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Virtualisation Résiliente des Fonctions Réseau pour les Centres de
Données et les Environnements Décentralisés

Résumé:

Les réseaux traditionnels reposent sur un grand nombre de fonctions réseaux trés
hétérogénes qui s’exécutent sur du matériel propriétaire déployé dans des boitiers
dédiés. Concevoir ces dispositifs spécifiques et les déployer est complexe, long
et coliteux. De plus, comme les besoins des clients sont de plus en plus impor-
tants et hétérogénes, les fournisseurs de services sont contraints d’étendre ou de
moderniser leur infrastructure réguliérement, ce qui augmente fortement les cofits
d’investissement (CAPEX) et de maintenance (OPEX) de linfrastructure. Ce
paradigme traditionnel provoque une ossification du réseau et rend aussi plus com-
plexe la gestion et la fourniture des fonctions réseau pour traiter les nouveaux cas
d’utilisation.

La virtualisation des fonctions réseau (NFV) est une solution prometteuse pour
relever de tels défis en dissociant les fonctions réseau du matériel sous-jacent et en
les implémentant en logiciel avec des fonctions réseau virtuelles (VNFs) capables de
fonctionner avec du matériel non spécifique peu cotiteux. Ces VNFs peuvent étre or-
ganisés et chainés dans un ordre prédéfini, formant des chaines de Services (SFC) afin
de fournir des services de bout-en-bout aux clients. Cependant, méme si 'approche
NFV comporte de nombreux avantages, il reste & résoudre des problémes difficiles
comme le placement des fonctions réseau demandées par les utilisateurs sur le réseau
physique de maniére & offrir le méme niveau de résilience que si une infrastructure
dédiée était utilisée, les machines standards étant moins fiables que les dispositifs
réseau spécifiques. Ce probléme devient encore plus difficile lorsque les demandes de
service nécessitent des décisions de placement a la volée.

Face & ces nouveaux défis, nous proposons de nouvelles solutions pour résoudre le
probléme du placement a la volée des VNFs tout en assurant la résilience des services
instanciés face aux pannes physiques pouvant se produire dans différentes topologies
de centres de données (DC'). Bien qu'il existe des solutions de récupération, celles-ci
nécessitent du temps pendant lequel les services affectés restent indisponibles. D’un
autre coté, les décisions de placement intelligentes peuvent épargner le besoin de
réagir aux pannes pouvant se produire dans les centres de données. Pour pallier ce
probléme, nous proposons tout d’abord une étude approfondie de la maniére dont les
choix de placement peuvent affecter la robustesse globale des services placés dans un
centre de données. Sur la base de cette étude, nous proposons une solution détermin-
iste applicable lorsque le fournisseur de services a une connaissance et un controle
complets de l'infrastructure. Puis, nous passons de cette solution déterministe & une
approche stochastique dans le cas ou les SFCs sont demandées par des clients in-
dépendamment du réseau physique du DC, ot les utilisateurs n’ont qu’a fournir les
SFC qu'ils veulent placer et le niveau de robustesse requis (e.g., les 5 neufs). Nous
avons développé plusieurs algorithmes et les avons évaluées. Les résultats de nos
simulations montrent 'efficacité de nos algorithmes et la faisabilité de nos proposi-
tions dans des topologies de centres de données & trés grande échelle, ce qui rend
leur utilisation possible dans un environnement de production.



Toutes ces solutions proposées fonctionnent de maniére efficace dans un environ-
nement de confiance, comme les centres de données, avec la présence d’une autorité
centrale qui contréle toute l'infrastructure. Cependant, elles ne s’appliquent pas
a des scénarios décentralisés comme c’est le cas lorsque différentes entreprises ont
besoin de collaborer pour exécuter les applications de leurs clients. Nous étudions
cette problématique dans le cadre des applications MapReduce exécutées en présence
de noeuds byzantins et de nceuds rationnels et en ’absence de tiers de confiance.
Nous proposons un des premiers frameworks MapReduce qui soit adapté a ce type
d’environnement et nos simulations montrent que l'intégrité des calculs est assuré
avec un colt linéaire en fonction du nombre d’attaquants byzantins.

Mots-clés: Centre de Données, MapReduce, NFV, Réseaux Pair-a-Pair,
Résilience, SFC, VNF



Resilient Virtualized Network Functions for Data Centers and
Decentralized Environments

Abstract:

Traditional networks are based on an ever-growing variety of network functions that
run on proprietary hardware devices called middleboxes. Designing these vendor-
specific appliances and deploying them is very complex, costly and time-consuming.
Moreover, with the ever-increasing and heterogeneous short-term services require-
ments, service providers have to scale up their physical infrastructure periodically,
which results in high CAPEX and OPEX. This traditional paradigm leads to network
ossification and high complexity in network management and services provisioning
to address emerging use cases.

Network Function Virtualization (NFV) has attracted notable attention as a promis-
ing paradigm to tackle such challenges by decoupling network functions from the
underlying proprietary hardware and implementing them as software, named Vir-
tual Network Functions (VNFs), able to work on inexpensive commodity hardware.
These VNFs can be arranged and chained together in a predefined order, the so-called
Service Function chaining (SFC'), to provide end-to-end services.

Despite all the benefits associated with the new paradigm, NFV comes with the
challenge of how to place the functions of the users’ requested services within the
physical network while providing the same resiliency as if a dedicated infrastructure
were used, given that commodity hardware is less reliable than the dedicated one.
This problem becomes particularly challenging when service requests have to be
fulfilled as soon as they arise (i.e., in an online manner).

In light of these new challenges, we propose new solutions to tackle the problem of
online SFC placement while ensuring the robustness of the placed services against
physical failures in data-center (DC') topologies. Although recovery solutions exist,
they still require time in which the impacted services will be unavailable while taking
smart placement decisions can help in avoiding the need for reacting against simple
network failures.

First, we provide a comprehensive study on how the placement choices can affect
the overall robustness of the placed services. Based on this study we propose a
deterministic solution applicable when the service provider has a full knowledge and
control on the infrastructure.

Thereafter, we move from this deterministic solution to a stochastic approach for
the case where SFCs are requested by tenants oblivious to the physical DC network,
where users only have to provide the SFC they want to place and the required
availability level (e.g., 5 nines). We simulated several solutions and the evaluation
results show the effectiveness of our algorithms and the feasibility of our propositions
in very large scale data center topologies, which make it possible to use them in a
productive environment.



All these solutions work well in trusted environments with a central authority that
controls the infrastructure. However, in some cases, many enterprises need to collab-
orate together in order to run tenants’ application, e.g., MapReduce applications. In
such a scenario, we move to a completely untrusted decentralized environment with
no trust guarantees in the presence of not only byzantine nodes but also rational
nodes. We considered the case of MapReduce applications in such an environment
and present an adapted MapReduce framework called MARS, which is able to work
correctly in such a context without the need of any trusted third party. Our simu-
lations show that MARS grants the execution integrity in MapReduce linearly with
the number of byzantine nodes in the system.

Keywords: VNF, SFC, Data Centers, Robustness, Availability, MapRe-
duce, P2P
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1.1 Motivation and Challenges

Traditionally, telecommunication services are based on network operators having
physical proprietary appliances and equipment, namely Middlebozes, in order to
bring new services into networks. These middleboxes, or what we called Network
Functions NF's, perform a complex and varied set of functions ranging from secu-
rity purposes (e.g., Firewalls and Intrusion Detection Systems IDS) to performance
purposes (such as caches, proxies, and accelerators) [120].

However, network users increasingly ask for more varied and new short-term services,
which means that operators must correspondingly and continually purchase, store
and operate new and expensive hardware-based middleboxes. This does not only
require high and rapidly changing technical skills to run and manage these devices
and manually chain them to ensure the desired network service, but also leads to high
capital expenditures for operators to buy, deploy and maintain this new equipment.
Moreover, these ubiquitous middleboxes cannot easily be scaled up and down with
changing demands, which leads to waste. Therefore, there is a real need for service
providers to find alternative ways of building dynamic infrastructures so they can
deliver new and innovative services to their tenants in short time [9,188].

Network Function Virtualization (NF'V') [125] has been proposed as a prominent way
to alleviate these difficulties by leveraging the blooming virtualization technology [35]
to shift middleboxes processing from hardware appliances to software running on low-
cost commodity hardware (e.g. servers, switches and storage) located in data centers,
network nodes and in end-user premises (as shown in Figure 1.1).

Virtualization technology separates the physical network devices from the network
functions running on them, such that virtual network functions ( VNFs) could be im-
plemented through software and run on standard physical hardware. The VNFs may
then be relocated and instantiated in different network locations, whenever needed,
without the need of the purchase and deployment of new dedicated hardware. Hence,
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/ Typical network appliances \

Commodity Hardware

Figure 1.1: From dedicated hardware-based appliances for network services to
software-based NFV solutions.

NFV gives the service providers the flexibility and elasticity when providing new ser-
vices based on customers’ needs, while reducing the time to market and decreasing
the Capital Expenditure (CAPEX) and the Operational Expenses (OPEX).

As it is mentioned before, network functions are normally chained together in or-
der to deliver the desired overall functionality or service. Similarly, VNFs could
be arranged and chained together in a predefined order in what we called Service
Function chaining (SF'C) to provide end-to-end services [107]. Moreover, several in-
dustrial groups are developing standards for Service function chaining. For example,
the Internet Engineering Task Force (IETF') has developed a service function chain-
ing architecture |78] to determine how network flow classification could be used to
route traffic between service functions. Further, the European Telecommunications
Standards Institute (ETSI) [56] has proposed a service architecture that uses net-
work forwarding graphs to forward traffic between service virtual network functions,
called VNF Forwarding Graph (VNF-FG).

Despite all the promising advantages brought by NFV, there are still many essential
challenges that need to be tackled in NFV-based SFC with more attention. For
instance, virtualization may result in variable latency and unstable throughput even
when the underlying infrastructure is under-provisioned [80,177]. Thus, maintaining
network performance as good as with dedicated hardware will be one of the main
difficulties in realizing NFV-based services. Furthermore, another major problem is
to achieve fast and efficient resource allocation for VNFs. This problem is referred
to as NFV resource allocation (NFV-RA) or SFC placement [17].
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Figure 1.2: SFC Placement Problem.

SFC placement addresses the mapping of the service chains by finding the best
locations and hosts for their VNFs. Then it steers the traffic across the placed net-
work functions while respecting user requirements and maximizing provider revenue
without violating the required Service Level Agreement (SLA) constraints (See Fig-
ure 1.2). The service provider’s SFC placement decision can have a crucial effect on
the service performance guarantees provided to the customers.

This placement is more challenging when a service chain requires online embedding
upon its arrival without relying on future information [111,174]. In this scenario,
SFC requests arrive and leave at a certain probability, i.e., following some distribu-
tion functions, and cannot be accurately predicted, and the number of SFC requests
needed to be processed cannot be obtained in advance. The main challenge in de-
signing an effective online algorithm lies in the unknown nature of future resources
requirements for each arrived service chain, where the service providers have to make
the deployment decisions for the current SFC on the fly, while keeping the possibil-
ity to accept more tenants service requests in the future in order to increase their
revenue. Therefore, we cannot place online SFC requests as easily as in the case of
offline requests.

