫ 1

−1

√
1 +

r2z2

1 − z2
dz

as r → 1 yields: ηM ≤ 1 − r + o(1 − r). In particular, indeed, ηM vanishes as

r ↑ 1 i.e. as the ellipsoid approaches the unit-sphere. Besides, the ratio
δ

η3
M

blows up at least like (1− r)−2 as r ↑ 1 and condition (16) with η = ηM , which
would serve to check the positivity of the c-curvature of our ellipsoid in the
absence of a precise calculation of it, fails. This fact explains why, in the simply
connected case, we require a condition like (7) on the data (µ0, µ1).
Of course, it would be important (although quite lengthy and outside our present
scope) to investigate the sign of the leading blowing-up term which occurs in
the expression of the c-curvature of our ellipsoid of revolution at the point
(m0, v0) = [(0, 0, 1), (0, 0,−(1 − η)π)] as r ↑ 1 and η ↓ 0.

Interestingly, one can do without any condition imposed on the measures
provided the manifold Mn has nontrivial topology:

Corollary 2 Let (Mn, g) be a compact connected n-dimensional Riemannian
manifold satisfying (5) and (10). Assume π1(Mn) is nontrivial and δ is small
enough such that:

δ < min
(

1
π2C2

η4
M ,

1
4
√

n − 1
ηM

)
(19)

(where C2 is the constant occuring in (12)). Then the optimal transportation
map G (pushing µ0 to µ1) is smooth.

Proof. On the one hand, from the nontrivial topology and (5), we have: D ≤ π
2

[24]. On the other hand, recalling K ≤ 1 + δ, the Rauch comparison theorem
[13, p.29][10, p.215] readily yields for the conjugate radius the lower bound:

conj(Mn) ≥ π√
1 + δ

.

Furthermore, since C2 ≥ 1 and ηM < 1, inequality (19) implies δ <
1
π2

hence

conj(Mn) ≥ π − 1
2π

; in particular, we get:

conj(Mn) > diam(Mn).
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It follows that the exponential map must be nonsingular on Cut. Besides, since
ηM ≥ 1

2 , arguing as above now with η = ηM such that max[η4, η3(1 − η)] =
η4, condition (19) combined with Theorem 2 implies that the c-curvature of
Mn is positive. Corollary 2 now follows from the result (v) of Loeper–Villani
[32] mentionned at the beginning of the introduction. Alternatively, using the
continuity method and fixing t ∈ T , we simply note that, for each m ∈ Mn, the
inverse of the tangent map

d(expm)(gradm ut) : TmMn → Texpm(gradm ut)Mn

has its g-norm bounded above by a constant independent of m ∈ Mn and t ∈ T
(equal to

√
1 + (n − 1)π2 as shown by the inequality (71) below, read here with

|v0| = π
2 ). This key-estimate enables one to apply the Ma–Trudinger–Wang

device (see Appendix B) and conclude as above.

Back to the simply connected case, Corollary 2 yields an alternative (sym-
metry) condition on the given measures, sufficient for the existence of a smooth
optimal transport:

Corollary 3 Let (M̃n, g̃) be compact simply connected satisfying (5) and (10).
Let (µ̃0, µ̃1) be smooth positive Borelian measures on M̃n of same total mass,
invariant under a non-trivial subgroup of isometries Γ acting on M̃n in a totally
discontinuous way. Set (Mn, g) for the quotient manifold and

ηM = 1 − diam(Mn)
π

;

assume that the pinching constant δ occuring on M̃n for (10) is small enough
such that (19) holds. Then the optimal transportation map G̃ (pushing µ̃0 to
µ̃1) is smooth.

Proof. Set p : M̃n → Mn for the natural (covering space) projection and r
for its degree (fiber cardinal). From the Γ-invariance of the measures, there
exists a couple of smooth positive Borelian measures (µ0, µ1) on Mn such that
rµi = p#µ̃i for each i ∈ {0, 1}. By naturality and under our assumption on
δ, the manifold (Mn, g) fulfills the hypothesis of Corollary 2. Accordingly, let
G = expg(gradg u) : Mn → Mn be the smooth optimal transportation map
pushing µ0 to µ1. The map G̃ = exp

g̃
(grad

g̃
p∗u) satisfies G̃#µ̃0 = µ̃1 (a general

fact, see Appendix C); it is a smooth optimal transportation map for our original
data, the unique one [34, 16].

1 Distance from cut-locus

This section is devoted to the proof of Theorem 1. In the next two subsections,
we return to a compact connected n-dimensional Riemannian manifold (Mn, g)
with no particular curvature assumption. We will get back to assumption (5)
subsequently.
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1.1 2-monotonicity of optimal maps

Recall that a map Φ : Mn → Mn is called 2-monotonous with respect to the
geodesic distance dg if it satisfies the following: ∀(m1, m2) ∈ M2

n ,

d2
g[m1,Φ(m1)] + d2

g[m2,Φ(m2)] ≤ d2
g[m1,Φ(m2)] + d2

g[m2,Φ(m1)] .(20)

For completeness, we will prove here the continuous version of a 2-monotonicity
lemma which would hold almost-everywhere under weaker assumptions – not
required below – as in [18, 31]. It is a particular case of a property (called
c-cyclicity) valid in a very general context [20, Theorem 2.7].

Lemma 1 For each couple of continuous positive Borelian measures (µ, ν) with
same total mass, if the optimal transportation map G such that G#µ = ν is
continuous, it is 2-monotonous.

Proof. We adapt the argument of [18, Lemma 1]. Pick two distinct points
(m1, m2) ∈ M2

n and fix a small real r > 0. Set B1r = B(m1, r) and take ρ > 0
such that the ball B2ρ = B(m2, ρ) satisfies: µ(B1r) = µ(B2ρ). By [19, Theorem
8.6], there exists a µ-preserving diffeomorphism ϕr : B1r → B2ρ, out of which
we may define a µ-preserving map ψr : Mn → Mn as follows:

ψr = ϕr on B1r; ψr = ϕ−1
r on B2ρ; ψr = Id elsewhere.

As in [18, p.301], write:

1
µ(B1r)

[C(G) − C(G ◦ ψr)] ≤ 0

and let r → 0 to get the desired conclusion.

1.2 Big-crunch argument

Let us denote by Nr(S) the open r-neighborhood of a subset S ⊂ Mn, that is,
the set {p ∈ Mn,∃q ∈ S, dg(p, q) < r}.

Proposition 1 Assume the following condition on the manifold (Mn, g): for
s > 0 small, there exists a positive increasing function s 
→ f(s) with lim

s↓0
f(s) =

0 such that: ∃η0 > 0,∀η ∈ (0, η0),∀(m, q) ∈ Mn × Cutm,

Vol[B(q, 4D
√

η) ∩N3Dη(Cutm)]
Vol[B(q, D

√
η)]

≤ f(η) .(21)

Take η0 ≤ 1
6

with no loss of generality. Given two positive continuous Borelian
measures µ0 = ρ0dVol and µ1 = ρ1dVol on Mn with same total mass and
η ∈ (0, η0) such that:

maxMn
ρ1

minMnρ0
<

1
f(η)

,

the optimal transportation map G pushing µ0 to µ1, if it is continuous, satisfies:

∀m ∈ Mn, dg[m, G(m)] ≤ (1 − η)D .
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Proof. By continuity, the set {dg[m, G(m)], m ∈ Mn} ⊂ R is connected and
closed; we prove: maxMn dg[m, G(m)] ≤ (1 − η)D, arguing by contradiction.

Set d =
dg

D
and fix m ∈ Mn such that d[m, G(m)] > 1 − η. Let [m, m′] be a

maximal geodesic segment containing G(m). So m′ ∈ Cutm and d[G(m), m′] <
η. Consider the open geodesic ball B(m′,

√
η). By Lemma 1, for any p ∈

B(m′,
√

η), we have:

d2(m, G(m)) + d2(p, G(p)) ≤ d2(m, G(p)) + d2(p, G(m)).

Using the triangle inequality, and since η <
1
6
, we get the lower bound:

d2(m, G(m))−d2(p, G(m)) ≥ d2(m, G(m))−[d(p, m′) + d(m′, G(m))]2 ≥ (1−3η)2,

which, combined with the 2-monotonicity inequality, yields:

(1 − 3η)2 + d2(p, G(p)) ≤ d2(m, G(p)).

On the one hand, since d(m, G(p)) ≤ 1, it implies d(p, G(p)) ≤ 3
√

η, hence,
by the triangle inequality: d(m′, G(p)) < 4

√
η; on the other hand, we infer:

d(m, G(p)) > 1 − 3η. Altogether, we thus have:

G(p) ∈ N3Dη(Cutm) ∩ B(m′, 4D
√

η) ;

in other words:

G[B(m′, D
√

η)] ⊂ N3Dη(Cutm) ∩ B(m′, 4D
√

η) .

Since G#µ0 = µ1, the preceding inclusion implies:

min
Mn

ρ0 Vol[B(m′, D
√

η)] ≤ max
Mn

ρ1 Vol [N3Dη(Cutm) ∩ B(m′, 4D
√

η)](22)

which contradicts the assumption.

1.3 Geometric estimates

In case Mn is simply connected, let us show that condition (21) holds with η
reasonably small, provided the curvature of g, normalized by (5), is sufficiently
pinched. We denote below by inj(Mn) (or i for short) the injectivity radius of
the manifold (Mn, g).

Proposition 2 Assume that Mn is simply connected satisfying (5) and:

∃α ∈ (0, 3), K < (1 + α).(23)

Then the following pinching holds for the distance from a generic point to any
point of its cut-locus:

π√
1 + α

≤ inj(Mn) ≤ diam(Mn) ≤ π ,(24)

and, setting ε := 1 − 1√
1 + α

, we have for each m ∈ Mn:

diam(Cutm) ≤ 2επ .(25)
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Moreover, for α < 0.44 (or else ε < 1
6), there exists a constant C1 ≥ 1 in-

dependent of ε ∈
(

0,
1
6

)
such that, for each (m, q) ∈ Mn × Cutm and each

η ∈
(

ε,
1
6

)
, condition (21) holds with f(η) = C1η

n/2.

Proof. Under condition (23), recalling (6), Klingenberg’s theorem [30] implies
i ≥ π√

1 + α
, proving (24).

In order to prove (25), we fix m ∈ Mn, (p, q) ∈ Cut2m and consider the hinge
p̂mq forming an angle β at m. Let us consider a comparison hinge ̂̄pm̄q̄ in the
standard unit-sphere Sn with: dg(m, p) = dSn(m̄, p̄), dg(m, q) = dSn(m̄, q̄) and
same angle β at m̄. From (24), we have:

∀r ∈ {p, q}, (1 − ε)π ≤ dg(m, r) ≤ π .(26)

By Toponogov’s theorem [19], we infer: dg(p, q) ≤ dSn(p̄, q̄). Setting m̄′ for the
antipodal point of m̄ in Sn, the triangle inequality yields:

dSn(p̄, q̄) ≤ dSn(p̄, m̄′) + dSn(m̄′, q̄) = π − dSn(m̄, p̄) + π − dSn(m̄, q̄)
≡ π − dg(m, p) + π − dg(m, q) .

Altogether, recalling (26), we conclude: dg(p, q) ≤ 2επ, proving (25).
As for the final part of Proposition 2, given (m, q) ∈ Mn ×Cutm and η ∈

(
ε, 1

6

)
,

we note that the inequality (25) implies:

N3Dη(Cutm) ⊂ B(q, 5πη) ,

hence:

Vol[B(q, 4D
√

η) ∩N3Dη(Cutm)]
Vol[B(q, D

√
η)]

≤ Vol[B(q, 5πη)]
Vol[B(q, D

√
η)]

≤ C1η
n/2 ,

where C1 is the constant defined in Theorem 1, by:

C1 := sup
ρ∈[0, 1

6 ],q∈Mn

ρ−n/2 Vol [B(q, 5πρ)]
Vol

[
B(q, D

√
ρ)

] .

