Mitigating Bias in Gender, Age and Ethnicity Classification: a Multi-Task Convolution Neural Network Approach

Abhijit Das 1 Antitza Dantcheva 1 Francois Bremond 1
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This work explores joint classification of gender, age and race. Specifically, we here propose a Multi-Task Convolution Neural Network (MTCNN) employing joint dynamic loss weight adjustment towards classification of named soft biometrics, as well as towards mitigation of soft biometrics related bias. The proposed algorithm achieves promising results on the UTKFace and the Bias Estimation in Face Analytics (BEFA) datasets and was ranked first in the the BEFA Challenge of the European Conference of Computer Vision (ECCV) 2018.
Type de document :
Communication dans un congrès
ECCVW 2018 - European Conference of Computer Vision Workshops, Sep 2018, Munich, Germany. 2018
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01892103
Contributeur : Antitza Dantcheva <>
Soumis le : mercredi 10 octobre 2018 - 12:30:41
Dernière modification le : vendredi 12 octobre 2018 - 10:50:44

Fichier

DasDantchevaBremond_ECCVW_18.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01892103, version 1

Collections

Citation

Abhijit Das, Antitza Dantcheva, Francois Bremond. Mitigating Bias in Gender, Age and Ethnicity Classification: a Multi-Task Convolution Neural Network Approach. ECCVW 2018 - European Conference of Computer Vision Workshops, Sep 2018, Munich, Germany. 2018. 〈hal-01892103〉

Partager

Métriques

Consultations de la notice

41

Téléchargements de fichiers

62