Figure 1.3 shows this problem with two service requests, namely SFC1 and SFC2,
arrive in an online manner (i.e. the SFC1 arrives first and should be treated upon
its arrival and then SFC2 arrives after some time). When the SFC1 request arrives
to perform load balancing, the service provider could place this service as in the
Figure 1.3a. Thus, when the SFC2 comes, there is no possibility for the service
provider to place it. However, if the service provider had prior knowledge on the
future request (i.e. has information about SFC1 and SFC2 resources requirements),
he would be able to accept both services as shown in Figure 1.3b.

Moreover, VNF-based SFC brings more concerns about the service provided re-
siliency, which is defined as the ability of providing and maintaining an acceptable
level of service against network failures [167|. Ensuring such resiliency, especially for
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Figure 1.3: SFC Request Placement with Online and Offline case, where the numbers
refer to the required/available number of CPU cores

critical services with stringent requirements (e.g. e-health service [108|, connected
vehicles [83], or emergency calls), is difficult due to different reasons such as () the
commodity hardware that host VNFs are more prone to errors and failures com-
pared with dedicated hardware [79] and (i7) the software implementations of the
SFCs’ functions can be rather buggy and vulnerable to failures. Thus, NFV needs
to build resiliency into software when moving to error-prone hardware platforms.

In light of these new challenges, we proposed new solutions to tackle the problem of
online SFC placement while ensuring the robustness of the placed services in data-
center DC' topologies. Even if many works had been done in the literature on VM
placement, Virtual Network Embedding (VNE) and lately VNF placement, most
of them aim to address one part of these challenges and a small number of them
considers the resilient placement as they proposed solution for different optimization
objective (such as energy saving, minimization latency and etc.). Ensuring robust-
ness was left aside as they are many provided solutions in case of failure [92] (i.e.
failure detection and recovery mechanisms). Although recovery solutions exist, they
still take time in which the impacted services will be unavailable. Moreover, mak-
ing smart placement decisions can help in avoiding the need to react against simple
network failures.

In our work, we first start with a study on how the placement choices can affect the
overall robustness. In this study, we advocate that accounting for robustness while
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placing functions can significantly improve robustness of the chain without increasing
the load of the VNF orchestrator which is a key component of the NFV architec-
tural framework that performs service orchestration, as well as other functions (more
details are provided in Chapter 2).

Besides on the new insights we got for the first study, we propose a new online
algorithm that builds active-active chain replicas to deploy tenants SFC requests in
a data-center topology (more details about replication mechanisms are available in
Sec. 2.3.2). In this scenario, the service provider has full knowledge and control on
this trusted environment. More precisely, we provide the formal model and solve
it to get the optimal solution for each request upon its arrival. Then we propose
a greedy solution to compare with the optimal solution results to understand the
impact on the results.

Thereafter, we move from this deterministic solution where SFCs are directly de-
ployed by the DC owner to a stochastic approach for the case where SFCs are re-
quested by tenants oblivious to the physical DC network and that only have to pro-
vide the SFC they want to place and the required availability level. To evaluate our
proposed algorithms, we implement discrete event simulators using Python. Python
is used because it is simple and it supports simulation networking and plotting li-
braries (e.g., NetworkX [76] and matplotlib [84]). Our simulations are performed on
a grid platform called Grid5000 [26].

Finally, we move to the decentralized environment where many contributors try to
run tenants’ applications, namely MapReduce applications, on their peer-to-peer net-
work infrastructure. Under this condition, where we have no knowledge or control
over this environment, trust and heterogeneity challenges arise. Thus, we have to
work at the application level to answer the question of how to ensure the correctness
of the result and the liveness property with the presence of byzantine nodes (i.e.
nodes that can have an arbitrary behaviour where it could crash or even send in-
correct messages) and rational partners that have self-interested behavior. Thus, we
introduce a blockchain-based decentralized MapReduce framework eligible to work
within untrusted peer-to-peer environments. To evaluate our proposal, we have
adapted the MRSG MapReduce simulator [93] that is built on top of SimGrid [30].

1.2 Thesis Outline

In the following, we summarize the content of each chapter and the obtained results.
In Chapter 2, we present the basic background used in this thesis. This chapter
includes (i) Network Function Virtualization where we give details about its frame-
work, benefits, and the raised challenges, (7i) Service function chaining architecture
and SFC request models, and (74) Availability notion with the service-level agree-
ment and how it is calculated in a network system.

In Chapter 3, we present the state of the art related to the placement problem
with different objectives and the works related to availability and robustness issues.
Replication strategies and offline/online placement used in literature are also pre-
sented here. Moreover, the related work for Hadoop MapReduce framework and
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BAR system model protocols are shown and compared to our proposed distributed
MapReduce framework.

Chapter 4 studies the need for considering the robustness issue while taking the
placement decisions for SFCs requested by tenants. In this study, we show that the
placement choices can significantly improve robustness of the chain without any need
for failure recovery solutions or having a service downtime. To that aim, we study
a reference chain and demonstrate with an exhaustive study how its placement in
the physical infrastructure can influence the overall robustness even when the virtual
chain itself is supposed to be robust to failures.

In Chapter 5, taking into account the main points obtained from the previous study,
we present an online two-step algorithm that determines the optimal number of VNF
service instances (active-active replication mechanism) and their placement in the
data-center network to guarantee the required robustness against R fail-stop node
failures. This solution uses the k-resilient property per SFC request to place the
requested SFC taking into account the available network resources and the resource
requirements of the tenants’ service requests, namely CPU and bandwidth. Three
different data center topologies are used to evaluate the proposed solution. This
deterministic solution is applicable when SFCs requests are directly deployed by the
data center owner who has awareness about the network infrastructure.

Chapter 6 provides a stochastic approach for the case where SFCs are requested by
tenants oblivious to the physical DC network and that only have to provide the SFC
they want to place and the required availability. We present our iterative algorithm
where an optimal solution with the objective of maximizing the obtained availability
in each iteration until getting the tenant’s requested availability. A large data center
topology is used as a referenced topology in this chapter.

In Chapter 7, we consider the case when tenants request services for processing
big data sets using MapReduce framework. Generally, the solutions that rely on
the execution of MapReduce applications on data centers are inherently centralized
where processing data is massively distributed but tasks scheduling is controlled by
elected nodes (called master nodes). All nodes in this centralized system are assumed
to be trustworthy and reliable.

However, in a cooperative scenario (represented in the Figure 1.4) when different
partners or enterprises collaborate together to provide cooperative services based on
peer-to-peer network systems, we move to a completely decentralized environment
that is subject to new types of failures, namely byzantine failures and rational actors.
In such a decentralized environment, there are no trust guarantees to the computation
results as there is no central authority that controls the actions of all nodes, and
the resources are not homogeneous anymore. Moreover, applications used in DC
have been developed for trusted homogeneous environments and so the algorithms
and protocols used in such applications are not adapted to untrusted heterogeneous
environments [104], which implies that only changing at the network level is not
sufficient.

Hence, there is a need to move to the application level where we should work on
the workload itself and adapt the application to be able to work correctly under the
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existence of both byzantine and rational nodes in the system (called BAR system,
more details are available in Sec 3.2) before solving the placement problem for data as
where we place data affects the application performance. In Chapter 7, we present a
new MapReduce framework, named MARS, conceived to be robust against byzantine
and rational actors in untrusted peer-to-peer environments. This is an early work
that has been done in collaboration with M. Alberto Zirondelli in the context of his
Master research internship.

Finally, in Chapter 8, we summarize the content of the thesis and discuss potential
research directions.

1.3 Thesis Contributions

In this Section we briefly resume the major contributions of this thesis as follows:

e we provide a comprehensive study on the necessity of considering the resiliency
while taking the placement decisions in the Chapter 4;

e we formalize the placement problem with the objective of ensuring robustness of
the placed service functions against R node failures in the trusted environment
in Chapter 5. We also present a new online placement algorithm for this
problem. Moreover, our proposed solution was implemented and evaluated on
large data center topologies (with up to 30,000 physical nodes) to emulate real
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data-center topologies. Moreover, a comparison with a greedy solution, namely
FFD, is provided to see how this choice could affect the results;

e a stochastic approach for the case in which SFCs are requested by tenants
unaware of the physical infrastructure is considered in Chapter 6. For this
case, an online availability-aware algorithm is proposed and evaluated on a
48-Fat-Tree data center topology;

e when tenants ask for running big data application, namely MapReduce appli-
cations, in a cooperative environment, new challenges arise as this unreliable
environment. Thus, we present a new decentralized MapReduce framework to
work in Peer-to-Peer networks, called MARS, which is robust against byzantine
and rational actors in the Chapter 7. We also extended SimGrid simulator to
support MARS.

1.4 Publications

The complete list of my publications is the following:

e Ghada Moualla, Thierry Turletti, Mathieu Bouet, and Damien Saucez. "On
the Necessity of Accounting for Resiliency in SFC." In 2016 28th International
Teletraffic Congress (ITC 28), vol. 2, pp. 13-15. IEEE, 2016. [131]

e Ghada Moualla, Thierry Turletti, and Damien Saucez. "An Availability-aware
SFC placement Algorithm for Fat-Tree Data Centers." In 2018 IEEE 7Tth In-
ternational Conference on Cloud Networking (CloudNet), pp. 1-4. IEEE,
2018. [132]

e Ghada Moualla, Thierry Turletti, and Damien Saucez. "Online Robust Place-
ment of Service Chains for Large Data Center Topologies". In 2019 IEEE
Access journal,7, pp.60150-60162, IEEE, 2019. [133]
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In this chapter, we introduce fundamental concepts that underpin the work presented
in this thesis. We begin by presenting some background on NFV architectural frame-
work and its main benefits, use cases and challenges in Sec. 2.1. Then we give some
details related to service function chaining architecture and its request models.

Thereafter, Sec. 2.2 gives some background on SFC placement strategies, followed
by Sec. 2.3 that covers the availability notion and how it is computed and insured is
provided. Finally, we provide a general background relevant to Big Data processing
and MapReduce framework in Sec. 2.5.

2.1 Network Function Virtualization

Network Function Virtualization (NFV') [56] transforms the way network operators
and providers design, manage and deploy their network infrastructure by exploiting
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the evolution of virtualization technologies. It enhances the delivery of network
services to end users while reducing CAPEX and OPEX.

Previously, network functions, called middlebozes (such as firewalls, Network Ad-
dress Translators NAT, Load Balancers LBs, etc.), were deployed on vendor-specific
hardware and software, which incurs a heavy cost, huge production delays and re-
frains innovations to deploy new network services. The NFV paradigm has been
proposed to decouple the hardware from its software and advocate the use of stan-
dard Commercial off-the-shelf (COTS) hardware located in the network [34]. Thus,
new network services can be deployed rapidly, on an on-demand basis, providing
benefits for both end users and network providers.

Moreover, NF'V enables configuring hybrid scenarios where functions running on
virtualized resources can co-exist with those running on physical resources [125].
NFV relies on traditional virtualization techniques. A virtualized network function
may consist of one or more virtual machines running different software, on top of
standard servers, switches and storage devices, instead of using dedicated hardware
devices for each network function.

How and where to place network functions and how the traffic is routed through
these functions are key challenges towards the deployment of NFV. Indeed, NFV is
a fascinating use case and new rules placement solutions must be designed to deploy
NFV.

Although NFV is a promising solution for service providers, it faces certain challenges
that could degrade its performance and hinder its implementation in the telecommu-
nications industry. Here we provide a short background on NFV including relevant
aspects such as its architectural framework, its main benefits and the essential chal-
lenges involved.