Under our curvature pinching assumption, we can estimate the constant C1 by
means of standard volume comparison theorems. Specifically, for ρ > 0 small
enough (see (27) below), the Bishop inequality [3] (applied with (5)) yields:

Vol[B(q, 5πρ)] ≤ 2πn/2

Γ(n
2 )

∫ 5πρ

0

(sin t)n−1dt ,

while the Günther inequality [25] (applied with (23)) provides:

Vol[B(q, D
√

ρ)] ≥ 2πn/2

Γ(n
2 )

∫ D
√

ρ

0

[
sin(

√
1 + α t)√
1 + α

]n−1

dt .

Combining the two inequalities yields, after some calculations, the upper bound:

C1 ≤
(

5π

D

)n 1

(1 + α)
n
2 −1

[
1 −

(
0,04π2

n+2

)] .
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Regarding the size of ρ in this argument, the Bishop–Günther inequalities hold
on balls with radius smaller than the injectivity radius. Here, recalling (24), we
require:

max(5πρ, π
√

ρ) <
π√

1 + α
,(27)

which, to be consistent with the condition η > ε = 1 − 1√
1+α

when ρ = η,
implies for α the inequality:

max

[
5

(
1 − 1√

1 + α

)
,

√
1 − 1√

1 + α

]
<

1√
1 + α

,

satisfied for α < 0.44. The latter combined with (27) yields ρ < 1
6 .

Finally, using assumption (5), a lower bound on C1 follows from the Bishop–
Gromov inequality [23, 12, 35, 37] which reads, for ρ > 0 small enough:

Vol[B(q, 5πρ)]
Vol[B(q, D

√
ρ)]

≥
∫ 5πρ

0
(sin t)n−1dt∫ D

√
ρ

0
(sin t)n−1dt

,

and which, recalling (6), yields: C1 >
5n+1

8
; in particular C1 > 1 as claimed.

1.4 Completion of the proof of Theorem 1

Under the assumption made on the manifold (Mn, g), Proposition 2 holds. Its
final part ensures that assumption (21) of Proposition 1 holds provided η > ε.
Applying the latter proposition with η ∈

(
ε, 1

6

)
and with ρ1 replaced by ρt, we

get:
∀m ∈ Mn, dg[m, exp(gradut)(m)] ≤ (1 − η)D

or else: | gradut| ≤ (1 − η)D, as desired. To derive the second inequality of
Theorem 1, we use the triangle inequality:

dg[exp(gradut)(m),Cutm] ≥ dg(m,Cutm) − dg[m, exp(gradut)(m)]

combined with the preceding one, getting:

dg[exp(gradut)(m),Cutm] ≥ i − (1 − η)D ,

and we finish the proof using (24).

2 c-curvature estimate

Section 2 is devoted to the proof of Theorem 2; here is the strategy. Fixing
(m0, v0) ∈ NoCutη, we may assume v0 �= 0 with no loss of generality. Indeed, if
v0 = 0 (so η0 = 1), recalling (5)(10), the c-curvature satisfies:∣∣C(m0, 0)(ξ, ν) − C(m0, 0)(ξ, ν)

∣∣ ≤ 2
3
δ

since it is equal to 2
3k with k the sectional curvature of the manifold at m0 for

the 2-plane defined by (ξ, ν) [31, 28] (see Remark 5 below); so (12) readily holds
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with C2 = 2
3 .

Henceforth we take |v0| �= 0. We will compute the quadratic form A(m0, v)(ξ)
for v ∈ Tm0Mn close to v0 (section 2.2), then differentiate it twice with respect
to v at v = v0. Unless the curvature K ≡ 1, the expression of A(m0, v)(ξ) is
not an explicit function of v; it is obtained from the value taken at time 1 by
the solutions produced by initial data variation along the geodesic which starts
from the point m0 with the velocity v. So we must proceed stepwise, viewing
the initial data (m, v) as parameters in the Cauchy problem for the geodesic
equation; we will differentiate that problem with respect to those parameters,
three times successively (sections 2.3 to 2.5). To treat the resulting expressions
at each step, we will view them as perturbations of the corresponding ones in the
spherical case. Finally, putting intermediate quantities together, we will write
an expansion of the c-curvature (8) starting out with the spherical expression,
and estimate the order of the next term, adjusting the size of the curvature
deformation parameter δ and of the, so to say, distance from conjugate-locus
parameter η0 (section 2.6).

2.1 Riemannian tools in Fermi charts

For completeness, let us recall auxiliary tools from Riemannian geometry [2,
22, 35, 37, 38], thus letting again provisionally (Mn, g) be a compact connected
n-dimensional Riemannian manifold with no particular curvature assumption.
Our sign convention for the Riemann curvature tensor is:

Riem(U, V ) = [∇U ,∇V ] −∇[U,V ]

where [., .] stands successively for a covariant derivatives commutator and for
the Lie bracket of the vector fields U, V . In any local chart

(
x1, . . . , xn

)
, setting

∂i = ∂
∂xi , the i-th component Ri

jkl of the local vector field [Riem(∂k, ∂l)∂j ] is
thus given by:

Ri
jkl = ∂kΓi

jl − ∂lΓi
jk + Γi

ksΓ
s
jl − Γi

lsΓ
s
jk

where the Γi
jk’s stand for the Christoffel symbols of the Levi–Civita connection

∇, equal to:

Γi
jk =

1
2
gil (∂kgjl + ∂jgkl − ∂lgjk) , with gilglj ≡ δi

j .

The sectional curvature tensor is defined by:

Sect(U, V, W, Z) = g[U,Riem(W, Z)V ]

and its components, accordingly by Rijkl = gisR
s
jkl.

Definition 1 (Fermi chart) Given (m0, v0) ∈ NoCut, with v0 �= 0, and an
orthonormal basis (e1, . . . , en) of Tm0Mn with en =

v0

|v0|
, the associated Fermi

chart x =
(
x1, . . . , xn

)
along the normalized geodesic:

s ∈ [0, |v0|] → c(s) := expm0
(sen)

(the latter will be called ’the axis’ of the chart, for short) is defined, after parallel
transport of the orthonormal basis (e1, . . . , en) along the axis, by:

x(m) =
(
x1, . . . , xn

)
⇐⇒ m = F(x) := expc(xn)

(
n−1∑
α=1

xαeα

)
.
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The differential of F on
{
x ∈ Rn, x1 = . . . = xn−1 = 0, 0 ≤ xn ≤ |v0|

}
is readily

found equal to the identity; so, indeed, with (m0, v0) ∈ NoCut, there exists a
neighborhood of the axis on which the map F defines a chart.

Note that, in this definition, we keep the flexibility of rotating all basis vectors
at m0 but the last one en.
Along the axis, the geodesic motion: t ∈ [0, 1] → expm0

(tv0) simply reads:
t 
→ (0, . . . , 0, t|v0|), and the chart is normal (in particular, Christoffel symbols
vanish), meaning:

∀xn ∈ [0, |v0|],∀i, j, k ∈ {1, . . . , n}, gij(0, xn) = δij , ∂kgij(0, xn) = 0,

(see e.g. [2, 35]). We will require higher order non-intrinsic quantities which
become of geometrical significance on the axis; specifically, letting latin indices
range in {1, . . . , n}, greek indices in {1, . . . , n − 1}, we will prove the following
explicit formulas (of independent interest):

Lemma 2 The following identities hold on the axis:

∂αβgnn = −2Rnαnβ , ∂αβgnγ = −2
3
(Rγαnβ + Rγβnα) ;(28)

∂αΓi
jn = Ri

jαn , ∂αΓi
βγ =

1
3

(
Ri

βαγ + Ri
γαβ

)
;(29)

∂αβΓi
nn = ∇αRi

nβn + ∇nRi
βαn ;(30)

∂αβΓn
nγ =

1
3
∇n(Rn

βαγ − Rn
γβα) −∇αRn

γnβ ;(31)

∂αβΓλ
nγ =

1
2

(
∇αRλ

γβn + ∇βRλ
γαn

)
(32)

+
1
6
∇n

(
Rλ

αβγ + Rλ
βαγ

)
.

Moreover, applying m times ∂n (axis-derivative) to any of the preceding non-
intrinsic left-hand quantities, yields on the axis the m-th covariant derivative
∇m

n of the corresponding intrinsic right-hand quantity. For instance:

∂n(∂αΓi
jn) = ∇nRi

jkn .

A further formula (the one for ∂αβΓn
λγ), only required to implement the Ma–

Trudinger–Wang estimate, will be stated and established in Appendix B.

Proof. The first formula of line (28) is routine from the definition. The second
one is not; it is obtained by combining the first Bianchi identity with the follow-
ing Fermi analogue (read with i = n) of a key-identity first proved in geodesic
polar coordinates by Riemann, namely:∑

(α,β,γ)

∂αβgiγ = 0 ,(33)

where
∑

(α,β,γ)

means circular summation on (α, β, γ). The proof of (33) is a

straightforward adaptation of the one given in [38, chap.4, prop.4] (see Appendix
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B, proof of Lemma 16); we will thus omit it. Here, for later use, let us pause and
derive yet another identity of the type (33) known to Riemann as well, namely:∑

(α,β,γ)

∂µαgβγ = 0 .(34)

We prove it by applying (33) to anyone of its summands, say to ∂µγgαβ , which
makes the preceding circular sum equal to:

∂µαgβγ − ∂βγgµα .

By symmetry, it is thus also equal to:

1
3

∑
(α,β,γ)

(∂µαgβγ − ∂βγgµα) .

Now (33) yields equality to
1
3

∑
(α,β,γ)

∂µαgβγ proving the desired vanishing. As a

by-product of that argument, we get on the axis the further identity:

∀α, β, γ, µ ∈ {1, . . . , n − 1}, ∂µαgβγ = ∂βγgµα .(35)

Back to the proof of Lemma 2, the first formula of line (29) can be routinely
verified from the local formula defining the curvature. As regards the second
formula, first with i = n, direct calculation provides:

∂αΓn
βγ =

1
2
(∂αβgnγ + ∂αγgnβ)

and the desired formula follows from the second one of line (28). Still for the
second formula of line (29), now with i = λ, the definition of the curvature
yields ∂αΓλ

βγ = Rλ
βαγ + ∂γΓλ

αβ = Rλ
γαβ + ∂βΓλ

αγ , hence also:

∂αΓλ
βγ =

1
3

Rλ
βαγ + Rλ

γαβ +
∑

(α,β,γ)

∂αΓλ
βγ

 .

From the latter formula we are done: indeed, the mere definition of the Christof-
fel symbols provides the equality∑

(α,β,γ)

∂αΓλ
βγ =

1
2

∑
(α,β,γ)

(∂αβgλγ + ∂αγgλβ − ∂αλgβγ)

the right-hand side of which vanishes by (33) and (34).
The formula of line (30) follows from the first one of line (29) by applying ∂α

to the local expression defining Ri
nβn and by using the final (obvious) formula

of the lemma.
As regards (31), brut calculation yields:

∂αβΓn
nγ =

1
2
∂αβγgnn , ∂αβΓγ

nn =
1
2
(2∂nαβgnγ − ∂αβγgnn) .

Combining these equalities, we infer: ∂αβΓn
nγ = ∂n(∂αβgnγ) − ∂αβΓγ

nn, and we
conclude by using (30) and the second formula of (28).
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For (32), we first compute on the axis: ∇αRλ
γβn = ∂αβΓλ

nγ − ∂nαΓλ
γβ and infer,

by symmetry with respect to (α, β), the equality:

∂αβΓλ
nγ =

1
2

[
∇αRλ

γβn + ∇βRλ
γαn + ∂n(∂αΓλ

γβ + ∂βΓλ
γα)

]
.

