Travelling waves in the Fermi-Pasta-Ulam lattice

Abstract : We consider travelling wave solutions on a one-dimensional lattice, corresponding to mass particles interacting nonlinearly with their nearest neighbor (Fermi-Pasta-Ulam model). A constructive method is given, for obtaining all small bounded travelling waves for generic potentials, near the first critical value of the velocity. They all are solutions of a finite dimensional reversible ODE. In particular, near (above) the first critical velocity of the waves, we construct the solitary waves whose global existence was proved by Friesecke et Wattis [1], using a variational approach. In addition, we find other travelling waves like (i) superposition of a periodic oscillation with a non zero averaged stretching or compression between particules, (ii) mainly localized waves which tend to uniformly stretched or compressed lattice at infinity, (iii) heteroclinic solutions connecting a stretched pattern with a compressed one.
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger
Contributeur : Gerard Iooss <>
Soumis le : mardi 9 février 2016 - 08:27:56
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : samedi 12 novembre 2016 - 13:22:06


Fichiers produits par l'(les) auteur(s)



Gérard Iooss. Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity, IOP Publishing, 2000, 13, pp.18. 〈10.1088/0951-7715/13/3/319〉. 〈hal-01271021〉



Consultations de la notice


Téléchargements de fichiers