2.1.1 NFV Framework

Virtualization technologies are at the core of the NFV paradigm [130]. Indeed, the
success of virtualization technologies in IT operations in enterprises and for com-
puting services (such as Amazon Elastic Compute Cloud AWS EC2) has motivated
network operators to separate hardware and software using network functions.

To achieve the aforementioned objectives promised by NFV, each VNF should run
on a framework that includes dynamic initiation and orchestration of VNF instances.
The ETSI NFV Industry Standard Group (ISG) [56], which was initially founded by
seven global network operators to promote the network function virtualization con-
cept in late 2012, has defined the NFV architectural framework at the functional level
using functional entities and reference points, without proposing a specific imple-
mentation. The functional entities of the architectural framework and the reference
points are (See Figure 2.1):

e Virtualized Network Function: it is the software implementation of a network
function that is deployed on virtual resources such as a virtual machine (VM).
A single VNF may be composed of multiple internal components, thus it could
be deployed over multiple VMs.
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Figure 2.1: NFV reference architectural framework.

e NFV infrastructure (NFVI): it includes all hardware and software resources

that make up the environment in which VNFs are deployed. The hardware
resources typically include computing, storage and network resources providing
processing, storage, and connectivity for VNFs through the virtualization layer
(based on a hypervisor) that sits just above the hardware and abstracts the
physical resources.

NFV Management and Orchestration (MANO): it includes the Orchestrator,
the virtual network function manager (VNFM), and the virtualized infrastruc-
ture manager (VIM) functional blocks. These blocks are responsible for the
orchestration and lifecycle management of both physical and software resources
that support the infrastructure virtualization, and the lifecycle management of
VNFs, respectively.

2.1.2 Use case Scenarios of NFV

The NFV paradigm opens up many opportunities to transform network architecture
and services. Hence, use cases for NFV are not limited to only existing network
services, instead, NFV can deploy new network services, which were not previously
feasible because of the high cost, the complex integration of technologies and the
incompatible deployment environments.

NFV ISG selected a set of relevant use case scenarios [57], such as: (i) Network
Functions Virtualization as a Service: where service providers can provide NFV in-
frastructure, platform and even a single VNF instance as a service, (ii) Virtualization
of Mobile Core Network and IP Multimedia Subsystems (IMS): the mobile networks
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and the IMS are used to be populated with a large variety of expensive and propri-
etary hardware appliances [142]. Thus, their costs and complexity can be reduced
by exploiting NFV, (4i) Virtualization of Mobile base station: mobile operators can
also tremendously benefit from NFV approach to reduce costs as well as improve
and provide better service to their customers [46], (iv) Virtualization of Content De-
livery Networks (CDNs): CDNs normally use cache nodes to increase the quality of
multimedia services, but with lots of drawbacks where NFV can be used to mitigate
them [155].

Moreover, many works try to exploit the NFV paradigm with other use cases such
as in vehicular ad hoc networks (VANETs) to get rid of many VANETs bottle-
necks [195].

2.1.3 Benefits of NFV

The NFV paradigm promises several benefits. Reducing cost is a top consideration
for any operator or service provider these days. This aim is achieved with NFV via
migration to software running on commodity hardware instead of using expensive
dedicated network equipment.

Moreover, NFV provides rapid service innovation and flexibility, allowing service
providers to launch, improve, and incrementally optimize their services using software
updates. NFV can also leverage power management features of standard servers,
switches and storage devices using workload optimization to reduce the energy con-
sumption of the infrastructure by turning off the unused hardware devices. Further-
more, NFV is a scalable approach as it gives the operators the ability to scale their
network architecture across multiple servers to adapt quickly to the changing needs
of their customers.

2.1.4 Challenges for NFV

Despite all benefits provided by the NFV technology, this new environment arises
certain challenges that could degrade its performance and hinder its implementation
in the telecommunications industry.

One of the main challenges that NFV faces is the deployment of requested network
functions in NFV-based network infrastructures while providing the same perfor-
mance (regarding throughput and latency) as for traditional physical network func-
tions. Portability is another challenge that operators encounter, as VNFs should be
decoupled from any underlying hardware and software to be deployable on different
virtual environments.

The placement decision of virtual appliances opens a new research challenge and
future directions for NFV as it is crucial to the performance of offered services.
Network operators should place VNFs where they will be used most effectively and
in the least expensive way. Placement problems usually involve optimization through
linear /integer programming or approximation algorithms.
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NFV also brings more concerns for resiliency. Resiliency has been defined as the abil-
ity to provide and maintain an acceptable level of service in the presence of network
failures and challenges to normal operation [167]. NFV ISG has identified various
requirements, including resiliency requirements of VNFs [58|. Service Operators are
concerned by the resiliency of their services as the unreliable services are likely to be
discarded by users and the total costs of system failures can be enormous.

Ensuring such resiliency is difficult for VNFs due to different reasons [47,79] such as
(7): the commodity hardware that hosts VNFs is more prone to errors and failures
compared with dedicated hardware that can directly affect the VNFs running on
them, (i7) the software implementations of these VNFs (i.e., at various levels, such
as host operating system, hypervisor, VM, or the VNF instance itself) can be rather
buggy and are susceptible to failures, and (iii) Operation Faults such as incorrect
configuration could also be a reason for failures in the NFV environment.

Furthermore, NFV brings new security concerns [63, 163] along with its benefits
since software-based virtual functions in NF'V can be configured or controlled by an
external entity (e.g., third-party provider) and the virtual network functions might
run in data centers that are not owned by the service provider. Thus, operators need
to guarantee that the security features of their network will not be affected when
deploying VNFs. However, the security challenges are out of our consideration in
our work.

2.2 Service Function Chaining

A network service is an offer or a favor delivered by a network operator to network
users by the use of network functions (such as Firewalls, Network Address Transla-
tors, Deep Packet Inspection, etc.) [17].

The main idea behind service chaining is that delivery of end-to-end services often
requires various network functions. The definition and instantiation of an ordered
set of network functions and subsequent steering of traffic through them is called
Service Function Chaining (SFC).

The Internet Engineering Task Force (IETF') standardization organization has cre-
ated the Service Function Chaining Working Group to work on function chaining.
This group is aimed at producing architecture for service function chaining that in-
cludes the necessary protocols to convey the service function chain information to
nodes that are involved in the implementation of SFCs, as well as mechanisms to
steer traffic through service functions.

2.2.1 SFC Architecture

IETF has taken initiatives towards developing the formal architectures for SFC [78§].
The core SFC Architecture is composed of the following logical architectural building
blocks:
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Figure 2.2: Service Function Chaining Architecture.

e Classifier: which performs classification on the traffic flows based on some
policies. Traffic that satisfies classification rules is forwarded according to the
matching rule to a specific path.

e Service Function Forwarder (SEFFs): which forwards traffic to one or more
connected service functions (SF') based on information maintained in the SFC
encapsulation, handles traffic coming back from the SF and transports traffic
to another SFF.

e Service Function: is a resource available for consumption as part of a service.
SFs send/receive traffic to/from one or more SFFs. In order to provide a
mechanism for such SFs to participate in the architecture, a logical SFC proxy
function might be used. The SFC proxy acts as a gateway between the SFC
encapsulation and SFs.

e SFC Proxy: which removes and inserts SFC encapsulation on behalf of a service
function. It is used to enable the implementation of functions unaware of the
SFC encapsulation.

These logical components are interconnected using the SFC encapsulation, which
enables service function path selection. It also enables the sharing of metadata/con-
text information when such metadata exchange is required. The Service Function
Path (SFP) specifies where packets assigned to a certain service function path must
go (i.e., specifies all SFF/SFs the packet will visit when it actually traverses the
network, see Sec. 2.2.2).

Fig. 2.2 represents the basic SFC architecture and explains the main procedure of
flows that traverse the SFC-enabled domain (the SFC proxies are not shown in this
figure). When a flow enters an SFC-enabled domain, first of all, it will be classified
in order to decide which service function path the flow should traverse. Then, the
flow will be encapsulated. The encapsulation step enables the SFP selection and the
sharing of metadata information if necessary. Hence, flows from different services can
simultaneously traverse the same VNF, but each has its own service function path.
After that, the traffic low will go through all the service functions defined by the
encapsulation step. When the SFC is completed, the encapsulation will be removed,
and the traffic flow will leave this SFC-enabled domain to continue its transmission
in the network.
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2.2.2 Service Function Path

At an abstract level, the service function chain is a conceptual view of a service that
defines the set of required functions and the order in which they must be traversed.
Service function chains start from the origin network node, or from any subsequent
node in the graph. Moreover, a SF may become a branching node in the graph,
with those SFs selecting edges that move traffic to one or more branches, depending
on user service demands. Service function chains may have more than one termi-
nation point [78] as well. A service function path (SFP) is a mechanism used by a
service chaining platform to express the result of applying more granular policy and
constraints to the abstract requirements of a service function chain [148].

Based on this standardization, we can have three different SFC request models (See
Figure 2.3). The simplest topological model is a line with two endpoints and one or
more network functions (shown in Figure 2.3a). This model is suitable for handling
flows between two endpoints that have to pass through a specific sequence of network
functions. The second and third topological models are based on furcated paths.
Network flows passing through furcated paths may finish with one endpoint or more.

For the flows with different endpoints (Figure 2.3b), the most basic component con-
tains one source endpoint and two destination endpoints, where there is a network
function (e.g., load balancer) that splits the traffic into different paths according to a
certain policy. As for furcated paths with a single destination endpoint, we consider a
scenario in which different fractions of traffic between two endpoints must be treated
differently. For example, one part passes through a specific firewall, while the other
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part, through an encryption function. However, more complex SFC requests may be
created by freely combining these basic topological components.

2.2.3 SFC Placement Solution Strategy

In an NFV environment, network functions of the SFC are decoupled from the un-
derlying hardware and implemented as VNFs and deployed in the network. To de-
termine the positions for placing these VNFs such that the service requirements
and quality can be satisfied is a critical problem. This VNF placement problem,
for different objectives and scenarios tackled in the related works, is proved to be
NP-hard [11,22,36,42,169, 174]. For example, Bari et al. [11] introduced the VNF
orchestration problem which was equal to VNF placement problem and formulated
it as an ILP model to minimize the OPEX and maximize the network utilization.
Then, they have proved the NP-hardness of this problem by a reduction from the Ca-
pacitated Plant Location Problem with Single Source constraints ((CPLPSS)) [166].

In order to obtain the optimal solution for SFCs placement, the mathematical pro-
gramming methods are generally used, such as Integer Linear Programming (/LP)
and Mixed ILP (MILP). As it was difficult to find the optimal solution for VNFs
placement especially in large scale network scenarios in a reasonable time, most of
the works done in this area has focused on the design of heuristic or metaheuristic
algorithms, such as greedy algorithms. Thus, in the following paragraphs, a few
backgrounds on linear programming and greedy solutions are presented.

2.2.3.1 Linear Programming

Linear Programming, also called Linear Optimization, is a general strategy to model
and achieve the best outcomes for many combinatorial problems [161,187], such as
the Knapsack problem [153]. In this problem, given a set of items where each item
has a specific weight and a value, the goal is to find which items should be selected,
such that the total weight is less than or equal to a given limit, and the total value
is as large as possible. This problem often arises in resource allocation where there
are many constraints and it is studied in many fields such as computer science.