But on the axis, using (33), we readily find: (∂αΓλ
γβ + ∂βΓλ

γα) = ∂αβgγλ hence,
circular summing on (α, β, γ) the second last equality and using again (33)
yields: ∑

(α,β,γ)

∂αβΓλ
nγ =

∑
(α,β,γ)

∇αRλ
γβn .(36)

Moreover, from the above equality we also get:

∂αβΓλ
nγ − ∂βγΓλ

nα =
1
2
[∇αRλ

γβn + ∇βRλ
γαn

− ∇βRλ
αγn −∇γRλ

αβn + ∂n(∂αΓλ
γβ − ∂γΓλ

αβ)]

and we recognize that the final right-hand parenthesis is nothing but ∇nRλ
βαγ .

Combining this with a similar calculation for (∂αβΓλ
nγ − ∂αγΓλ

nβ), we find for
the left-hand side of (36):∑
(α,β,γ)

∂αβΓλ
nγ = 3 ∂αβΓλ

nγ + first covariant derivatives of the Riemann tensor,

specifically:

+
1
2
[∇β(Rλ

αγn − Rλ
γαn) + ∇γRλ

αβn −∇αRλ
γβn −∇nRλ

βαγ

+ ∇α(Rλ
βγn − Rλ

γβn) + ∇γRλ
βαn −∇βRλ

γαn −∇nRλ
αβγ ] .

From the latter equality combined with (36), we obtain:

∂αβΓλ
nγ =

1
3

 ∑
(α,β,γ)

∇αRλ
γβn

 − 1
6
[∇β(Rλ

αγn − Rλ
γαn) + ∇γRλ

αβn −∇αRλ
γβn

− ∇nRλ
βαγ + ∇α(Rλ

βγn − Rλ
γβn) + ∇γRλ

βαn −∇βRλ
γαn −∇nRλ

αβγ ]

=
1
3

 ∑
(α,β,γ)

∇αRλ
γβn

 − 1
6
[∇β(Rλ

αγn − 2Rλ
γαn) + ∇γ(Rλ

αβn + Rλ
βαn)

+ ∇α(Rλ
βγn − 2Rλ

γβn) −∇n(Rλ
αβγ + Rλ

βαγ)]

=
1
2

(
∇αRλ

γβn + ∇βRλ
γαn

)
+

1
6
∇n

(
Rλ

αβγ + Rλ
βαγ

)
+

1
6

[
∇α

(
Rλ

γβn − Rλ
βγn

)
− 2∇β

(
Rλ

αγn − Rλ
γαn

)
+ ∇γ

(
Rλ

βαn − Rλ
αβn

)]
.

By the first Bianchi identity, we have: ∇α

(
Rλ

γβn − Rλ
βγn

)
= ∇αRλ

nβγ and sim-
ilarly for the two other differences occuring in the last brackets. Combining this
with the second Bianchi identity now routinely yields formula (32). Lemma 2
is proved.
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Finally, we will require yet another set of identities, involving third deriva-
tives of the Christoffel symbols. Unlike the preceding ones, they will hold only
modulo addition of a linear combination of terms, each of which being a com-
ponent (in the Fermi chart, on the axis) of one of the following three tensors:

(Riem−Cur1),∇(Riem−Cur1) ≡ ∇Riem,∇2(Riem−Cur1) ≡ ∇2 Riem,

and the absolute value of each coefficient of the linear combination being bounded
above by some constant under control (thus independent of (m0, v0) ∈ NoCut
and of δ > 0). In the sequel, an equality modulo the addition of such a linear
combination will be denoted by ”�”. Recalling (10), if two scalars A and B
satisfy A � B, there exists a constant under control c such that |A − B| ≤ c δ.
This is exactly the type of inequality allowed for proving Theorem 2. The proof
of the next lemma will illustrate the use of these notations.

Lemma 3 The following ’equalities’ hold on the axis:

∂αβγΓn
nn � 0 , ∂αβγΓλ

nn � −4
3

∑
(α,β,γ)

δλαδγβ .

Proof. Brut calculation yields on the axis:

∇αβRn
nγn = ∂αβRn

nγn +
(
∂αΓn

βλ

)
Rλ

nγn −
(
∂αΓλ

βn

)
Rn

λγn .

Using (29) and the identity:

Riem⊗Riem ≡ Riem⊗(Riem−Cur1)(37)
+ (Riem−Cur1) ⊗ Cur1 + Cur1 ⊗ Cur1 ,

we readily infer: ∂αβRn
nγn � 0. Calculation again yields:

∂αβRn
nγn = ∂αβγΓn

nn − ∂n

(
∂αβΓn

nγ

)
+ ∂αΓj

nn∂βΓn
γj + ∂αΓn

γj∂βΓj
nn

− ∂αΓj
γn∂βΓn

nj − ∂αΓn
nj∂βΓj

γn .

Now we use (31), and (29) combined with (37), to obtain:

∂αβRn
nγn � ∂αβγΓn

nn ,

thus proving the first formula.
For the second formula, we first observe the ’equality’:

∇αβ(Riem−Cur1)λ
nγn � ∂αβ(Riem−Cur1)λ

nγn

and compute each term of the right-hand side. Using (28) and Riem � Cur1,
we find:

∂αβ(Cur1)λ
nγn = δλ

γ ∂αβgnn � −2δλγδαβ(38)

Brut calculation yields for the other term:

∂αβRλ
nγn = ∂αβγΓλ

nn − ∂n

(
∂αβΓλ

nγ

)
+ ∂αΓj

nn∂βΓλ
γj + ∂αΓλ

γj∂βΓj
nn

− ∂αΓj
γn∂βΓλ

nj − ∂αΓλ
nj∂βΓj

γn .(39)
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Combining (29) with (37), we find for the last two terms of the right-hand side:

−(∂αΓj
γn∂βΓλ

nj + ∂αΓλ
nj∂βΓj

γn) � (δλαδγβ + δλβδγα) .

To cope with the two preceding terms, we apply to (39) the circular sum over
(α, β, γ); by symmetry, the last ’equality’ and (38) yield, recalling (32):

∂αβγΓλ
nn � −4

3

∑
(α,β,γ)

(δλαδγβ +
1
4
∂αΓj

nn∂βΓλ
γj +

1
4
∂αΓλ

γj∂βΓj
nn) .

To treat the last two terms, noting the ’equality’ ∂αΓj
nn � δαj which follows

from (29), we are lead to study the circular sum:
∑

(α,β,γ)

(∂βΓλ
γα + ∂αΓλ

γβ). Brut

calculation on the axis yields:

∂βΓλ
γα + ∂αΓλ

γβ = −1
2
(∂βµgαγ + ∂αµgβγ − ∂αβgµγ) ,

so, by (33), circular summation cancels the last term of the latter right-hand
side and we readily find:∑

(α,β,γ)

(∂βΓλ
γα + ∂αΓλ

γβ) = −
∑

(α,β,γ)

∂αµgβγ

which vanishes by (34). Lemma 3 is proved.

2.2 Hessian of the squared distance from a point

Let us fix a point m0 ∈ Mn and a normal chart x =
(
x1, . . . , xn

)
centered at

m0. For an arbitrary geodesic segment [m, expm(v)] contained in the domain of
our chart, with (m, v) ∈ NoCut, it will be convenient to stick to a normalized
’time’ parameter t ∈ [0, 1]. We will set

(
v1, . . . , vn

)
for the fiber coordinates of

the chart of TMn naturally associated to the chart x, and:

X = X(x1, . . . , xn, v1, . . . , vn, t) := x ◦ [expm(tv)] =:
(
X1, . . . , Xn

)
,

thus with v = vi∂i. To compute the local expression A(x, v) of the quadratic
form defined by (9) at x = 0, we start from the well-known identity [26, p.156]:

p2 ≡ expp1

[
− gradp1

c(p1, p2)
]

,(40)

valid whenever (p1, p2) ∈ M2
n are not cut-points of each other. Taking the points

pa’s lying in the domain of our chart and setting xa = x(pa), we differentiate
(40) with respect to the coordinates xj

1’s at x1 = 0, getting for X(x1, v, t) at
x1 = 0, t = 1 and at v = vi∂i given by expm0

(v) = p2, the following identity:

0 ≡ ∂Xi

∂xj
1

(0, v, 1) −
n∑

k=1

∂Xi

∂vk
(0, v, 1)

∂2c

∂xj
1∂xk

1

[0, X(0, v, 1)] .

We may thus write, in matrix form (and dropping the subscript of x1):

A(0, v) ≡
[
∂X

∂v
(0, v, 1)

]−1 [
∂X

∂x
(0, v, 1)

]
.(41)
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This is the fundamental formula to be used for the calculation at m0 of the c-
curvature (8). It leads us to compute the matrix coefficients of

[
∂X
∂x (x, v, t)

]
and[

∂X
∂v (x, v, t)

]
in the next section, then the first and second partial derivatives of[

∂X
∂x (0, v, t)

]
and

[
∂X
∂v (0, v, t)

]
with respect to the fiber variable v respectively

in sections 2.4 and 2.5.

2.3 First derivatives of geodesic motion

Preliminary bounds.
In this section and the next two, we will proceed stepwise, deriving first a bound
under control on the g-norms of the x and v derivatives of X and Ẋ = dX

dt under
study calculated at (0, v0, t). Then we will compare these derivatives with the
ones which would occur in the constant curvature 1 case and prove that the
g-norms of the differences between the two are � 0.
The strategy to get a bound under control on derivatives of X and Ẋ with re-
spect to the initial conditions (x, v), calculated at (0, v0, t), goes as follows. Any
such derivative of X, denote it by J(t), will satisfy constant initial conditions and
solve the Jacobi equation along the geodesic γ0 (which reads t 
→ X(0, v0, t)),
possibly in non-homogeneous form, which we write here (with standard nota-
tions specified below):

J̈ + Riem(J, γ̇0)γ̇0 = P ,

where the right-hand side P will be a polynomial expression in the (previously
kept under control) lower order derivatives of X and Ẋ, with only local Rieman-
nian invariants as coefficients. Granted this, the estimation scheme is standard;
let us sketch it here once for all.

Standard estimation scheme. Transform the Jacobi equation into a first
order system (S) bearing on the auxiliary variable:

K :=
(

J

J̇

)

and compute
d

dt
of the squared norm |K|2 = |J |2 + |J̇ |2. Using the system (S)

combined with the triangle and the Schwarz inequalities, get a constant under
control C such that:

d|K|2
dt

≤ C
(
1 + |K|2

)
,

and conclude: 1 + |K|2(t) ≤
[
1 + |K|2(0)

]
eCt.

First derivatives calculations
Henceforth, we fix (m0, v0) ∈ NoCut with v0 �= 0 (unless otherwise specified)
and an associated Fermi chart. The n-tuple X = X(x, v, t) is the solution of
the following Cauchy problem:

Ẍi + Γi
jk(X)ẊjẊk = 0, Xi(0) = xi, Ẋi(0) = vi .(42)

dots standing for time derivatives. By differentiating that problem with respect
to the parameters xa or va, we get the following equation satisfied by Ja (equal
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to either ∂xaX or ∂vaX):

J̈ i
a + ∂lΓi

jk(X)ẊjẊkJ l
a + 2Γi

jk(X)Ẋj J̇k
a = 0 ,(43)

with the correspondingly differentiated initial conditions, namely either:

∂xaXi(0) = δi
a, ∂xaẊi(0) = 0,(44)

or:
∂vaXi(0) = 0, ∂vaẊi(0) = δi

a .(45)

On the axis, setting for short X0(t) := X(0, v0, t) and recalling (29), equation
(43) becomes:

J̈ i
a + |v0|2Ri

nαn(X0)Jα
a = 0 ,(46)

or else, in coordinate-free form, setting γ0(t) := expm0
(tv0) (so X0 ≡ x ◦ γ0)):

J̈a + Riem(Ja, γ̇0)γ̇0 = 0 ;

we recognize the Jacobi equation1. For later use, let us record a basic fact (cf.
supra) from second order differential equations theory:

Lemma 4 There exists a constant c1 > 0 under control such that, for each
t ∈ [0, 1], the following g-norms:

|∂xX(0, v0, t)|, |∂xẊ(0, v0, t)|, |∂vX(0, v0, t)|, |∂vẊ(0, v0, t)|,

are all bounded above by c1; here, the g-norm of ∂xX(x, v, t) is defined by:

|∂xX(x, v, t)|2 = gij [X(x, v, t)]gkl[X(x, v, t)]
∂Xi

∂xk
(x, v, t)

∂Xj

∂xl
(x, v, t)

and similarly for |∂xẊ(x, v, t)|, |∂vX(x, v, t)|, |∂vẊ(x, v, t)|.
Let us rewrite the Jacobi equation in the perturbative form:

J̈a + Cur1(Ja, γ̇0)γ̇0 = (Cur1 − Riem)(Ja, γ̇0)γ̇0

(where it is understood, here and below, that the tensors Cur1 and Riem are
considered at γ0) which will enable us to use assumption (10). The preceding
equation reads J̈n

a = 0 and:

∀α < n, J̈α
a + |v0|2Jα

a = |v0|2(Cur1 − Riem)α
nγnJγ

a .(47)

We will require the notation ∂xX0(t) (resp. ∂vX0(t)) for the solution J̄a of the,
so to say, unperturbed equation

¨̄Ja + Cur1(J̄a, Ẋ0)Ẋ0 = 0

satisfying the same initial conditions (44) (resp. (45)) as ∂xX (resp. ∂vX).

