Perturbed homoclinic solutions in reversible 1:1 resonance vector fields

Abstract : We consider a smooth reversible vector field in R^4, such that the origin is a fixed point. The differential at the origin has two double pure imaginary eigenvalues ±iq for the critical value 0 of the parameter µ. We show, by a normal form analysis, that the vector field can be approximated by an integrable field in R^4, for which we know all solutions. Specially interesting ones are the homoclinics to 0, and homoclinics to periodic solutions, depending on the sign of a leading nonlinear coefficient. We prove in particular the persistence of these homoclinics for the full vector field.
Liste complète des métadonnées

https://hal.univ-cotedazur.fr/hal-01271158
Contributeur : Gerard Iooss <>
Soumis le : mardi 9 février 2016 - 15:09:31
Dernière modification le : jeudi 3 mai 2018 - 13:32:58

Identifiants

  • HAL Id : hal-01271158, version 1

Citation

Gérard Iooss, Marie-Christine Pérouème. Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. Journal of Differential Equations, Elsevier, 1993, 102 (1), pp.27. 〈hal-01271158〉

Partager

Métriques

Consultations de la notice

119