Fundamentally, an LP is composed of a linear objective function, a set of linear in-
equality constraints formalized by variables representing the problem outputs and
parameters (i.e., the problem inputs). The objective function represents the opti-
mization goal and is written in terms of minimizing or maximizing, e.g., minimizing
resources consumption and maximizing the provider profit. If the goal is just to
find feasible solutions satisfying constraints, the objective function can be omitted.
Normally, an LP is expressed in a canonical format as in Equation 2.1:

max {CTSU Az < bjz >0}, (2.1)

where x is the variables vector, b and c represent the coefficients vectors, while A is
the coefficients matrix and (.)7 is the matrix transpose. If all variables are integers,
the LP will be called an Integer Linear Programming (/LP), as in the bin packing
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problem. However, when only part of variables in x are integers, the LP is called a
Mixed Integer Linear Programming (MILP).

Due to its wide utilization, many methods have been proposed to solve the LP prob-
lems, such as cutting plane [54], branch and cut [65], column generation [13]. These
methods are usually implemented in LP solvers (e.g., CPLEX [86], Gurobi [138]),
which can find exact and approximate solutions for the problem. In our study, we
formalize the SFC placement problem as an ILP in Chapters 5 and 6 where we use
the Gurobi solver, which is free for academic usage.

2.2.3.2 Greedy Algorithms

In general, most of the placement problems are known to be NP-hard [7], which
means that there are no known polynomial-complexity algorithms to find the optimal
solution, and using LP solvers for large problem instances (e.g., a large number of
variables or constraints) is not practical because of the tremendous execution time.

To deal with this limitation, heuristics are used to find near optimal solutions |74].
Basically, an heuristic tries to improve the solution in each step and it stops when the
result obtained is good enough. There are many popular heuristics, such as Greedy
algorithms. A Greedy algorithm is one that makes choices based on what looks
best at the moment. In other words, choices are locally optimal but not necessarily
globally optimal. For example, to find solutions for the Knapsack problem mentioned
before, one possible greedy approach is that in each step, a new item with the
maximum value of (value/weight) is selected. In many problems, Greedy does not
guarantee to find the global optimum, but it can approximate the global optimum
in a reasonable execution time. For example, Greedy has been proven that it is
1/2-approximation for the Knapsack problem [161].

Considering the VNF placement problem, many greedy solutions have been proposed
in the state of the art [2,121]. In this thesis, the greedy algorithm considered is
based on the First-Fit Decreasing (FFD) algorithm [53], to take placement decisions
in Chapter 5. The key idea of this heuristic is to install virtual functions with the
largest resources requirements in the first physical place in which it fits. When all of
the functions of service are mapped to the physical network, the process is considered
complete.

2.3 Availability

In this thesis, we define the availability as the ability of a service to be accessible and
operational at a given time, i.e., the amount of time a service is actually operating
to the total time it should be working [1].

The typical availability values are specified in decimal (such as 0.9998). In high
availability applications, a metric, known as nines, is used. With this convention,
"five nines" equals 0.99999 (or 99.999%) availability. The more "nines" means less
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downtime of the service in minutes per year and higher availability. In Table 2.1 the
service availability and its downtime are given [14].

Availability Value Downtime Value

0.9 Down 5 weeks per year
0.99 Down 4 days per year
0.999 Down 9 hours per year
0.9999 Down 1 hour per year
0.99999 Down 5 minutes per year
0.999999 Down 30 seconds per year
0.9999999 Down 3 seconds per year

Table 2.1: Service availability and downtime values

The simplest representation for availability for a single component is the ratio of the
expected value of the uptime of a system to the aggregate of the expected values of up
and downtime. Availability is commonly defined through the following equation 2.2:

MTBF
MTBF + MTTR’

Availability = (2.2)

where Mean Time Between Failures (MTBF), is the average time interval (normally
in hours) between two sequential component failures, while the Mean Time to Re-
pair (MTTR), is the average time needed to detect the failure, repair the failed
component and return it to its normal operations.

Herker et al. [81] have provided statistical data on element failures within data cen-
ters, namely (i) The MTTR and (ii) the MTBF, based on previous works in [68]
and [88|. Based on their studies, we determine the availability values for each com-
ponent in our DC network topology as in the Table 2.2.

DC component MTBF (hours)
Server 0.99

Top of Rack/Aggregation | 0.9999

switch

Core switch 0.99999

Table 2.2: Availability values for different DC components
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High availability (HA) [173] is a system or component characteristic that refers to
the ability of this system to be operational and functional, namely uptime, for a
long period of time. If the mean time between failures is very large compared to
the mean time to repair, then a high availability will be reached. For example, data
centers require high availability feature of their systems to perform daily activities.
If a user cannot access a system, this system will be considered unavailable from the
user’s point of view and the term downtime is used to refer to these periods when
the system is unavailable.

2.3.1 Availability with Service Level Agreement

Data center networks are error-prone as several network elements exhibit failures
that can impact the normal operation. Under this condition, service providers cannot
promise the delivery of persistent services to their tenants due to unavoidable network
elements failures. Thus, the tenants need to know the percentage of time that the
offered service will be available. The lowest acceptable availability by the tenants
without incurring penalties for the provider has to be clearly defined in a specific
agreement form called a Service Level Agreement (SLA) [126]. The SLA is a business
contract that defines the commitments and requirements of providers and customers.

If the SLA requirements are not fulfilled, the service provider has to pay an agreed
amount of money, which is called SLA penalty. The penalty plays a very important
role, as it encourages the service providers to implement the requisite enhancement
on their network and to do their best in order to maintain the service within the
requirements. Furthermore, it gives to the tenants the opportunity to compensate
for the service outage.

The SLA penalty may be defined in two different ways [70]. The first possibility is
a binary model, where the penalty to be paid is 0$ if the delivered availability is
above the agreed availability in the SLA contract, or a fixed amount of money if
the requirements are not respected. Another option is a contract with an increasing
penalty. In this option of contracts, the price of penalty increases after a certain
accumulated downtime.

However, regardless of the SLA penalty models, violation of the SLA is not desirable
especially in case of critical services such as e-health or autonomous transportation
systems.

2.3.2 Fault Tolerance and Redundancy

High availability is often associated with fault-tolerant systems. The term fault-
tolerant means that a system can operate in the presence of hardware component
failures. For instance, a single component failure in a fault-tolerant system will not
cause a system interruption because other alternate components will take over the
task transparently.
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The most common techniques to ensure resiliency of the provided service are: (i)
redundancy and replication, and (i7) failure detection and failure recovery mecha-
nisms. Furthermore, the proposed schemes for VNF replication can be classified in
two main categories: (i) Active-Standby method, which is a simple solution where
it is not required to have load balancing functions, but a mechanism to redirect
traffic flow towards standby nodes in case of failure for the active ones, and (i)
Active-Active scheme, where all nodes are active and participating in providing ser-
vice. With this solution, an additional load balancing function before the pool of
replicated functions is used to distribute the traffic. In the case of failure, the traffic
will be redirected to survived entities.

Moreover, there are different possibilities for each category. For example, using an
active-standby architecture, the following options are possible:

e 1:1, a single active node is protected by a single standby node
e N:1, N active nodes protected by only one single standby
e N:M, N active nodes protected by M standby nodes.

In this thesis, we have considered the active-active scheme with two options N+1,
called strict, and N+M called relaz in Chapters 5 and 6.

2.3.3 Availability in parallel and series systems

Typically, network systems are not only composed of a single component, on the
contrary, it is a complex system comprising many components connected together
in various ways (as in Figure 2.4). Thus, the system availability is calculated by
modeling the system as an interconnection of parts in series and parallel manner. If
one failure of a part makes another part inoperable, then two parts are considered to
be operating in series. Otherwise, if the failure of a part did not affect other parts,
the parts are considered to be operating in parallel.

Component 1 Component 2

(a) Serial connected components

'S .

» Component 1

—»| Component 2

\ .

(b) Parallel connected components

Figure 2.4: Two ways of combining system components
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When a system is composed of two (or more) components that are connected in
serial way (as in Figure 2.4a). All these components are required to be available in
order for the system to be available [191]. If either one of those components fails, the
system is considered to be unavailable (see Equation 2.3). However, in the parallel
configuration [186] (as in Figure 2.4b), when one of the components is available, the
system can survive. Components in this configuration are considered redundant and
the availability is calculated as in Equation 2.4.

Availabilityseria = HA (Component;) (2.3)

7

n
Availabilityparaier = 1 — H[l — A (Component;)], (2.4)
1
where n is the number of components in this system. When the system consists of
multiple components, some of them are connected in a serial way and the others in
parallel, to calculate the availability of such system, one may calculate any consec-
utive serial/parallel components and replace them with blocks with new availability
in order to be able to complete the calculation.

2.4 Data Center Network Topologies

The data center is home of the computational power, storage, and applications nec-
essary to support enterprises business to deliver various services to their customers.
Good planning of the data center infrastructure design is critical, and issues such as
performance, resiliency, and scalability should be considered carefully [38].

The data center network design is based on a layered approach. This layered ap-
proach is the main principle of the data center design that searches for improving
scalability, flexibility, resiliency, performance, and maintenance. Most of the net-
work topologies for data centers share a multi-tier architecture, especially three-tier
architecture. These three layers of the data center design are briefly described as
follows:

e Core layer: which provides the high-speed packet switching backplane for all
flows going in and out of the data center. It also provides connectivity to
multiple aggregation switches. The core layer runs an interior routing protocol,
such as Open Shortest Path First (OSPF), and load balances traffic between
the campus core and aggregation layers. Core layer switches are also responsible
for connecting the data center to the Internet.

e Aggregation layer: It is also called a distribution layer aggregates the uplinks
from the access layer to the DC core layer. This layer is a crucial point for
control and application services. Security and application service devices such
as load balancing, firewalls, and IPS middleboxes are often deployed as modules
in this layer.
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e Access layer: Network servers, also called hosts, physically attached to the
network in this layer, that are also called Edge layer. The access-layer is typ-
ically built with high-performance, low-latency Layer 2 switches that provide
connectivity to the aggregation layer switches.

Moreover, typical DC architectures can be categorized in switch-only or switch-
centric topologies such as 2-/3-tier tree and Fat-Tree or server-centric topologies
such as BCube and DCell. Here, we present the data center (DC') topologies that
are considered as targeted environments for the evaluation in this thesis.

2.4.1 Tree Data Center Topology

Tree networks architecture is attractive because of its simplicity of wiring and reduced
economic costs. The traditional basic tree network topology is usually built with
two or three tiers, which are edge tier, aggregation tier, and core tier (shown in
Figure 2.5). The leaves in this tree are network servers which are connected to top
of rack (ToR) switches in the access layer. These ToR switches are then connected
to switches in the aggregate layer, which are successively connected to core layer
switches [179].

The core layer interconnects the aggregation switches together and controls the traf-
fic flows into and out of the DC, while the aggregation tier provides the domain
service and load balancing. This design approach results in a serious bandwidth
oversubscription towards the network core tier that occurs when the overall switch-
ing bandwidth of a switch is less than the total bandwidth of all ingress switch ports.
Tree topologies suffer from scalability bottlenecks. Thus, to solve this problem, a
Fat-Tree topology was proposed (more details are presented in Sec. 2.4.2).

Core

Aggregate

Edge

Figure 2.5: Traditional 3-tier Tree Data Center Topology.
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2.4.2 Fat-Tree Data Center Topology

Fat-tree DC topology is a three-tier Clos network built in the form of a multi-rooted
tree. It was firstly introduced by Al-Fares et al. to construct the data center net-
work [5].