Lemma 5 In the Fermi chart, on the axis, the first derivatives of the geodesic
motion with respect to the initial conditions satisfy, for each t ∈ [0, 1], the
following g-norm bounds:

max
(
|∂xX(0, v0, t) − ∂xX0(t)|, |∂vX(0, v0, t) − ∂vX0(t)|

)
≤ 2c1δ .

1in [18, p.307], equation (43) is improperly called so
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Proof. From (47), we readily find for ∂xX(0, v0, t) (resp. ∂vX(0, v0, t)) and for
∂xX0(t) (resp. ∂vX0(t)) the same axis components, namely:

∂xnXn
0 = 1, ∂vnXn

0 = t, ∂xαXn
0 = ∂vαXn

0 = ∂xnXα
0 = ∂vnXα

0 = 0 .(48)

We thus focus on the Jα
β components. We require a lemma (easily verified):

Lemma 6 (representation formula) Given a function t 
→ ϕ(t) and a real
number ω0 �= 0, set:

ψ = ϕ̈ + ω2
0ϕ, λ = ϕ(0), µ = ϕ̇(0).

The following identity holds:

ϕ(t) = λ cos(ω0t) + µ
sin(ω0t)

ω0
+ sin(ω0t)

∫ t

0

1
sin2(ω0τ)

[∫ τ

0

sin(ω0θ)ψ(θ)dθ

]
dτ.

Applying Lemma 6 to ϕ = Jα
β (with ω0 = |v0|), equation (47) implies

∂xβ Xα
0 (t) = δα

β cos(|v0|t) + Eα
xβ (t) ≡

(
∂xX0

)α

β
(t) + Eα

xβ (t)

with the x-correction term given by:

Eα
xβ (t) = |v0|2 sin(|v0|t)

∫ t

0

1
sin2(|v0|τ)

[∫ τ

0

sin(|v0|θ)(Cur1 − Riem)α
nγn∂xβ Xγ

0 (θ) dθ

]
dτ ,

and

∂vβ Xα
0 (t) = δα

β

sin(|v0|t)
|v0|

+ Eα
vβ (t) ≡

(
∂vX0

)α

β
(t) + Eα

vβ (t)

with the v-correction term given by:

Eα
vβ (t) = |v0|2 sin(|v0|t)

∫ t

0

1
sin2(|v0|τ)

[∫ τ

0

sin(|v0|θ)(Cur1 − Riem)α
nγn∂vβ Xγ

0 (θ) dθ

]
dτ .

Using (10), Schwarz inequality and Lemma 4, we infer for the Euclidean norm
of both x and v error (n − 1) × (n − 1) matrices E =

[
Eα

β (t)
]

the upper bound
|E| ≤ δc1 �|v0|(t) with:

�ω0(t) := ω2
0 sin(ω0t)

∫ t

0

1
sin2(ω0τ)

[∫ τ

0

sin(ω0θ)dθ

]
dτ .

Now Lemma 5 follows from the following technical one (left as an exercise):

Lemma 7 For (ω0, t) ∈ [0, π] × [0, 1], the following equality holds:

�ω0(t) = 1 − cos(ω0t) .

Remark 4 For later use, dealing with |∂vX(0, v0, t)−∂vX0(t)|, let us note that
the constant c1 of Lemma 5 may be taken equal to

√
n − 1. Indeed, on the one

hand, the proof of Lemma 5 combined with Lemma 7 and Schwarz inequality
provides the g-norms inequality:

|∂vX(0, v0, t) − ∂vX0(t)| ≤ 2δ max
θ∈[0,1]

√∑
β,γ

[∂vβ Xγ
0 (θ)]2 .
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On the other hand, for each β ∈ {0, . . . , n−1}, using (5) and the strict inequality
|v0| < π, we can apply the Rauch comparison theorem [13, p.29] [10, p.215] to
the Jacobi field ∂vβ X0(t) along the axis and readily infer from it the upper
bound:

∀θ ∈ [0, 1],
∑

γ

[∂vβ Xγ
0 (θ)]2 ≤

∑
γ

[
∂vβ Xγ

0 (θ)
]2

=
(

sin |v0|θ
|v0|

)2

≤ 1.

The claim follows by summing over β < n the resulting inequality, taking the
square root of each side and the maximum over θ ∈ [0, 1].

We will require a similar result for the time derivative of ∂xX and ∂vX, namely:

Lemma 8 In the Fermi chart, on the axis, the first derivatives of the time
derivative of the geodesic motion with respect to the initial conditions satisfy:

max
(
|∂xẊ(0, v0, t) − ˙∂xX0(t)|, |∂vẊ(0, v0, t) − ˙∂vX0(t)|

)
≤ c′1δ

for some constant under control c′1 > 0 independent of t ∈ [0, 1].

Proof. All axis components of the differences under study vanish, so let us
focus on the sole components Eα

β (the subscript β standing for either xβ or vβ)
which satisfy, recalling (47):

Ëα
β + |v0|2Eα

β � 0

with null initial conditions. The latter yields the representation:

Ėα
β (t) =

∫ t

0

Ëα
β (τ)dτ ,

hence the former, combined with the triangle inequality and Lemma 5, implies:

|Ė | ≤ c′1δ

with a constant c′1 under control, as required.

2.4 Second derivatives of geodesic motion

Differentiating with respect to the parameter vb (component of the initial veloc-
ity in the Fermi chart) the Cauchy problems (43)-(44) or (43)-(45), and stick-
ing to the notation J i

a used there, yields the following equation satisfied at
X = X(0, v, t) by Jab ≡ Jba (an admittedly loose but typographically convenient
abbreviation, in which the subscript a will be the sole one to stand for either xa

or va, other subscripts b, c, . . . standing only for vb, vc, . . .; it will enable us, in the
next subsection, to write (for short) sums involving the Jab’s as circular sums)
with Jab equal either to ∂2

xavbX = ∂2
xavbX(0, v, t) or to ∂2

vavbX = ∂2
vavbX(0, v, t):

J̈ i
ab +

(
∂lΓi

jk

)
ẊjẊkJ l

ab + 2Γi
jkẊj J̇k

ab =(49)

−
(
∂lmΓi

jk

)
ẊjẊkJ l

aJm
b − 2

(
∂lΓi

jk

)
Ẋj

(
J̇k

b J l
a + J̇k

a J l
b

)
− 2Γi

jkJ̇j
b J̇k

a .
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and (in either case) the null initial conditions:

Jab(0) = 0, ˙Jab(0) = 0 .(50)

Along the axis, recalling (29), equation (49) reads:

J̈ i
ab + |v0|2Ri

nγn(X0)J
γ
ab = −|v0|2

(
∂lmΓi

nn

)
J l

aJm
b − 2|v0|Ri

kβn

(
J̇k

b Jβ
a + J̇k

a Jβ
b

)
.

Using (29)(30) and Lemma 4 to treat the latter right-hand side, we may once
again record a standard result of second order differential equations theory,
namely:

Lemma 9 There exists a constant c2 > 0 under control such that, for each
t ∈ [0, 1], the following g-norms:

|∂2
xvX(0, v0, t)|, |∂2

xvẊ(0, v0, t)|, |∂2
vvX(0, v0, t)|, |∂2

vvẊ(0, v0, t)|,

are all bounded above by c2.

Let us rewrite the above equation in perturbative form, namely:

J̈ i
ab + |v0|2δi

γJγ
ab = |v0|2 (Cur1 − Riem)i

nγn Jγ
ab

− |v0|2
(
∂lmΓi

nn

)
J l

aJm
b − 2|v0|Ri

kβn

(
J̇k

b Jβ
a + J̇k

a Jβ
b

)
.(51)

Using (29)(30) to treat the right-hand side, we find:

J̈ i
ab + |v0|2δi

γJγ
ab � −2|v0| (Cur1)

i
kβn

(
J̇k

b Jβ
a + J̇k

a Jβ
b

)
= −2|v0| (δiβδkn − δinδkβ)

(
J̇k

b Jβ
a + J̇k

a Jβ
b

)
,

or else, if i = α:

J̈α
ab + |v0|2Jα

ab � −2|v0|
(
J̇n

b Jα
a + J̇n

a Jα
b

)
,(52)

while if i = n:

J̈n
ab � 2|v0|

n−1∑
β=1

(
J̇β

b Jβ
a + J̇β

a Jβ
b

)
.(53)

Recalling (48), if a = b = n, we infer at once:

J̈ i
nn + |v0|2δi

γJγ
nn � 0 ;(54)

moreover, if a or b is equal to n, we get from (53), say with b = n:

J̈n
an � 0 .(55)

Let us treat equation (53) in the remaining cases for (a, b). If a = λ �= b = µ,
the combination of (53) with Lemmas 4, 5 and 8, implies the existence of a
constant c21 > 0 under control such that:

max
λ�=µ,t∈[0,1]

∣∣∣J̈n
λµ

∣∣∣ (0, v0, t) ≤ c21δ .(56)
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Finally, if a = b = λ, sticking to the auxiliary notation J̄ i
a of the preceding

subsection, we write:

J̇β
λ Jβ

λ = ˙̄
Jβ

λ J̄β
λ + ˙̄

Jβ
λ

(
Jβ

λ − J̄β
λ

)
+

(
J̇β

λ − ˙̄
Jβ

λ

)
Jβ

λ

and, recalling Lemmas 5 and 8, we obtain the existence of a constant under
control c22 > 0 such that either (if a = b = vλ):

max
λ,t∈[0,1]

∣∣∣∣∣∣J̈n
λλ − 4|v0|

n−1∑
β=1

˙̄
Jβ

λ J̄β
λ

∣∣∣∣∣∣ ≤ c22 δ ,(57)

or (if a = xλ, thus b = vλ):

max
λ,t∈[0,1]

∣∣∣∣∣∣J̈n
λλ − 2|v0|

n−1∑
β=1

( ˙̄
Jβ

xλ J̄β
vλ + J̄β

xλ

˙̄
Jβ

vλ

)∣∣∣∣∣∣ ≤ c22 δ ,(58)

Let us turn to equation (52) in case a or b differs from n; we must distinguish
cases. If both differ from n, we infer from (48) that the quantity

(
J̇n

b Jα
a + J̇n

a Jα
b

)
vanishes; so there exists a constant under control c23 > 0 such that:

max
λ,µ,t∈[0,1]

∣∣∣J̈α
λµ + |v0|2Jα

λµ

∣∣∣ ≤ c23 δ.(59)

If a stands for xn (b thus differing from n), we infer similarly the vanishing of(
J̇n

b Jα
a + J̇n

a Jα
b

)
hence the existence of a constant under control c24 > 0 such

that:
max

λ,t∈[0,1]

∣∣∣J̈α
xnλ + |v0|2Jα

xnλ

∣∣∣ ≤ c24 δ.(60)

If a or b stands for vn, still using (48) and taking (say) a = vn, b = λ, we find:(
J̇n

b Jα
a + J̇n

a Jα
b

)
= Jα

λ . If λ �= α, Lemma 5 implies the existence of a constant
under control c25 > 0 such that:

max
λ�=α,t∈[0,1]

∣∣∣J̈α
vnλ + |v0|2Jα

vnλ

∣∣∣ ≤ c25 δ,(61)

while if λ = α, it implies the existence of a constant under control c26 > 0 such
that:

max
α,t∈[0,1]

∣∣∣J̈α
vnα + |v0|2Jα

vnα + 2|v0|J̄α
α

∣∣∣ ≤ c26 δ.(62)

At this stage, sticking to the intermediate notations J̄ i
a of the preceding section,

let us introduce the solutions ∂2
xvX0 and ∂2

vvX0 along the axis of the unperturbed
equation:

¨̄J i
ab + |v0|2δi

γ J̄γ
ab = −2|v0| (δiβδkn − δinδkβ)

(
J̄β

a
˙̄Jk
b + J̄β

b
˙̄Jk
a

)
(63)

still with null initial conditions.

