Normal forms with exponentially small remainder : application to homoclinic connections for the reversible 0 2+ iω resonance - Université Côte d'Azur
Journal Articles Comptes rendus de l'Académie des sciences. Série I, Mathématique Year : 2004

Normal forms with exponentially small remainder : application to homoclinic connections for the reversible 0 2+ iω resonance

Abstract

In this note we explain how the normal form theorem established in [2] for analytic vector fields with a semi-simple linearization enables to prove the existence of homoclinic connections to exponentially small periodic orbits for reversible analytic vector fields admitting a 0 2+ iω resonance where the linearization is precisely not semi simple.
Fichier principal
Vignette du fichier
Io-Lo3.pdf (174.66 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01265190 , version 1 (31-01-2016)

Identifiers

  • HAL Id : hal-01265190 , version 1

Cite

Gérard Iooss, Eric Lombardi. Normal forms with exponentially small remainder : application to homoclinic connections for the reversible 0 2+ iω resonance. Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2004, 339, pp.8. ⟨hal-01265190⟩
244 View
81 Download

Share

More