This architecture provides a non-blocking structure, which provides an oversubscrip-
tion ratio of 1:1 to all servers. The Fat-Tree network topology is built with n pods,
where n is the degree of the Fat-Tree topology. The pod is defined as a collection of
edge and aggregation switches connected in a complete bipartite graph. Each pod
contains (n/2)? servers and 2 layers of (n/2) n-port switches. It supports (n3/4)
servers in total. For n = 4, the fat-tree topology is shown in Figure 2.6 and supports
up to 16 physical hosts connected to 8 edge switches at the bottom.

The main advantage of this topology is that (n?/4) redundant paths are available
to route the traffic between any two physical servers. Thus, this topology allows for
high bisection bandwidth using a large number of less expensive switches allowing
support for a large number of servers at much less cost.

——
i

Pod4

Figure 2.6: 4-Fat-Tree Data Center Topology.

2.4.3 Spine-and-Leaf Data Center Topology

Spine-and-Leaf network topology [10,39] is a two-tier Clos network architecture where
each ToR switch in the leaf layer is directly connected to servers and to all Spine
switches, the backbone of the network, in the upper layer in a full-mesh topology
(shown in Figure 2.7).

The physical links that interconnect the servers to leaf switches may have a different
capacity from the links that connecting leaf switches to the spine switches. The path
between any two servers is randomly chosen so that the traffic load is distributed
among the top-tier switches. If one of the top tier switches failed, it would only
slightly degrade performance throughout the data center.
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Spine-and-Leaf topology makes it easier to extend the data center capacity to cope
with an oversubscription of a link by adding more spine or leaf switches. However, in
case high bisection bandwidth is intended, scaling to more than hundreds of servers
in a cluster can lead to increased costs due to the need for spine switches with many
high capacity ports.

With the spine-and-leaf architecture, it does not matter to which leaf switch a specific
server is connected as its generated traffic has always to cross the same number of
devices to reach another server (unless the other server is connected to the same leaf
switch). This approach ensures a predictable level of latency as the traffic only has
to hop to a spine switch and another leaf switch to reach the destination server.

Figure 2.7: Two-tier Spine-and-Leaf Data Center Topology.

2.5 Big Data Processing

Under the explosive increase of global data, the term Big Data is mainly used to
describe unstructured massive data sets that could not be perceived, managed, and
processed by traditional IT and software /hardware tools within a tolerable time [32].
The challenge is not only to store and manage such these datasets, but also to process
and extract meaningful value from it, where it requires a data-intensive application
to be deployed on large scale systems.

To meet these challenges, several parallel execution models on distributed architec-
tures have been proposed. The most popular method to process huge data sets
adopts the MapReduce programming model [49] and its open source implementation
Hadoop, as it solves the data volume problem successfully (by doing the computa-
tion in a distributed manner) and provides resiliency against machine failures. In
this section, we present the MapReduce programming model, its widely used imple-
mentation Hadoop [19] to process certain unstructured data.
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2.5.1 MapReduce Model

MapReduce is a software framework popularized by Google to support Big Data dis-
tributed computing on clusters of computers. It runs on top of the Google File Sys-
tem (GFS) where data is loaded, partitioned into chunks, and each chunk replicated
across multiple machines. The user of MapReduce programming model expresses
computation as two functions: (i) the Map function that processes each data chunk
into key/value pairs to generate a set of intermediate key/value pairs (Equation 2.5):

map(keyl,valuel) — list(key2, value2) (2.5)

(7i) the reduce function that merges all the intermediate values associated with the
same intermediate key to compute the final result:

reduce(key2, list(value2)) — list(value2) (2.6)
User
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Figure 2.8: Map Reduce Execution Overview.

When the user program calls the MapReduce function, the following sequence of
actions occurs (as shown in Figure 2.8). The MapReduce library in the user program
first splits the input files into M pieces of typically 16 to 64 megabytes per piece. It
then launches many replicas of the program on a cluster. One is the "master" and
the rest are "workers". The master is responsible for assigning the map and reduce
tasks to the workers and monitoring the task progress. Thus, there is a single point
of failure. When map tasks arise, the master assigns the task to an idle worker,
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taking into account data locality. A worker reads the content and emits key/value
pairs to the user-defined Map function.

Thereafter, the intermediate key/value pairs are buffered in the memory and period-
ically written to a local disk, partitioned into R sets. The master passes the location
of these stored pairs to the reducer which reads the buffered data using remote pro-
cedure calls, sorts and gathers the intermediate values associated with the same key.
For each key, the Reduce function is applied to generate the output in R output files
(i.e., one per reduce task).

2.5.2 Hadoop Framework
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Figure 2.9: Hadoop Architecture.

Apache Hadoop [19] is a Java open-source implementation of MapReduce spon-
sored by Yahoo!. The two fundamental sub-projects are the Hadoop MapReduce
framework that provides the compute layer and the Hadoop Distributed File Sys-
tem (HDFS) [165], which provides the data layer (See Figure 2.9).

Hadoop Distributed File System is designed to run on clusters of commodity ma-
chines. Each HDFS cluster consists of a single NameNode, a master server that
manages the file system namespace and regulates access to files by clients, in addi-
tion to a number of DataNodes, which are the actual store of the data blocks, usually
one per node in the cluster. They manage storage attached to the nodes they run
on.
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The NameNode splits the files into blocks that are stored in a set of DataNodes. It
also executes file system namespace operations like opening, closing and renaming
files and directories. It determines the mapping of blocks to DataNodes. DataNodes
are responsible for serving read and write requests from the file systems clients and
perform block creation, deletion, and replication upon instruction from the NameN-
ode.

The MapReduce framework is a software framework for distributed processing of
large data sets on compute clusters. It has a master, called JobTracker, responsible
for: (i) querying the NameNode for the block locations, (ii) scheduling the tasks on
the worker (or it could be called slave), which is hosting the tasks blocks, and (i)
monitoring the successes and failures of the tasks. The workers, called TaskTracker,
execute the tasks as directed by the master.
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In this chapter, we first review the state of the art regarding the problem of place-
ment, starting from VM placement to service function chain placement. The related
works had considered a large number of objectives. However, in this chapter, we
provide summaries of these works with a focus on the approaches that had taken the
resiliency as the main objective based on redundancy solutions. Furthermore, the
works relevant to big data processing and different MapReduce frameworks, with
emphasis on works has been done in adapting MapReduce to perform well in the
presence of failures, are discussed here to help us in providing a clear position of our
contributions compared to the literature.

3.1 Placement in Virtualized Environment

With the virtualization technology, data centers can consolidate their services onto
a lesser number of physical servers than originally required with the use of virtual
machines. Mapping virtual machines (VMs) to physical machines (PMs) is called
the VM placement. In other words, VM placement is the process of selecting the
appropriate physical host (or it could be called a physical node) for the given VM [96].
To use the physical resources effectively, VM should be placed on a convenient host.
Since the usual size of data centers is large in the cloud computing environment,
selecting a correct physical host to place the VM is a very challenging task during
the virtual machine placement.

Many virtual machine placement algorithms with different goals have been proposed
in the literature for the cloud computing environment [20,25,89,99]. The place-
ment goals can be related to performance (e.g., CPU capacity, link bandwidth),
energy-efficiency [103, 156, 184] (e.g., power usage), reliability [89,113], or other pa-
rameters [99].

Rodrigo et al. [25], proposed a heuristic for the mapping between VM and PM.
The aim of this approach is to balance the CPU utilization on each PM. In their
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heuristic, named Hosting Migration-Networking (HMN) heuristic, a list of PMs is
built in descending order of CPU capacity and the first acceptable physical host is
chosen. Moreover, a migration step is performed after the initial mapping to increase
the system load-balance. Jayasinghe et al. [89] also present a placement algorithm
with the objective of improving the performance and availability of cloud services.
Their solution takes as input an application description with constraints and a data
center description and translates them into tree models. Then the algorithm places
VMs on physical machines by grouping VMs, placing VMs groups on server clusters,
and then checking if the individual VM requirements are met.

The same problem is also considered in [144] where the authors propose a network-
aware VM placement and migration schema which maps the VMs to servers, taking
into account the network conditions to minimize the data transfer time consumption
and retain the application performance. Furthermore, Li et al. in [99] proposed a
new method for online VMs placement requests with the objective of minimizing
the job completion time. Their heuristic has two scenarios, namely Direct placement
and Migration-based placement. In the direct placement, the algorithm estimates the
completion time by placing the current VM over the candidate PMs and then chose
the physical machine that ensures the shortest total completion time and has suffi-
cient resources. However, in the migration-based placement, the algorithm chooses
the PM that provides the lowest total completion time, whether it has enough re-
sources to host the VM or not. When the available resources are not sufficient, the
algorithm migrates one of the already placed VMs on this PM to another PM in a
way to place the new VM.

Energy consumption is one of the most critical problems in the cloud environment
and cannot be ignored. This important objective is considered by Lin et al in [103]. In
this work, the authors proposed two different algorithms for energy-effective virtual
machine provisioning and consolidation. The first algorithm, called Dynamic Round-
Robin (DRR) is an extension of the original Round-Robin method [77|, while the
second algorithm is the Hybrid, which combines DRR and First-Fit method [185].
Sampaio et al. [156] also take this problem with the same objective into account. To
save energy and provide fault tolerance, virtual machine consolidation or migration
has been used to put idle physical machines in sleep mode based on two proposed
heuristic algorithms. The proposed algorithms consolidate VMs when needed, taking
into account the reliability of the nodes, to minimize energy consumption. The
resource assignment to VMs is updated dynamically along time. Furthermore, virtual
machine placement with the same objective is considered in [184] based on a genetic
algorithm (GA) where the authors considered energy consumption in communication
networks as well as in PMs in the proposed algorithm.

Network Virtualization has become more important where it could be used for net-
work simulation [15,37] or to provide customized end-to-end services over the same
physical network [9,62|. To build the virtual network, Virtual Network Embedding
(VNE) is introduced. Several algorithms to solve the problem of VNE have been
discussed in the literature with various goals [6, 22,33, 36, 105, 150,196]. The VNE
problem addresses the efficient mapping of a set of Virtual Network Requests (VN-
ERs) to physical nodes and links [64]. Each VNER is composed of virtual nodes
that must be mapped to a set of physical nodes with sufficient resources to satisfy
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the requirements, and a set of virtual links to be mapped to a set of physical paths
in the network.

In [174,196], authors have proposed heuristic greedy algorithms to maintain low and
balanced stress among all physical hosts and links during the VN assignment process.
The aim of such greedy algorithms is to assign virtual nodes to substrate nodes with
maximum available resources. The VNE studies either assume that the VNE requests
are known in advance, namely offline, such as 22,109, 150, 196], while other works
tackle the problem of the online VNE where the VNRs arrive dynamically and they
are not known in advance, such as [6,36,105,174]. Botero et al. [22] have tackled the
offline VNE problem and solved it with mixed integer program (MIP) but with the
goal of minimizing the energy consumption. Lu et al. [109] also handled the offline
variant for only a single virtual network with a backbone-star topology with the
objective of minimizing the cost. The authors have assumed that only bandwidth
constraints are imposed and the network resources are infinite.