Lemma 10 There exists a constant c27 > 0 under control such that, for each
t ∈ [0, 1], the following g-norms:∣∣∣∂2

xvX(0, v0, t) − ∂2
xvX0(t)

∣∣∣ ,
∣∣∣∂2

vvX(0, v0, t) − ∂2
vvX0(t)

∣∣∣ ,

are bounded above by c27δ.
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Proof. Setting E i
ab(t) for the components of the difference under study and

combining (54)(55)(56)(57)(58)(59)(60)(61)(62), we find that E i
ab satisfies:

Ë i
ab + |v0|2δi

γEγ
ab � 0

with null initial conditions. Applying Lemma 6 to E i
ab, as done above, yields

the desired upper bound on its g-norm.
Besides, since E i

ab solves the preceding Cauchy problem, we may argue as in the
proof of Lemma 8 and immediately obtain:

Lemma 11 There exists a constant under control c′2 > 0 such that, for each
t ∈ [0, 1], the following g-norms:∣∣∣∂2

xvẊ(0, v0, t) − ˙
∂2

xvX0(t)
∣∣∣ ,

∣∣∣∂2
vvẊ(0, v0, t) − ˙

∂2
vvX0(t)

∣∣∣ ,

are bounded above by c′2δ.

2.5 Third derivatives of geodesic motion

Differentiating with respect to the initial velocity component parameter vc the
Cauchy problems (49)-(50) yields on the axis the following equation for Jabc(t)
equal to, either ∂3

xavbvcX(0, v0, t) or to ∂3
vavbvcX(0, v0, t), after use of (29):

J̈ i
abc + |v0|2Ri

nγnJγ
abc = −|v0|2

(
∂lmpΓi

nn

)
J l

aJm
b Jp

c(64)

− |v0|2
(
∂lmΓi

nn

) ∑
(a,b,c)

J l
abJ

m
c

− 2|v0|
(
∂lmΓi

nk

) ∑
(a,b,c)

J̇k
a J l

bJ
m
c

− 2|v0|Ri
kβn

∑
(a,b,c)

(
J̇k

a Jβ
bc + J̇k

abJ
β
c

)
− 2

(
∂βΓi

jk

) ∑
(a,b,c)

J̇j
a J̇k

b Jβ
c ,

still with null initial conditions. Here, we will require the full strength of Lemmas
2 and 3 to check the intrinsic character of the right hand-side coefficients of the
J ’s and J̇ ’s. Granted this is done, recalling Lemmas 4 and 9, we may already
record a standard result of second order ODE theory, namely:

Lemma 12 There exists a constant c3 > 0 under control such that, for each
t ∈ [0, 1], the following g-norms:∣∣∂3

xvvX(0, v0, t)
∣∣ ,

∣∣∂3
vvvX(0, v0, t)

∣∣ ,

are bounded above by c3.

To proceed further with Equation (64), let us distinguish cases.

First case: i = n. The equation reads:

J̈n
abc = Iabc + IIabc + IIIabc + IVabc + Vabc
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where:
Iabc := −|v0|2 (∂lmpΓn

nn)J l
aJm

b Jp
c

is � 0 due to a combination of (29)(30) and the first formula of Lemma 3, with
Lemma 4; then:

IIabc := −|v0|2 (∂lmΓn
nn)

∑
(a,b,c)

J l
abJ

m
c

is � 0 due to (29)(30) combined with Lemmas 4 and 9; besides:

IIIabc := −2|v0| (∂lmΓn
nk)

∑
(a,b,c)

J̇k
a J l

bJ
m
c

is � 0 due to (29)(30)(31) combined with Lemma 4; furthermore:

IVabc := 2|v0|Rn
βnγ

∑
(a,b,c)

(
J̇β

a Jγ
bc + J̇β

abJ
γ
c

)
becomes, using Lemmas 4 and 9:

IVabc � 2|v0|
∑
β<n

∑
(a,b,c)

(
J̇β

a Jβ
bc + J̇β

abJ
β
c

)
,

or else, in terms of the above spherical quantities J̄a, J̄bc, after use of the finite
differences trick combined with Lemmas 5, 8, 10, 11:

IVabc � 2|v0|
∑
β<n

∑
(a,b,c)

( ˙̄
Jβ

a J̄β
bc + ˙̄

Jβ
abJ̄

β
c

)
;

last:
Vabc := −2

(
∂βΓn

jk

) ∑
(a,b,c)

J̇j
a J̇k

b Jβ
c ,

splits into a sum over j < n and k < n, which is by (29) equal to:

2
3

(
Rn

λµβ + Rn
µλβ

) ∑
(a,b,c)

J̇λ
a J̇µ

b Jβ
c

and so, using Lemma 4, which is � 0, and a sum for j or k equal to n which,
by (29), reads:

2Rn
γnβ

∑
(a,b,c)

(
J̇n

a J̇γ
b Jβ

c + J̇γ
a J̇n

b Jβ
c

)
,

hence, by Lemma 4:

Vabc � 2
∑
β<n

∑
(a,b,c)

(
J̇n

a J̇β
b Jβ

c + J̇β
a J̇n

b Jβ
c

)
,

and, finally, combining the finite differences trick with Lemmas 5 and 8:

Vabc � 2
∑
β<n

∑
(a,b,c)

(
˙̄Jn
a

˙̄
Jβ

b J̄β
c + ˙̄

Jβ
a

˙̄Jn
b J̄β

c

)
.
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Altogether, Equation (64) with i = n thus yields:

J̈n
abc � 2

∑
β<n

∑
(a,b,c)

[
|v0|

( ˙̄
Jβ

a J̄β
bc + ˙̄

Jβ
abJ̄

β
c

)
+

(
˙̄Jn
a

˙̄
Jβ

b J̄β
c + ˙̄

Jβ
a

˙̄Jn
b J̄β

c

)]
.

Let us set J̄n
abc(t) for the solution of the unperturbed equation:

¨̄Jn
abc = 2

∑
β<n

∑
(a,b,c)

[
|v0|

( ˙̄
Jβ

a J̄β
bc + ˙̄

Jβ
abJ̄

β
c

)
+

(
˙̄Jn
a

˙̄
Jβ

b J̄β
c + ˙̄

Jβ
a

˙̄Jn
b J̄β

c

)]
with null initial conditions, and En

abc for the difference Jn
abc− J̄n

abc which satisfies:

Ën
abc � 0, En

abc(0) = Ėn
abc(0) = 0 .

The latter implies the existence of a constant under control c > 0 such that:

∀t ∈ [0, 1], |En
abc(t)| ≤ cδ .(65)

Second case: i = ρ < n. In that case, Equation (64) written in perturbative
form reads as follows:

J̈ρ
abc + |v0|2Jρ

abc = Iρabc + IIρabc + IIIρabc + IVρ
abc + Vρ

abc + VIρabc ,

with:
Iρabc := |v0|2 (Cur1 − Riem)ρ

nγn Jγ
abc ,

IIρabc := −1
3
|v0|2 (∂lmpΓρ

nn)
∑

(a,b,c)

J l
aJm

b Jp
c ,

IIIρabc := −|v0|2 (∂lmΓρ
nn)

∑
(a,b,c)

J l
abJ

m
c ,

IVρ
abc := −2|v0| (∂lmΓρ

nk)
∑

(a,b,c)

J̇k
a J l

bJ
m
c ,

Vρ
abc := −2|v0|Rρ

kβn

∑
(a,b,c)

(
J̇k

a Jβ
bc + J̇k

abJ
β
c

)
,

VIρabc := −2
(
∂βΓρ

jk

) ∑
(a,b,c)

J̇j
a J̇k

b Jβ
c .

Deferring the treatment of Iρabc, let us proceed with the other terms. Each
summand of IIρabc with l, m, or p equal to n, is � 0 by (29) and (30) combined
with Lemma 4; using the latter and the second formula of Lemma 3, we infer:

IIρabc � 4
9
|v0|2

∑
(λ,µ,ν)

∑
(a,b,c)

δλρδµνJλ
a Jµ

b Jν
c =

4
3
|v0|2

∑
(a,b,c)

Jρ
a

∑
µ<n

Jµ
b Jµ

c .

After use of the finite differences trick combined with Lemmas 4 and 5, we thus
obtain:

IIρabc � II
ρ

abc :=
4
3
|v0|2

∑
(a,b,c)

J̄ρ
a

∑
µ<n

J̄µ
b J̄µ

c .
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By (29) and (30) combined with Lemmas 4 and 9, we have IIIρabc � 0. Each
summand of IVρ

abc with l, m, or k equal to n, is � 0 by (29) and (30) combined
with Lemma 4; moreover, by (32) combined with Lemma 4, the remaining sum
bearing on (l, m, k) = (λ, µ, ν) is � 0 as well. Next, Lemmas 4 and 9 yield:

Vρ
abc � −2|v0|

∑
(a,b,c)

(
J̇n

a Jρ
bc + J̇n

abJ
ρ
c

)
;

combining the finite differences trick with Lemmas 5, 8, 10 and 11, we thus get:

Vρ
abc � V

ρ

abc := −2|v0|
∑

(a,b,c)

(
˙̄Jn
a J̄ρ

bc + ˙̄Jn
abJ̄

ρ
c

)
.

Finally, let us write VIρabc = (VI-1)
ρ
abc + (VI-2)

ρ
abc + (VI-3)

ρ
abc with:

(VI-1)
ρ
abc := −2 (∂βΓρ

nn)
∑

(a,b,c)

J̇n
a J̇n

b Jβ
c ,

(VI-2)
ρ
abc := −2 (∂βΓρ

λn)
∑

(a,b,c)

(
J̇λ

a J̇n
b Jβ

c + J̇n
a J̇λ

b Jβ
c

)
,

(VI-3)
ρ
abc := −2

(
∂βΓρ

λµ

) ∑
(a,b,c)

J̇λ
a J̇µ

b Jβ
c .

From (29), we have:

(VI-1)
ρ
abc = −2Rρ

nβn

∑
(a,b,c)

J̇n
a J̇n

b Jβ
c ,

(VI-2)
ρ
abc = −2Rρ

λβn

∑
(a,b,c)

(
J̇λ

a J̇n
b Jβ

c + J̇n
a J̇λ

b Jβ
c

)
,

(VI-3)
ρ
abc = −2

3

(
Rρ

λβµ + Rρ
µβλ

) ∑
(a,b,c)

J̇λ
a J̇µ

b Jβ
c .

Using Lemma 4, we get (VI-1)
ρ
abc � −2

∑
(a,b,c) J̇n

a J̇n
b Jρ

c , (VI-2)
ρ
abc � 0 and:

(VI-3)
ρ
abc � −2

3

(
2δρ

βδλµ − δρ
µδλβ − δρ

λδµβ

) ∑
(a,b,c)

J̇λ
a J̇µ

b Jβ
c

=
2
3

∑
µ<n

∑
(a,b,c)

[(
J̇ρ

a J̇µ
b + J̇µ

a J̇ρ
b

)
Jµ

c − 2J̇µ
a J̇µ

b Jρ
c

]
.