The online scenario is considered in [174]. The authors in this work have proposed
to queue a group of incoming VNRs (ordered by revenue) during a time window and
try to efficiently place them. If it is not possible to accept the request, the latter will
be sent to the queue and wait for resources release in the network until its timeout
finishes, then it will be canceled. In [105], Lischka et al. have proposed another online
heuristic algorithm approach based on the Subgraph Isomorphism Detection (SID)
problem with backtracking. In this approach, the authors try to find an isomorphic
subgraph representing the VNER inside the network.

Moreover, by virtualizing network functions, such as firewalls and load balancers,
that were formerly carried out by vendor-based specialized hardware devices, and
migrating them to software-based appliances, a new challenge of these virtual func-
tions deployment arises with the presence of resource scarcity (e.g., computation,
storage, and bandwidth) on VMs. VNF-based SFC and the corresponding resource
optimization problems have been widely studied. The works of resource alloca-
tion in SFC are closely related to the previous VNE problem and can always be
formulated as an optimization problem. Some of these works have considered of-
fline scenario [110, 122,128, 154], while other works have considered online SFC
requests 33,124, 129,169, 180].

Moens et al. in [128], have formulated the placement problem as an ILP model
with the objective of allocating the SFC requests within NFV environments while
minimizing the total number of servers used. Mehraghdam et al. [122| have also
proposed a VNF placement algorithm but with different optimization goal. Their
approach constructs a VNF forwarding graph to be mapped to the physical resources,
assuming limited network resources and functions with specific requirements and
possibly shared. In their evaluation, they maximize the link available bandwidth
and minimize latency and number of host nodes but do not account for robustness.

The same problem is solved in a DC topology by Cohen et al. [42] to minimize the
total system operational cost (OPEX). However, the proposed LP-relaxation solution
has the flaw of violating physical resource capacities as NFs are shared between the
clients.
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Sahhaf et al [154] also treated the problem of service function chaining through an
ILP model and a heuristic-based algorithm composed of two phases: a decomposition
selection with backtracking phase and a mapping phase, leading consequently to
sub-optimal solutions. Luizelli et al. [110] formulated the ILP model targeting on
minimizing the end-to-end delay. They have proposed a binary search heuristic to
cope with large infrastructures, to jointly place VNFs and map service chains onto
them without any ordering constraints. The objective was to minimize the number
of virtual network function instances mapped on top of the NFVI. Gupta et al 73]
also formulated the problem as an ILP to minimize bandwidth consumption.

Bari et al. [12] studied the SFC placement problem and solve it for determining the
optimal number of VNFs required and their placement with the objective of mini-
mizing the OPEX caused by the allocation to the service provider while guaranteeing
the service delay bounds. They formulate the problem using an ILP and present a
heuristic that maps nodes for each request on a single physical host.

Mijumbi et. al [124] formulated an online VNF mapping and scheduling problem and
propose a set of greedy algorithms and a Tabu Search meta heuristic [69] for solving
it with the objective of reducing the flow execution time and the embedding cost
in Telecom Service Provider (T'SP) environment. Wang et al. [180] also considered
the online placement to determine the optimal number of VNF instances and their
optimal placement in DCs, which minimizes the operational cost and resource uti-
lization over the long run. Their algorithm takes scaling decisions based on current
traffic and assumes infinite inter-servers bandwidth.

Moreover, Mohammadkhan et al. [129] proposed a MILP formulation to determine
the placement of online VNFs requests with the objective of reducing latency by
minimizing the link bandwidth and the number of used cores. They propose a
heuristic to solve the problem incrementally but do not consider resiliency against
failures. An ILP-based model is also proposed by Sun et al. [169] to minimize the
total deployment cost while increasing the service providers’ revenue by increasing
the probability of accepting SFC requests.

Since solving the placement problem is shown to be hard. The mathematical propos-
als suffered from a scalability weakness, because of the execution time grows as the
network size increases [11,169]. For example, Bari et al. [11] spent about 26 minutes
using CPLEX to solve their ILP model with a small network scenario with only 23
nodes and 43 links.

Being aware of this problem, many works have proposed heuristics algorithms right
after solving their optimal models [11,12,18,66,99,124,143,189|. For instance, Pham
et al. [143| have proposed a heuristic solution for energy saving objective based on
Markov mechanism to solve the VNF placement problem. Precisely, the algorithm
started with an arbitrary chosen feasible VNF placement solution, and moved to
another feasible one based on the network states. This algorithm converged when
the Markov chain reached the steady-state.

Algorithms like the Simple Greedy Approach (SGA) [2,18,60| and heuristics such as
First Fit Decreasing (FFD) have been widely studied and proposed in the literature
for the VM placement problem to reduce the time needed to get a reasonable solution.
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Many authors compared their own solutions to one of SGAs such as [18,103,168]. In
FFD approach, VNFs are organized in a decreasing order of resource requirements
and each VNF is then placed into the first physical server available with sufficient
remaining resources.

3.1.1 Resiliency

Many studies showed that hardware and software failures are common [68,72, 146|
and with NFV-based environment, where low reliable commodity hardware is used,
the chance of failures is even increased [56]. The failure detection and recovery time
depends on the type of failure and may take seconds or more for hardware failures
such as link and node failures [68|. Thus, ensuring high availability (HA) to maintain
critical NF'V-based services is an important design feature that will help the adoption
of virtual network functions in production networks, as it is important for critical
services to avoid outages.

To guarantee the continuity of service, VNFs must be able to preserve the related
state information which can be used to protect customers from disruptive events and
to recover services from disasters quickly [58]. In addition, to make sure that essential
services (e.g., the voice call service for emergency events) are still available when
failures happen, network operators need to give more attention to the placement
decisions. Although network operators cannot guarantee the functionality of all the
services when a large scale network disaster occurs, they can at least guarantee service
continuity of some essential services when simple physical failures happen through
redundancy solutions and by avoiding a single point of failures.

Some works considered this problem and introduced solutions for failure detection
and consistent failover mechanisms. Kulkarni et al. [94] presented a resiliency frame-
work to deal with all different kinds of software and hardware failures where they
replicate state to standby NFs while enforcing NF state correctness. Resiliency is
also considered by Scholler et al. [159]. In their work, they describe a deployment
function that takes an abstract service description including placement and resiliency
requirements as input and focusing on the delay between redundant instances. This
deployment function is based on OpenStack [152] using availability zones. Marotta
et al. [117| described a different robust placement algorithm to cope with variations
on resources required for VNFs. They leveraged the Robust Optimization (RO) [16]
theory to reduce energy consumption by minimizing the number of hosts used.

Robustness is considered with the works related to VM placement problem [20,113,
193|. Machida et al. [113] and Bin et al. [20] both addressed the problem of making
virtual machines (VMs) resilient to k physical host failures. They define a high-
availability property so that if VMs are marked as k-resilient, they can be safely
migrated to other hosts when there are less than & host failures. The k-fault toler-
ance is considered by Zhou et al. [193]. To improve the reliability of cloud services,
a network-topology aware redundant VM solution is proposed to minimize the con-
sumption of network resources, under the £ VM failure using backup VMs.

Fan et al. [59] proposed an approximation online algorithm to map SFC requests
with HA requirements with the objective to maximize the acceptance ratio while
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reducing the resources used. They assumed that VNFs are heterogeneous in terms of
functional and resource requirements but they consider several DCs and assume the
presence of protection schemes in the DC so that the deployed VNFs always have
100% availability.

Furthermore, Oechsner and Ripke discussed the topic of VM placement in the con-
text of NFV deployment [136]. They utilize a placement mechanism with a resilience
pattern mapped to OpenStack to provide an automatic deployment of resilient com-
ponents in cloud environments. The considered use-case is to place a redundant
active-backup pair of VMs with the requirement of placing instances close enough
to ensure the end-to-end delay, but far enough apart to guarantee a certain level of
availability. Their heuristic takes as an input, the availability of the components of
the physical infrastructure, the delay between them, the maximum delay between
the redundant instances and the minimum availability of the joint component.

All these previous works ensure robustness against physical nodes failure. How-
ever, some works tried to guarantee the robustness in the presence of physical link
failures [6,150,170]. Rahman et al. [150] took into consideration that network in-
frastructure does not remain always operational. Thus, to solve the VNE problem
in such situation, the authors proposed a proactive and a hybrid policy heuristic
based on a speedy re-routing strategy and utilizes a pre-reserved portion for backup
on each physical link. Tomassilli et al. [170] presented two models for dedicated and
shared path protection against a single link failure in elastic optical networks (with
24 nodes, 43 links). Khan et al. in [6] also presented a multi-path link embedding
mechanism based on the path splitting to achieve VNE survivability against one
physical link failure while solving the VNE problem.

Replications have been studied in a virtualization environment [27,28]. Knowing that
VNF replications may help in the network load balancing, Carpio et al. [28] tackled
the problem of VNF placement using replications. To that aim, they provided a
linear programming model for small networks, and two heuristics for large networks
to reduce the required computation time for the placement and the replication of
VNFs. The authors in another work [27] proposed a new linear programming model,
to solve the optimal placement of VNFs to minimize the network cost and balance
the utilization of all links in mobile core networks. Hmaity et al. [82] also showed
that to ensure the resiliency against single-node failures, it was required to duplicate
the amount of resources to survive against0 a single node or link failure.

3.1.2 Availability-aware placement

One essential issue in NFV deployment is to ensure the availability of the provided
services. Compared to traditional IT services with availability of the order of two to
three nines, telecom services ask for higher availability requirement [79] (i.e., five or
six nines).

Multiple works tackled the problem of robust placement taking into account the
availability of the physical network elements [81,89,123,190|. Zhang et al. [190]
and Sampaio et al. [156] considered the MTBF of DC components to propose high
availability placements of virtual functions in DCs. However, none of these works
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consider the benefits of using redundancy to ensure reliability. Rabbani et al. [149]
solved the problem of availability-aware Virtual Data-Centers (VDC) embedding by
taking into account components’ failure rates when planning the number and the
place of redundant virtual nodes but they do not consider the case of service chains.

Fan et al. [60] explored the problem of online mapping service function chains with
guaranteed availability. They assumed that only VMs would experience failures and
ignore others, such as switches and links. Ding et al. in [51] introduced a heuristic
scheme to efficiently place primary and backup VNFs taking into account the avail-
ability of backup deployments. The authors assign a reliable SFC by computing the
cost of all physical resources within that SFC.

In Herker et al. work [81], SFC requests are mapped to the physical network to build a
primary chain, and backup chains are decided based on that primary chain, while Qu
et al. [147| proposed multi-path backup schemes to maximize the reliability of SFCs
in Data center networks while minimizing end-to-end service delay. The proposed
LP model also replicated the traffic between two end-points in order to support
immediate recovery after a failure. While applying this solution does not prevent
service outage, redundant network and server resources are necessary to ensure the
fast recovery. Moreover, Engelmann et al. [55] proposed to split service flows into
multiple parallel smaller sub-flows sharing the load and providing only one backup
flow for reliability guarantee.

The work of [61] proposes a different online backup selection mechanism. Precisely,
first, VNF chains are mapped onto the network’s substrate. Then, backup VNFs are
selected on the fly if the performed mappings violate the reliability requirements the
authors tended to backup the most unreliable VNFs to improve the total reliability
of SFCs.

3.1.3 Conclusion

In the light of the current research regarding the placement problem (presented in
Sec. 3.1), we found that each work of the state of the art contributions only addresses
a single problem: either placement with some optimization goals (e.g., placement of
VMs, VNFs or SFCs), or online/offline placement while some works have considered
the resilient placement.