Combining the finite differences trick with Lemmas 5 and 8, we find:

(VI-1)
ρ
abc � (VI-1)

ρ

abc := −2
∑

(a,b,c)

˙̄Jn
a

˙̄Jn
b J̄ρ

c ,

(VI-3)
ρ
abc � (VI-3)

ρ

abc :=
2
3

∑
µ<n

∑
(a,b,c)

[(
˙̄Jρ
a

˙̄Jµ
b + ˙̄Jµ

a
˙̄Jρ
b

)
J̄µ

c − 2 ˙̄Jµ
a

˙̄Jµ
b J̄ρ

c

]
.
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Back to the, yet untreated, right-hand term Iρabc, we may now use Lemma 12
which implies: Iρabc � 0.
Let us set J̄ρ

abc(t) for the solution of the unperturbed equation:

¨̄Jρ
abc + |v0|2J̄ρ

abc = II
ρ

abc + V
ρ

abc + (VI-1)
ρ

abc + (VI-3)
ρ

abc

with null initial conditions, and Eρ
abc for the difference Jρ

abc − J̄ρ
abc. By construc-

tion, Eρ
abc satisfies:

Ëρ
abc � 0, Eρ

abc(0) = Ėρ
abc(0) = 0,

hence there exists a constant under control c′ > 0 such that:

∀t ∈ [0, 1], |Eρ
abc(t)| ≤ c′δ .(66)

Setting ∂3
xvvX0(t) = J̄ i

xavbvc(t)dxa⊗dvb⊗dvc⊗ ∂
∂xi and similarly for ∂3

vvvX0(t),
we can express our results (65)(66) by the following statement:

Lemma 13 There exists a constant under control c3 > 0 such that, for each
t ∈ [0, 1], the following g-norms:∣∣∣∂3

xvvX(0, v0, t) − ∂3
xvvX0(t)

∣∣∣ ,
∣∣∣∂3

vvvX(0, v0, t) − ∂3
vvvX0(t)

∣∣∣ ,

are bounded above by c3δ.

2.6 Perturbative c-curvature calculation

We are now in position to complete the proof of Theorem 2. Given a fixed couple
of orthogonal unit vectors ξ ⊥ ν in Tm0Mn, let us go back to the defining
expression (8) of the c-curvature C(m0, v0)(ξ, ν) and compute it in a normal
chart at m0, starting from the local formula (41). Set, for short:

J i
vk =

∂Xi

∂vk
(0, v, 1), J i

xk =
∂Xi

∂xk
(0, v, 1),

and (Y i
k ) for the n × n matrix inverse of (J i

vk). Near v = v0, the local matrix
field v 
→ (Y i

k ) satisfies:

Y l
i J i

vk = δl
k ,hence in turn dY l

j = −Y l
i Y k

j dJ i
vk .(67)

From (9)(41), setting ξkdxk := g(ξ, .), we thus start from the expression:

A(v)(ξ) := A(m0, v)(ξ) = Y k
i J i

xj ξjξk ,

apply twice to it the (vertical, flat) derivative ∂ν = νm ∂.

∂vm
, then let v = v0.

Using repeatedly (67), we routinely obtain (with obvious notations to abbreviate
second and third derivatives of J i = Xi(x, v, t) at (0, v0, 1), as well) the general
local expression of the c-curvature in any normal chart at m0, namely:

C(m0, v0)(ξ, ν) = −νlνm∂2
vlvmA(v)(ξ)|v=v0(68)

= [2Y p
i Y k

q J i
xjvlJ

q
vmvp

− (Y r
i Y p

s Y k
q + Y p

i Y r
q Y k

s )J i
xj J

q
vlvpJs

vmvr

− Y k
i J i

xjvlvm + Y p
i Y k

q J i
xj J

q
vlvmvp ] νlνmξjξk .
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Remark 5 As a simple application of that formula, let us calculate the ex-
pression of the c-curvature in the special case v0 = 0. The geodesic γ0(t) =
expm0

(tv0) is then constant, equal to m0. Using a Riemannian normal chart at
m0, Eq. (43) (resp. Eq. (49)) read along X(0, 0, t) ≡ 0 and supplemented by
the initial conditions (44) or (45) (resp. (50)) yields immediately:

∂xaXi(t) = δi
a, ∂vaXi(t) = tδi

a, ∂2
abX

i((t) ≡ 0.

In particular, we thus have: Y a
i = δa

i . Moreover, differentiating Eq. (49) with
respect to vc, taking null initial conditions and using the preceding equalities,
we get at once:

∂3
xavbvcX

i(t) = −t2∂aΓi
bc(0) ≡ −1

3
(
Ri

bac + Ri
cab

)
(0),

∂3
vavbvcX

i(t) = − t3

3

∑
(a,b,c)

∂aΓi
bc(0) ≡ 0 ,

where the former identity goes back to Riemann [11, Eq. (22), p.244] and the
latter vanishing is thus due to the first Bianchi identity. Plugging all these
values into Formula (68), we obtain:

C(m0, 0)(ξ, ν) = −Jk
xjvlvmνlνmξjξk =

2
3
Rk

ljm(0)νlνmξjξk ;

in other words, indeed [31, 28], we find C(m0, 0)(ξ, ν) equal to the 2/3-rd of the
sectional curvature of (Mn, g) at the 2-plane defined by m0 and (ξ, ν).

Using the local barred quantities introduced in the preceding three sections,
henceforth understood taken at t = 1 (unless otherwise specified), and setting
(Ȳ i

k ) for the inverse matrix of (J̄ i
vk), one can express similarly the spherical c-

curvature C(m0, v0)(ξ, ν). Doing so, and using the finite differences trick in a
systematic way, we find for the c-curvatures difference the following expression:

C(m0, v0)(ξ, ν) − C(m0, v0)(ξ, ν) =(69)

{2(Y p
i − Ȳ p

i )Ȳ k
q J̄ i

xjvl J̄
q
vmvp + 2Y p

i (Y k
q − Ȳ k

q )J̄ i
xjvl J̄

q
vmvp

+ 2Y p
i Y k

q (J i
xjvl − J̄ i

xjvl)J̄q
vmvp + 2Y p

i Y k
q J i

xjvl(Jq
vmvp − J̄q

vmvp)

−[(Y r
i − Ȳ r

i )Ȳ p
s Ȳ k

q + Y r
i (Y p

s − Ȳ p
s )Ȳ k

q + Y r
i Y p

s (Y k
q − Ȳ k

q )

+(Y p
i − Ȳ p

i )Ȳ r
q Ȳ k

s + Y p
i (Y r

q − Ȳ r
q )Ȳ k

s + Y p
i Y r

q (Y k
s − Ȳ k

s )]J̄ i
xj J̄

q
vlvp J̄s

vmvr

−(Y r
i Y p

s Y k
q + Y p

i Y r
q Y k

s ) [(J i
xj − J̄ i

xj )J̄q
vlvp J̄s

vmvr + J i
xj (Jq

vlvp − J̄q
vlvp)J̄s

vmvr

+J i
xj J

q
vlvp(Js

vmvr − J̄s
vmvr )] − (Y k

i − Ȳ k
i )J̄ i

xjvlvm − Y k
i (J i

xjvlvm − J̄ i
xjvlvm)

+(Y p
i − Ȳ p

i )Ȳ k
q J̄ i

xj J̄
q
vlvmvp + Y p

i (Y k
q − Ȳ k

q )J̄ i
xj J̄

q
vlvmvp

+Y p
i Y k

q (J i
xj − J̄ i

xj )J̄q
vlvmvp + Y p

i Y k
q J i

xj (Jq
vlvmvp − J̄q

vlvmvp)} νlνmξjξk .

It is important, here, that we record (in connection with the constant C2 of
Theorem 2) the particular structure of the right-hand side of Equation (69):
apart from the unit-vectors ξ, ν of course, it involves only Y, Ȳ , the J ’s and
the J̄ ’s; it does it in a polynomial way; moreover, each summand contains
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exactly one of the differences (Y − Ȳ ), (J − J̄). With the view of proving the
estimate (12), let us evaluate a difference like (Y l

i −Ȳ l
i ) in terms of the differences

(Jj
vk − J̄j

vk). To do so, we first write:

J i
vk = J̄ i

vj [δj
k − Ȳ j

l (J̄ l
vk − J l

vk)]

and, setting provisionally µl
j := Ȳ l

k(J̄k
vj − Jk

vj ), we infer the formal expansion:

Y l
i =

(
δl
j + µl

j + µl1
j µl

l1 +
∞∑

N=2

µl1
j µl2

l1
. . . µlN

lN−1
µl

lN

)
Ȳ j

i .

Assuming v0 �= 0 and using a Fermi chart associated to (m0, v0), we have

J̄α
va = δα

a

sin(|v0|t)
|v0|

as well-known (cf. e.g. [18]), hence:

Ȳ α
a = δα

a

|v0|
sin |v0|

, Ȳ n
a = δn

a .

Moreover, recalling (48), the sole differences (J l
vk − J̄ l

vk) to take in account
will be those for k and l smaller than n. Recalling Lemma 5 and Remark 4,
we set Dα

β := J̄α
β − Jα

β , thus with the g-norm bound |D| ≤ 2δ
√

n − 1; writing

µl
j = δl

αδβ
j

|v0|
sin |v0|

Dα
β , we infer from the above expansion that (Y l

i − Ȳ l
i ) is

formally equal to:

δl
αδβ

i

( |v0|
sin |v0|

)2

Dα
γ

[
δγ
β +

|v0|
sin |v0|

Dγ
β +

∞∑
N=2

( |v0|
sin |v0|

)N

Dγ
γ1
Dγ1

γ2
. . .DγN−1

β

]
.

The condition (11) of Theorem 2 implies:
|v0|

sin |v0|
|D| ≤ 1

2
, which ensures the

uniform convergence of the latter expansion and yields the g-norm upper bound:

|Y − Ȳ | ≤ 4
√

n − 1
( |v0|

sin |v0|

)2

δ .(70)

The latter, combined with the triangle inequality and (11), provides the upper
bound: √∑

α,β

(
Y α

β

)2

≤ 2
√

n − 1
|v0|

sin |v0|
.(71)

By a lengthy but routine inspection of each of its summand, we can now estimate
the right-hand side of (69), using repeatedly the triangle and Schwarz inequali-
ties combined with (70)(71) (and Y n

a = δn
a , Y a

n = δa
n), the inequality |v0|

sin |v0| ≥ 1
and Lemmas 4, 5, 9, 10, 12, 13, and obtain the existence of a constant C2 ≥ 1
under control such that:

∣∣C(m0, v0)(ξ, ν) − C(m0, v0)(ξ, ν)
∣∣ ≤ C2

( |v0|
sin |v0|

)4

δ .
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Last, we note that the function θ 
→ θ
sin θ is increasing from 1 to ∞ on [0, π),

where it satisfies the following (easily verified) inequality:

θ

sin θ
≤ π

π − θ
.

The latter yields for |v0| = (1 − η0)π, with η0 ∈ (0, 1), the upper bound:

|v0|
sin |v0|

≤ 1
η0

;

so the proof of Theorem 2 is complete.
In order to test the sharpness of the resulting bound (12), let us exhibit a

summand of (69) which is O

(
δ

η4
0

)
as η0 goes to 0. Among the terms of the

sum:
−Y r

i Y p
s (Y k

q − Ȳ k
q )J̄ i

xj J̄
q
vlvp J̄s

vmvrνlνmξjξk ,

fixing α ∈ {1, . . . , n − 1}, take those with:

l = m = n, p = q = r = k = s = α

(the latter equalities imply i = j =: β < n), which reads:

−
∑
β<n

ξαξβ (νn)2 Y α
β Y α

α

(
Y α

α − Ȳ α
α

)
J̄β

xβ

(
J̄α

vnvα

)2 =: Tα .

At t = 1, we have J̄β
xβ = cos |v0| for each β < n, and:

J̄α
vnvα =

1
|v0|2

(|v0| cos |v0| − sin |v0|),

as readily checked. So there exists a constant c ≥ 1 (independent of (m0, v0), δ
and n) such that:

|Tα| ≤ c |Y α
α |

∣∣Y α
α − Ȳ α

α

∣∣ ∑
β<n

∣∣Y α
β

∣∣
hence also, by (70)(71) and the expression of Ȳ α

α (cf. supra), such that:

|Tα| ≤ 16(n − 1)2c
( |v0|

sin |v0|

)4

δ .

A bound on |Tα| of order O

(
δ

η4
0

)
thus, indeed, occurs as η0 ↓ 0.

Remark 6 In Theorem 2, we may take the constant C2 such that, for some
integer k, the quantity C2n

−k/2 remains bounded as n → ∞. The existence of
such an integer k follows by a careful inspection of our estimates of Sections 2.3
through 2.6, provided the initial standard estimation scheme used for Lemmas 4,
9 and 12, is replaced by the improved ad hoc scheme described below. Granted
it, using extensively the triangle and Schwarz inequalities (for the norm and
scalar product gm0) combined with (10) and (11), each estimate derived in the
aforementioned sections turns out, indeed, polynomial in the ultimate variables:

max
t∈[0,1]

|∂xX0(t)| = max
t∈[0,1]

|∂vX0(t)| =
√

n, and |Cur1| =
√

2n(n − 1),
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with universal constants as coefficients (N.B. the bounds for the barred quanti-
ties are obtained from the others by letting Riem = Cur1 and δ = 0).
Ad hoc estimation scheme. Rewrite the non-homogeneous Jacobi equation
under study in the form:

J̈ + Cur1(J, γ̇0)γ̇0 = (Cur1 − Riem)(J, γ̇0)γ̇0 + P

and use the representation device of Lemmas 6 and 7 for its solution, combined
with condition (10) and the Schwarz and triangle inequalities, to get:

max
t∈[0,1]

|J(t)| ≤ |J(0)| + |J̇(0)| + 2δ max
t∈[0,1]

|J(t)| + 2 max
t∈[0,1]

|P (t)|.

Recalling (11), conclude:

max
t∈[0,1]

|J(t)| ≤ 2
(
|J(0)| + |J̇(0)| + 2 max

t∈[0,1]
|P (t)|

)
.

Here, either |J(0)| or |J̇(0)| is equal to
√

n, the other one vanishing, in case we
deal with first derivatives of X(x, v, t) at (0, v0, t), or |J(0)| = |J̇(0)| = 0 in case
we deal with higher order derivatives.
Derive the estimate on |J̇(t)| from the equation, by writing:

J̇(t) = J̇(0) +
∫ t

0

J̈(τ)dτ = J̇(0) +
∫ t

0

[P (τ) − Riem(J, γ̇0)γ̇0]dτ

and by using the preceding estimate on |J(τ)| (combined again with the Schwarz
and triangle inequality).

A Spherical c-curvature calculations

For completeness, we provide here the proof of inequality (17) and thus redo
formally some of Loeper’s calculations [31]. Fixing (m0, v0) ∈ NoCut with
v0 �= 0 and a couple (ξ, ν) of orthogonal unit vectors in Tm0Mn, let us compute

C(m0, v0)(ξ, ν) = −Dd[v 
→ A(m0, v)(ξ)]|v=v0(ν, ν)

where D stands for the canonical flat connection of Tm0Mn and A(m0, v)(ξ) is
given by A(m0, v)(ξ) = 1 − ϕ(v)h(v) with ϕ(v) = Φ(|v|) := 1 − |v| cot |v| and
h(v) := 1 − <ξ,

v

|v|>
2 (setting <., .> := gm0(., .) for short). We readily get for

C(m0, v0)(ξ, ν) the expression:

h(v0)Ddϕ(v0)(ν, ν) + 2dϕ(v0)(ν)dh(v0)(ν) + ϕ(v0)Ddh(v0)(ν, ν)

or else:
h(v0)

{
Φ′(|v0|)[Dd|v|(ν, ν)]v=v0 + Φ′′(|v0|)[d|v|(ν)]2v=v0

}
+2Φ′(|v0|)[d|v|(ν)]v=v0dh(v0)(ν) + ϕ(v0)Ddh(v0)(ν, ν).

Using the auxiliary formulas:

d|v|(ν) = <ν,
v

|v|> , Dd|v|(ν, ν) =
1
|v|

(
1 − <ν,

v

|v|>
2

)
,

d<ξ,
v

|v|>(ν) = − 1
|v| <ξ,

v

|v|> <ν,
v

|v|> ,

Φ′(r) =
r − sin r cos r

sin2 r
, Φ′′(r) =

2
sin2 r

Φ(r) ,
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and setting for short: r = |v0|, v0 =
v0

r
, we find C(m0, v0)(ξ, ν) equal to:

[
1 − <ξ, v0>

2
]{

r − cos r sin r

r sin2 r

[
1 − <ν, v0>

2
]
+

2(sin r − r cos r)
sin3 r

<ν, v0>
2

}

+<ξ, v0>
2

[
4(r − cos r sin r)

r sin2 r
<ν, v0>

2 +
2(sin r − r cos r)

r2 sin r

(
1 − 4<ν, v0>

2
)]

.

Applying the easily established inequalities:

∀t ∈ [0, π], sin t − t cos t ≥ t3

π2
, t − sin t cos t ≥ t3

π2
,

and setting:

P (x, y, z) := z[z(1 − x)(1 − y + 2yz) + 2x(1 − y)] ,

Ψ(t) := 2t2 − 3 sin2 t + t cos t sin t ,

we infer the lower bound:

C(m0, v0)(ξ, ν) ≥ 1
π2

P
(
<ξ, v0>

2, <ν, v0>
2,

r

sin r

)
+

2<ξ, v0>
2<ν, v0>

2

r2 sin2 r
Ψ(r).

A lengthy but routine check (differentiating six times the function ζ defined on
[0, 2π] by ζ(t) := Ψ(t/2)) shows that the function Ψ is non-negative on [0, π].
So

C(m0, v0)(ξ, ν) ≥ 1
π2

P (x, y, z)

with

x := <ξ, v0>
2, y := <ν, v0>

2, z :=
|v0|

sin |v0|
,

satisfying:
x ≥ 0, y ≥ 0, x + y ≤ 1, z ≥ 1 .(72)

From the latter inequality, we have P (x, y, z) ≥ z Q(x, y) with:

Q(x, y) := 1 + x + y − 3xy .

Using the arithmetic–geometric inequality, we get

Q(x, y) ≥ 1 + (x + y)
[
1 − 3

4
(x + y)

]
hence, by (72), we have Q(x, y) ≥ 1 and:

C(m0, v0)(ξ, ν) ≥ 1
π2

|v0|
sin |v0|

.

Finally, on the one hand, we have
|v0|

sin |v0|
≥ 1, on the other hand, since

|v0| = (1 − η0)π and sin |v0| = sin η0π ≤ η0π, we also have
|v0|

sin |v0|
≥ 1 − η0

η0
.

Altogether, we obtain the lower bound (17) as claimed.
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B The Ma–Trudinger–Wang estimate

The interior C2 estimate carried out in [33, Theorem 4.1] requires preliminary
bounds, notably on the cost-function c up to its fourth partial derivatives (in
some local charts). We need to adapt it to our manifold context in order to
keep track of an intrinsic control on all auxiliary quantities.

B.1 Expressing the optimal transport equation

Fix (m0, V0) ∈ NoCut and let x (resp. y) be a chart of Mn at m0 (resp. at
p0 = expm0

(V0)) with x(m0) = 0. Set (x, v) for the natural chart of TMn

associated to x, with (x, v)(m0, V0) = (0, v0) ∈ Rn ×Rn, and for (m, V ) ∈ TMn

close to (m0, V0), set
E(x, v) := y[expm(V )]

where x = x(m) and V = vi∂xi . Consider the real function Φ defined near
(m0, V0) in TMn by:

Φ(m, V ) =

√
|g|(x)√

|g|(E(x, v)) det
(

∂E
∂v (x, v)

) ,

where the same symbol
√
|g| abusively denotes the Riemannian density in either

charts x or y; so, for instance: dVol(m) =
√
|g|(x)dx1 . . . dxn. One can routinely

check that the function Φ is independent of the choice of the charts x and y; as
such, it is globally defined on NoCut. We set:

∀(m, V ) ∈ NoCut,∀t ∈ [0, 1], Bt(m, V ) :=
ρ0(m)

ρt(expm V )
Φ(m, V )

(where the function ρt is the one defined in the statement of Theorem 1). Now,
Equation (1) globally reads as follows [16]:

∀m ∈ Mn,
det Hess(c) ut

det g
(m) = Bt(m, gradm ut) .(73)

In order to fit with the local setting of [33, Theorem 4.1], we will require another
expression of it, a local one, attached to a couple of charts x and y as above.
Fixing henceforth t ∈ T , we set:

ψ(x, v) := log [det g(m) Bt(m, V )] ≡ log

[
ρ0|g|3/2(x)

ρt

√
|g|(E(x, v)) det

(
∂E
∂v (x, v)

)]
.

From the identity (40), the map V given by

Vi(x, y) = −gij(x) ∂xj c(x, y)(74)

near (0, y0) (with y0 := y(p0)), satisfies:

y = E(x, v) ⇐⇒ v = V(x, y),

and at yt := y[expm(gradm ut)], recalling (3), we get from (74):

Aij(x, dut) ≡ ∂2
xixj c(x, y)|y=yt .
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So Equation (1) locally reads:

log det(wij) = ψ(x,∇xut)(75)

where ∇xut := Tmx(gradm ut) ≡ V(x, yt) and

wij dxi ⊗ dxj := Hess(c) ut ≡ ∂2
xixj [c(x, y) + ut(x)]|y=yt .

B.2 Maximum principle à la Ma–Trudinger–Wang

Let us consider the test-function m 
→ T(m) on Mn equal to the g-trace of the
covariant symmetric tensor Hijdxi ⊗ dxj := Hess(c) ut(m) and let m0 ∈ Mn be
a point where T assumes its maximum. We aim at a uniform upper bound on
T(m0); since the tensor field Hess(c) ut is positive-definite, its eigenvalues with
respect to the metric g will, indeed, be uniformly controlled by such a bound.

At the maximum point m0, if dut(m0) = 0 we take a Riemannian normal chart
[38]; if dut(m0) �= 0, we take a Fermi chart along the vector V0 = gradm0

ut

as in Definition 1. In either case, we use the same chart x at m0 (where x
is centered) and at p0 = expm0

(V0), but it is convenient to stick to the (x, y)
notation of [33], using y to denote the second argument of the local expression
of the cost-function c, and to set still y0 = x(p0) and yt := x[expm(gradm ut)],
thus with yt = E(x,∇xut) where x = x(m). The test-function T reads:

T(x) = gij(x)∂2
xixj [c(x, y) + ut(x)]|y=yt

near x = 0. Using Equation (75), one can now derive for T at x = 0 an estimate
which is a close variant of the quite robust one presented in [33, pp.162-164].
To do so, a careful inspection of the proof shows that, granted the existence of
a positive lower bound θ on the c-curvatures at (m0, V0) as in (18), we require
nothing but bounds under control on the second derivatives of the local tensor
gij at x = 0 and on the local functions ψ(x) and c(x, y) together with the
following derivatives of theirs:

∂xiψ, ∂vj ψ, ∂2
xixj ψ, ∂2

xivj ψ, ∂2
vivj ψ,

∂2
xixj c, ∂2

xiyj c, ∂3
xixjxkc, ∂3

xixjykc, ∂3
xiyjykc, ∂4

xixjxkxlc, ∂
4
xixjxkylc, ∂

4
xixjykylc,

respectively calculated at x = 0 and at (x, y) = (0, y0). Granted such bounds,
the proofs of Corollaries 1 and 2 are thus complete.