To explain this clearly, we provide a taxonomy for these efforts. In this taxonomy we
classify the related works with regard to these metrics: (i) The targeted environment
(Data center or Mobile networks), (i7) the type of the placement problem (i.e., online
or offline problem), (i7i) The problem area (i.e., VM, VNE or VNF), (iv) The used
solution (i.e., exact or heuristic one) and (v) the main objective (i.e., energy, latency,
cost, resiliency, etc.). The taxonomy for the main contributions done in the literature
is shown in Figure 3.1.

Based on this taxonomy, we are the first to propose an approach that considers the
online placement of SFCs requests in data center topologies while taking resiliency
requirements into account as ensuring the continuity of the provided services has
been one of the main challenges in NFV environment. Motivated by this fact, we
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first present a general discussion on the necessity of considering resiliency while
placing virtual functions where show that the choice of the placement may have a
dramatic impact on the ability of the system to be robust to failures (See Chapter 4).

Thereafter, we provide an algorithm (See Chapter 5) for users SFC placement con-
sidering that VNF-based SFC requests come on an online manner, similar to the
assumptions considered by Wang et al. [180], but differently from them, we consider
that each SFC is dedicated to only one tenant. We solve this placement problem using
the k-resilient property to guarantee a requested robustness level as in [20,113,193]
but per-SFC request instead of per VM. We provide a solution based on a priori
VNFs replication [27,28] to avoid the outage of critical services upon failures. More-
over, the FFD greedy solution [2,18,60]is considered in our thesis to compare with
the optimal solution results to understand the impact on the results.

After that, influenced by works [55,81,147| in considering the reliability of the
network, we proposed a stochastic solution (in Chapter 6) to place SFCs that are
requested by tenants that only provide the SFC they want to deploy along with the
required availability level. However, differently from these works, we consider active-
active replication approach for SFC placement such that resources are not wasted
for backup and we propose a different placement strategy for them to satisfy the
required availability.

In our contributions we consider only physical nodes failure as our targeted network
topologies provide more redundancy to physical links comparing with nodes moti-
vated by the related works [20,113,193]. However, unlike all previous works, we
evaluate our proposed solution on very large topologies, considering real data center
topology sizes.

3.2 Big Data Applications

In our information-driven society, data is constantly produced and consumed. It is
estimated that by 2020, for every person on earth, 1,7MB of data will be created every
second [52]. The term Big Data describes innovative techniques and technologies
to capture, store and analyze large-size data sets with high velocity and variety.
The MapReduce framework [49] proposed for processing big data is composed of a
programming model and a runtime environment. The input is typically huge and
divided in files called splits. In the first phase, each split is processed by the map
function that generates key-value pairs. Then, these outputs are shuffled according
to their keys and passed to the reduce tasks that process them again, producing a
final result for each key.

Apache Hadoop [75] is an open-source implementation of MapReduce sponsored
by Yahoo. The two fundamental sub-projects are the Hadoop MapReduce frame-
work that provides the compute layer and the Hadoop Distributed File Sys-
tem (HDFS) [165], which provides the data layer. The architecture is master-slave,
composed by the worker’s nodes that execute the tasks on the data, and the master
that maintains the state of the job, schedules the tasks on the workers and main-
tains the state of the cluster; it was designed to be crash-fault tolerant. However, in
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distributed systems we have to deal with a more complex class of faults such as the
Byzantine faults introduced by Lamport [97]. A protocol that tolerates f byzantine
attackers without compromising the system correctness is called Byzantine Fault

Tolerant (BFT).
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Castro et al. [31] described a new replication algorithm, called BFT, which allows
systems to tolerate byzantine faults. Their BFT algorithm can be used to imple-
ment real services in asynchronous environments such as the Internet. It combines
mechanisms to defend against Byzantine-faulty users by proactively recovering repli-
cas. This replication algorithm needs at least 3f + 1 replicas to tolerate f faulty
users 97, 158|.

Costa et al. [44] also proposed a replication-based Hadoop MapReduce, namely BFT,
which tolerates accidental Byzantines faults, where f+ 1 replicas for map and reduce
tasks. However, voluntary malicious attackers in the system are not tolerated. They
achieve performance close to the double of the standard Hadoop in normal conditions,
without faults. Also, the storage can be made BFT by applying the same principles
where a BFT HDFS solution has been proposed in [40].

In consequence, a Byzantine fault-tolerant version of Hadoop is presented [43]. This
proposed byzantine fault tolerant MapReduce system tolerates arbitrary faults by
executing each task more than once and comparing the outputs. The challenge in
this work was to do this efficiently, with f + 1 replicas of all map tasks that must
complete successfully for reduce tasks to be launched, without the need of running
3f + 1 replicas to tolerate at most f faulty as in [31,175].

In recent years, Peer-To-Peer (P2P) systems have received more attention from in-
dustry and academia. Totally different from the standard client-server architecture,
every peer in a P2P system participates in a virtual overlay network while acting
as a client and a server. Moreover, each peer in a P2P network is responsible for
providing and retrieving data and services to and from other peers in the overlay
network without the need for a central server.

However, the applicability of P2P networks for distributed computing can be a chal-
lenge as the data is distributed to nodes which are, unfortunately, untrustworthy and
unreliable. Thus, we have to operate collaborative services in environment where we
have not only byzantine nodes but also rational nodes that only aim at increasing
their benefit and potentially deviate from the program. This environment is called
BAR (Byzantine, Altruistic, Rational) [4].

Aiyer et al. [4] proposed a BAR Tolerant BART State Machine Replica (SMR)
that can tolerate a limited number of byzantine nodes plus an unlimited number of
rational nodes. To denounce misbehaving nodes to other correct nodes, they use the
concept of proofs of misbehaviour (POM). Li et al. also proposed a BART gossip
protocol [98] to make a peer-to-peer data streaming application that guarantees
predictable throughput and low latency in the BAR model.

Many MapReduce frameworks have been proposed for master-slave opportunistic
environments [104,127] and P2P networks [118,119]. The MOON system proposed
by Lin et al. [104] is designed to support MapReduce jobs on opportunistic environ-
ments. It extends the standard Hadoop with adaptive task scheduling algorithms
to offer reliable MapReduce services on a hybrid resource infrastructure, where vol-
unteer computing systems are provided by a small set of dedicated nodes. These
adaptive task scheduling algorithms distinguish between different types of node out-
ages in order to place tasks and data on both dedicated and volatile nodes.
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Furthermore, the work of Fabrizio et al. [118] focus on improving MapReduce im-
plementations for distributed platforms such as Grid or P2P. Knowing that failures
are likely to happen since peers join and leave the network at an unpredictable rate.
The authors tackled the problems of interrupted peer participation, master failure
and job recovery issues of the MapReduce applications. Where, in case of the master
failure, the backup master is promoted to the master by the election mechanism of
a pool of backup masters.

3.2.1 Conclusion

Byzantine agreement [31,97| and Byzantine fault tolerant state machine replication
have been studied in the literature [4,31,158]. Moreover, few works in the literature
address the problem of proposing fault tolerance mechanisms on Hadoop MapRe-
duce framework to tolerate system faults that corrupt the results of computation of
tasks [40,43,45].

Moreover, when running collaborative services in MAD distributed systems, we have
not only byzantine nodes but also rational nodes that only aim at increasing their
benefit and potentially deviate from the program. Thus, a BAR model is introduced
in the literature to address this challenge [4,41,98]. However, to the best of our
knowledge, there is no collaborative MapReduce framework considering the BAR
model in the literature.
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When deploying network service function chains, the focus is usually given on met-
rics such as the cost, the latency, or the energy and it is assumed that the underlying
cloud infrastructure provides resiliency mechanisms to handle with the disruptions
occurring in the physical infrastructure. In this chapter, we advocate that while
usual performance metrics are essential to decide on the deployment of network ser-
vice function chains, the notion of resiliency should not be neglected as the choice
of virtual-to-physical placement may dramatically improve the ability of the ser-
vice chains to handle with failures of the infrastructure without requiring complex
resiliency mechanisms.

4.1 Introduction

To provide the services demanded by their customers, network providers must contin-
ually purchase, deploy, and reconfigure middle-boxes, which results in high CAPEX
and OPEX and leads to long product cycles to provide these services with a strong
dependence on specialized hardware. To provision more rapidly new services while
reducing costs, Network Function Virtualization (NFV) was proposed [56] and ex-
tended by Service Function Chaining (SFC) that combines multiple network func-
tions in specific orders. NFV and SFC leverage virtualization to deploy services
on commodity hardware hence reducing costs but raising the new challenge of how
to provide efficiency and resiliency into the software with shared and error-prone
hardware resources [58|.

To realize service chains, the placement of the virtual functions onto the physi-
cal infrastructure becomes critical as it plays a major role in the performance and
robustness of the chain. However, while tremendous efforts have been realized on
placing functions to reduce costs and improve performances [102], robustness is often
neglected under the cover that the orchestrator can cope with failures.
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With this chapter, we advocate that accounting for robustness when placing functions
can significantly improve robustness of the chain without increasing the load of the
orchestrator. To that aim, we study a reference chain and demonstrate with an
exhaustive study how placement in the physical infrastructure can influence the
overall robustness of the system even when the virtual chain itself is supposed to be
robust to failures.

4.2 Service function chain robustness

Figure 4.1: Reference chain.

(a) Not robust (b) Robust

Figure 4.2: Examples of placements and their robustness to one failure.

To illustrate the impact of the network functions placement on the resiliency of a
chain, we consider the reference chain presented in Fig. 4.1 and composed of two
equal sub-chains of 3 functions such that when a flow must be processed by the
chain, it can be processed by either sub-chain. The sub-chain that processes a flow
is selected by the cloud infrastructure (e.g., load balancer).

This reference chain is general as it is at the same time robust and fragile. Robust
as processing can be done by any of sub-chain and fragile as if an element in one
sub-chain fails, the whole sub-chain is disrupted. This situation is common when the
flow state is mandatory. We assume that the system that decides the sub-chain to



4.2. Service function chain robustness 41

be used is able to determine if a sub-chain is working properly or not while selecting
the sub-chain of a flow and that it functions properly.

Core

Podl Pod2 Pod3 Pod4

(a) Tree Topology (b) Fat-tree Topology

Spine

Leaf

(c) Spine-and-Leaf Topology

Figure 4.3: Reference topologies.

Fig. 4.2 shows an example where the placement of the chain in the physical infras-
tructure can impact the robustness of the chain to one single failure (node or link).

4.2.1 Simulation environment

To study the impact of the placement of functions onto the physical infrastructure, we
consider all placements of the reference chain presented in Fig. 4.1 onto the following
network topologies: (i) Tree network topology presented in Fig. 4.3a, (i) Fat-Tree
topology with 36 nodes (16 hosts and 20 switch nodes) presented in Fig. 4.3b and
(7i7) Spine-and-Leaf topology with 22 nodes (16 host nodes and 6 switch nodes)
presented in Fig. 4.3¢ '

These topologies are intentionally simple, and very common as data-center topologies
(more details about these DC topologies are provided in Sec. 2.4.2), to clearly outline
the impact of placement on the service robustness. As the number of potential
placements is combinatorial, we randomly sampled the set of all solutions to take a
total of 16,718 different placements?.