B.3 Bounds under control on gij, ψ and c

Control on derivatives of gij

The first partial derivatives of gij at 0 vanish in either types of chart (Riemann
or Fermi); so we are left with the second derivatives, given by:

∂klg
ij(0) = −∂klgij(0).

In a Riemannian normal chart (if V0 = 0), the derivatives ∂ligjk(0) are intrinsic
(formally given by the next equation), a result which goes back to Riemann’s
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dissertation (see [38, chap.4]). In the Fermi chart case (if V0 �= 0), aside from
(28), we require the classical identity, valid on the axis:

∂αβgγλ =
1
3

(
Rα

γλβ + Rα
λγβ

)
.(76)

It can be checked (from the definition of the Riemann curvature tensor) by
routine calculation, using (34) and (35).

Controls on E and ψ

If V0 = 0, sticking to the notations of Section 2.2, we have X(0, 0, t) ≡ 0 and:

∂xj Xi(0, 0, t) = δi
j , ∂vj Xi(0, 0, t) = tδi

j ,

∀(k, l) ∈ N2, k + l ≥ 2 ⇒ |∂k
x∂l

vX(0, 0, t)| ≡ 0.

Since E(x, v) ≡ X(x, v, 1), Lemma 14 below (read with v0 = 0) follows at once.
Furthermore, using the notation (67), we also get Y i

j ≡ δi
j which, combined with

the preceding result, readily yields the required bounds on ψ and its first and
second derivatives at x = 0.
If V0 �= 0, since ut ∈ A, we have (m0, V0) ∈ NoCut. Of course, for (x, v) close
to (0, v0), the identity E(x, v) ≡ X(x, v, 1) holds in the Fermi chart as well.
Moreover, one can readily establish for |∂2

xxX(0, v0, t)| (resp. |∂3
xxvX(0, v0, t)|) a

boundedness result analogous to that of Lemma 9 (resp. Lemma 12). Combining
the latter with Lemmas 4, 9, and 12, we infer the:

Lemma 14 The g-norms of:

∂xE, ∂vE, ∂2
xxE, ∂2

xvE, ∂2
vvE, ∂3

xxxE, ∂3
xxvE, ∂3

xvvE, ∂3
vvvE,

calculated at (0, v0), are under control.

Besides, recalling (67), we have: [∂vE(0, v)]−1 ≡ Y for v close to v0, and the
bound (71) (together with Y n

a = Y a
n = δna) combined with Lemma 14 yields

again the required bounds on the function ψ and its first and second derivatives
at x = 0. In the sequel, we thus focus on bounds for the sole function c(x, y).

Control on V

Recalling (74), setting for short Y = Y(x, y) :=
∂V
∂y

and differentiating with

respect to y the identity y = E[x,V(x, y)] (with x fixed), we find:

Ya
j ∂vaEi = δi

j ;(77)

in particular, letting x = 0 and recalling (67), we may record at y = E(0, v) the
identity:

Y(0, y) ≡ Y (v) .

Differentiating (77), once again with respect to y, yields:

∂ypYa
j = −Yb

pYa
i Yc

j ∂2
vbvcE

i .(78)
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Besides, differentiating with respect to x (for fixed v) the other identity, namely
v = V[x, E(x, v)], we get:

∂xkVa = −Ya
i ∂xkEi .(79)

Using the latter to differentiate (77) with respect to x, we obtain:

∂xkYa
j = −Ya

i Yb
j

(
∂2

xkvbE
i − Yc

l ∂2
vbvcE

i ∂xkEl
)

.(80)

From ∂ykVa ≡ Ya
k and (79) combined with (78) and (80), we readily infer the:

Lemma 15 All the partial derivatives of V at (x, y) are expressible (in a polyno-

mial way) solely in terms of
∂V
∂y

itself and the partial derivatives of E evaluated

at [x,V(x, y)]. In particular, the g-norm of the third order jet of V calculated at
(0, y0) is under control.

The final statement of the lemma simply follows from Lemma 14 combined
with the bound (71). We are now in position to deal with the derivatives of the
function c(x, y).

Control on c

From (74) we get:
∂xj c(x, y) = −gjs(x)Vs(x, y) ,(81)

which yields successively, at (0, y0):

∂2
xjykc = −∂ykVj , ∂3

xjykylc = −∂ykylVj ,

∂2
xixj c = −∂xiVj , ∂3

xixjykc = −∂xiykVj , ∂4
xixjykylc = −∂xiykylVj ,

hence, by Lemma 15, the preceding derivatives of c at (0, y0) are under intrinsic
control. Next, since Vi(0, y0) = δi

n|v0|, further differentiating (81) provides us
with a set of three equalities, beginning with:

∂3
xlxixj c(0, y0) = −|v0| ∂lignj(0) − ∂2

xlxiVj(0, y0)

which shows, recalling (28) and Lemma 15, that the derivatives ∂3
xlxixj c(0, y0)

are under control. The second equality which we get is:

∂4
xlxixjyrc(0, y0) = −∂ligjk(0) Y k

r (v0) − ∂2
xlxiYj

r (0, y0)

Combining (28), (76) with Lemma 15 and the bound (71), we readily infer that
the derivatives ∂4

xlxixjyrc(0, y0) are under control.
The final equality which we get is:

∂4
xkxlxixj c(0, y0) = −|v0|∂klignj(0)−

∑
(k,l,i)

∂klgrj(0)∂xiVr(0, y0)−∂3
xkxlxiVj(0, y0)

the right-hand side of which is again under control for the same aforementioned
reasons except for its ∂klignj(0) term whenever all three indices k, l, i lie in
{1, . . . , n− 1}. The terms ∂αβγgnn(0) turn out to be controlled by (31) because
they coincide with 2∂αβΓn

nγ(0). As regards the others, noting the identity:

∂αβγgnλ = ∂αβ

(
Γλ

nγ + Γn
λγ

)
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valid on the axis, and recalling (32), their control reduces to another one on
∂αβΓn

λγ(0), provided in Lemma 16 below.
Finally, in a Riemannian normal chart (case v0 = 0), each of the previous
controls holds a fortiori ; the last one relies on the formula

∂iklgjs(0) =
1
6
∇iRjksl(0)

which goes back to Elie Cartan [11, p.243, Eq.(21)] (see also [22, p.193]).

Lemma 16 The following identity holds on the axis of a Fermi chart:

∂αβΓn
λγ =

1
4

(
∇αRλ

γnβ + ∇βRλ
γnα

)
(82)

− 1
2
∇γ

(
Rλ

αnβ + Rλ
βnα

)
+

5
12

∇n

(
Rλ

αγβ + Rλ
βγα

)
.

Proof. For completeness, we first briefly recall the argument that leads to (33)
read with i = n. In our Fermi chart, since t 
→ (tx1, . . . , txn−1, xn) is a geodesic,
we get using the geodesic equation:

Γi
αβ(x)xαxβ ≡ 0 and gαβ(x)xαxβ ≡

n−1∑
α=1

(xα)2,

from what we readily infer:

xαxβ∂αgnβ(x) ≡ 0.

The quantity �(x) :=
√∑n−1

α=1(xα)2 represents the distance to the axis. Using
cylindrical coordinates, the trick is now to apply to the latter equation the
operator �∂
 ≡ xγ∂γ . It yields:

xαxβxγ∂αγgnβ(x) ≡ 0.

Setting xα = �θα, dividing by �3 then letting � ↓ 0, we get at x = (0, xn)
the identity (33) read with i = n (since the unit vector θα∂α is arbitrary in the
hyperplane orthogonal to the axis). The same argument repeated once yields on
the axis the higher order identity (now with a circular summation on 4 indices):∑

(α,β,γ,λ)

∂αβγgnλ ≡ 0 .

Combining it with (33), (34) and (35) enables one to check by brut calculation
the following equality:

2∂αβγgnλ = ∇nRλ
αγβ −∇γ

(
Rλ

αnβ + Rλ
βnα

)
−∇αRλ

γnβ

valid on the axis, from which Lemma 16 routinely follows.
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C Optimal transport regularity and covering spaces

The following result, yet unstated in the literature, is by now well-known:

Theorem 3 (folklore result) Let p : (M̃n, g̃) → (Mn, g) be a Riemannian
normal (or Galoisian) covering map between compact connected n-dimensional
manifolds; set Γ for its covering transformations group, thus a finite subgroup
of isometries of (M̃n, g̃). Let (µ̃0, µ̃1) be a couple of Γ-invariant smooth positive
measures of same total mass on M̃n and let (µ0, µ1) be the couple of associated
smooth positive measures on Mn, which satisfy the Radon-Nikodym derivatives
equality:

dµ̃i

d̃Vol
=

dµi

dVol
◦ p(83)

where i ∈ {0, 1}. The optimal transportation map pushing µ̃0 to µ̃1 is smooth if
and only if so is the optimal transportation map pushing µ0 to µ1.

Proof. Assume that the optimal transportation map G = exp(gradu) pushing
µ0 to µ1 is smooth. Setting ũ = p∗u and recalling that p is locally an isometry,
naturality and geodesic uniqueness yield for the smooth map G̃ := exp(grad ũ)
the covering morphism relation:

p ◦ G̃ = G ◦ p ;(84)

moreover, for each γ ∈ Γ, since the potential ũ is Γ-invariant and γ is an
isometry, we have:

γ ◦ G̃ = G̃ ◦ γ .(85)

For each measurable real function f̃ on M̃n, set f̃Γ for the Γ-invariant function
obtained by averaging f̃ over Γ:

∀m̃ ∈ M̃n, f̃Γ(m̃) =
1
r

∑
γ∈Γ

f̃ [γ(m̃)]

where r stands for the cardinal of the deck group Γ (so the covering is r-sheeted);
set fΓ for the function on Mn defined by: f̃Γ = p∗fΓ. The following identity

clearly holds:
∫

M̃

f̃ d̃Vol =
∫

M̃

f̃Γd̃Vol, hence also, from (83), the other one:∫
M̃

f̃dµ̃i =
∫

M̃

f̃Γdµ̃i .(86)

Recalling G#µ0 = µ1, the latter with i = 1 yields:∫
M̃

f̃dµ̃1 = r

∫
M

fΓdµ1 = r

∫
M

(fΓ ◦ G)dµ0 =
∫

M̃

(fΓ ◦ G ◦ p)dµ̃0 .

Using (84)(85), we get:
∫

M̃

f̃dµ̃1 =
∫

M̃

(f̃Γ ◦ G̃)dµ̃0 =
∫

M̃

(f̃ ◦ G̃)Γ dµ̃0 and by

(86) we obtain: ∫
M̃

f̃dµ̃1 =
∫

M̃

(f̃ ◦ G̃)dµ̃0 .

Since f̃ is arbitrary, it means that the map G̃ pushes the measure µ̃0 to µ̃1;
besides, the map G̃ is optimal, unique [34] and smooth, so the first part of the
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equivalence is proved.
Conversely, let the smooth map G̃ = exp(grad ũ) push µ̃0 to µ̃1. So must do
the map exp[grad(ũ ◦ γ)], for each γ ∈ Γ, since γ is an isometry which preserves
the µ̃i’s. By uniqueness of the potential ũ (up to an additive constant) [16], the
function ũ must be Γ-invariant as well. Let u be the function on Mn defined
by ũ = p∗u (and µi the measure on Mn defined by (83)). Consider the smooth
map G = exp(gradu); the relation (84) is again satisfied. Moreover, using
G̃#µ̃0 = µ̃1, we find for each measurable function f on Mn:∫

M

fdµ1 =
1
r

∫
M̃

(f ◦ p)dµ̃1 =
1
r

∫
M̃

(f ◦ p ◦ G̃)dµ̃0 .

From (84), we further get:∫
M

fdµ1 =
1
r

∫
M̃

(f ◦ G ◦ p)dµ̃0 =
∫

M

(f ◦ G)dµ0 ,

or else, since f is arbitrary: G#µ0 = µ1. The proof of Theorem 3 is complete.
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Université Paris Est
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