To assess the topological properties of the different placements, we consider three
usual metrics: (7) the number of physical hosts and (ii) the number of Top-of-the-
Rack (ToR) switches of the physical infrastructure involved in the placement, which

1 As the purpose is to motivate the robustness problem in service function chaining, we do not
apply any constraint (e.g., bandwidth) on the placement.

2All the code and placement algorithms used in this chapter are available at https://team.
inria.fr/diana/files/2016/05/proconl6.zip
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Figure 4.4: Probability of chain disruption in case of node failure within Tree network
topology.

indicates how the placement shares the load and how it is distributed in the in-
frastructure, and (éi7) the number of virtual functions per host that indicates how
processing virtualization is leveraged by the placement.

Considering the topology as a graph, we can identify two categories of failures: the
failure of a node (i.e., a computing host or a switch) or the failure of an edge (i.e., a
link). To assess the robustness of the placement against failures, we independently
considered these two categories and exhaustively tested every combination of n-
failures of elements of the category (i.e., n nodes or n links).

A placement is considered as n-robust if a flow can be processed by the service chain
for any failure of n physical elements of the network. However, by the construction
of our chain, there exists always at least one case where the chain is not robust:
if several failures happen simultaneously (i.e., n > 2). For this reason, we rather
consider the probability of the chain to fail in case of n simultaneous failures when
failures are independent and equiprobable.
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Figure 4.5: Probability of chain disruption in case of node failure within Fat-Tree
network topology.

4.2.2 Robustness analysis

Overall, no strong linear correlation exists between topological and placement prop-
erties in terms of robustness. Nevertheless, the probability that the chain fails is
weakly correlated with the number of functions deployed on one physical host (cor-
relation is 0.68 for Tree topology) as it is sufficient that at least one function of each
sub-chain is deployed on the same host to break the chain in case of one single failure.

This conclusion is confirmed by Figures 4.4, 4.5 and 4.6, where x-axis is the proba-
bility of chain being disrupted while y-axis is the empirical cumulative distribution
function (ECDF') of having a chain disruption in case of node failures. The ECDF
represents the proportion of observations that are less or equal to the corresponding
the probability of chain disruption value on the x-axis.

Here, we consider the failure of a node in the topology in general (i.e., including
switches and computing hosts) and the cases accounting only for the failure of a
computing host. All these figures indicate that the robustness of the chain is less
sensitive to the failure of computing hosts than to the failure of switches. This is
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Figure 4.6: Probability of chain disruption in case of node failure within Leaf-and-
Spine network topology.

because each host is connected to the network without redundancy via a ToR/leaf
switch. Therefore, the failure of one single ToR/leaf switch breaks the entire chain
even if it is deployed on different physical hosts. On the contrary, to disrupt the
chain with the failure of a host, it is necessary that at least one function of each
sub-chain is deployed on the same physical host.

Moreover, one can note the behavior of the Fat-Tree network is roughly similar to
one obtained from the Tree topology, even though for only one single node failure,
Fat-Tree topology shows less sensitivity than the Tree topology as there is more
redundancy in the edge and aggregation layers in the Fat-Tree network (See Fig-
ures 4.5a and 4.4a). However, the two-tier Spine-and-Leaf topology shows more
vulnerability to failure than the three-tier network topologies especially when the
number of simultaneous failures increases as shown in the Figure 4.6¢.

Similar conclusions can be drawn while considering link failures instead of node
failures (see Figures 4.7, 4.8 and 4.9) where we distinguish failures of inter-switch
links and host-switch links. We can observe that backbone link failures impact the
robustness of the chain, particularly the failure of inter-switch links as actually losing
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Figure 4.7: Probability of chain disruption in case of link failure within Tree network
topology.

the connectivity of ToR switches may impair the chain, regardless of the computing
redundancy.

As illustrated by the all figures, the overall robustness behavior is the same regardless
of the number of simultaneous failures except that the likelihood of having a chain
disruption increases with the number of failures. However, we can notice that link
failures have less impact on the service continuity comparing with the physical node
failures as we have more links redundancy in the reference topologies.

4.3 Discussion

In this chapter, we advocate that the choice of the placement of virtual functions
constituting chains onto a physical infrastructure should not neglect the robustness
of the chain as while some placement may offer good performance, they may be very
fragile to failures of a physical component. In Sec. 4.2.2 we exhaustively studied the
impact on the robustness of the placements of a reference chain within three different
data center topologies. We have seen that even though a chain is logically robust,
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Figure 4.8: Probability of chain disruption in case of link failure within Fat-Tree
network topology.

if robustness is not accounted while deciding the placement it may be broken by a
single failure.

One may argue that the failure of physical infrastructure elements is not an issue as
recovery mechanisms are implemented by the orchestrator. What we answer is that
if these mechanisms are mandatory to make the system truly resistant, they remain
slow as they require VM migrations. On the contrary, a wise selection of placement
permits to be robust to usual simple failures of the physical infrastructure without
having to trigger migrations and thus reducing the stress on the orchestrator that
would then be used only for complex situations.
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Figure 4.9: Probability of chain disruption in case of link failure within Leaf-and-
Spine network topology.
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The trend today is to deploy applications and more generally SFCs in public clouds,
instead of using dedicated infrastructures where software, hardware, and network
components are managed by the same entity. However, by moving their services
to the cloud, the users lose their control on the infrastructure and hence on the
robustness, which makes challenging to guarantee the robustness as with dedicated
infrastructures.

In the previous chapter, we showed that the choice of the placement of service func-
tions onto a physical infrastructure should not ignore the robustness of the chain
as some placement decisions may be very fragile to failures of physical components.
Based on the proposed study on the robustness of the placements of a reference
chain in a tree topology, we have seen that even though a chain is logically robust, if
placement choice was not smart enough, this chain may be broken by a single failure.
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Inspired by the results from the study presented in the previous study, in this chap-
ter, we provide an online algorithm for robust placement of service chains in data
centers. Our placement algorithm determines the required number of replicas for
each function of the chain and their placement in the data center. Our simulations
on large data-center topologies with up to 30,528 nodes show that our algorithm is
fast enough such that one can consider robust chain placements in real time even
in a very large data center and without the need of prior knowledge on the demand
distribution.

5.1 Introduction

Digital services and applications are nowadays deployed in public virtualized envi-
ronments instead of dedicated infrastructures. This change of paradigm results in
reduced costs and increased flexibility as the usage of the hardware resources can be
optimized in a dynamic way, and allows one to build the so-called Service Function

Chains (SFCs) [78].

Conceptually a “cloud” provides one general-purpose infrastructure to support mul-
tiple independent services in an elastic way. To that aim, cloud operators deploy
large-scale data centers built with commercial off-the-shelf (COTS) hardware and
make them accessible to their customers. Compared to dedicated infrastructures,
this approach significantly reduces costs for the operators and the customers. How-
ever, COTS hardware is less reliable than specific hardware [125] and its integration
with software cannot be extensively tested, resulting in more reliability issues than
in well-designed dedicated infrastructures. This concern is accentuated in public
clouds where resources are shared between independent tenants, imposing the use of
complex isolation mechanisms. As a result, moving Service Function Chains to data
centers calls for a rethinking of the deployment model to guarantee high robustness
levels.

In the context of exogenous independent service chains requests in a very large data
center (DC), it is particularly complex for an operator to dynamically place the
different virtual functions constituting the chains in their data center, while guaran-
teeing at the same time robustness to their customers’ services and maximization of
the number of services that can be deployed in their infrastructure. The reason is
that operators have no view on the future requests they will receive and how long
services deployed at a given moment will last, as the demand is elastic by nature. The
key challenge is to design placement algorithms in large data centers given the un-
known nature of the future service chain requests and the need to make the placement
decisions on the fly.

In this chapter, we provide an online optimization algorithm that builds active-active
chain replicas placements such that in case of fail-stop errors breaking down some
function instances, the surviving replicas can be used to support the traffic normally
carried by the failed functions. Our algorithm computes the number of replicas
needed to be robust to R arbitrary fail-stop node failures and where to place them
in the underlying data center.
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The salient contributions of this chapter are the following:

e Fast approximation online algorithm (§5.3) We propose an online two-step ap-
proximation algorithm for very large data centers that determines the optimal
number of service VNF instances and their placement in DCs, based on the
available network resources and the resource requirements of the tenants service
requests, namely CPU and bandwidth.

e FEwaluation at very large scale (§5.4) We provide a comprehensive evaluation
of the proposed algorithm using three large DC topologies: (i) a 48-Fat-Tree
topology with 30,528 nodes, (ii) a Spine-and-Leaf topology with 24,648 nodes,
and (7i7) a generic two-layer topology with 27,729 nodes. To the best of our
knowledge we are the first to demonstrate that robust placement algorithms
can be used in practice in very large networks.

The chapter is organized as follows. Sec. 5.2 states the problem addressed with
this chapter, our approach, and our assumptions. Sec. 5.3 details our algorithm
to deploy SFC with robustness guarantees on DC topologies and Sec. 5.4 assesses
its performance on very large-scale networks with simulations. Finally, Sec. 5.5
concludes the chapter.

5.2 Problem Statement

This chapter aims at providing a mechanism to deploy Service Function Chains
(SFCs) in large public cloud data centers in a way that guarantees that the deployed
SFCs cannot be interrupted upon node failures. In the context of public cloud data
centers, the infrastructure operator does not control the workload and the placement
must be oblivious to the future workload as it is unknown. When a tenant requests
the placement of a chain in a data center, it provides its requirements in terms of
VMs (e.g., VM flavor in OpenStack) and its desired availability SLA (see Sec. 5.2.4).

To address the so-called robust SFC placement in large data centers, we propose
to develop an online optimization algorithm that builds active-active chain replicas
placements. The placement must be such that up to R arbitrary fail-stop errors no
deployed service would be interrupted or degraded.

The target of our algorithm is to maximize the overall workload that a data center
can accept such that service requests are always very likely to be accepted, even
though they are unknown in advance. In other words, we aim at optimizing the SFC
request acceptance ratio.

As our algorithm aims to be used in an online manner, its resolution time must be
kept fast. Namely the resolution of a SFC placement must be done in a time no
larger than the one required to instantiate the SFC functions in the infrastructure
(i.e., the order of a few tens of seconds) even for large data center topologies (more
than 30,000 physical nodes).

We develop a two-step approximation algorithm that first computes the optimal
placement of functions on the DC nodes regardless of the link constraints. It then
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computes the routing table for the traffic carried by the SFC, using a feasible shortest
path between functions.

5.2.1 Assumption

In the following of this section we detail the assumption we took to address the
problem of robust SFC placement in large data centers.

5.2.1.1 Environment: Data Center Topologies with Fault Domains

In this chapter, we consider the common case of multi-tier DC topologies [38] de-
composable in fault domains such as Fat-Tree or Spine-and-Leaf topologies (more
details about DC topologies are provided in Sec. 2.4.2).

Fat Tree (see Figure 5.1) is a common bigraph based three-tier topology for data

centers [5]. The elementary block in this topology is called pod and is a collection of
access and aggregation switches connected in a complete bigraph. Each pod is con-
nected to all core switches. Fat Trees are clos topologies relying on high redundancy
of links and switches.

Spine and Leaf [10,39] (see Figure 5.2) are common two-tier topologies in data
centers, where each lower-tier switch, called leaf switch, is connected to each of the
top-tier switches, named spine switches, in a full-mesh topology. In Spine-and-Leaf
networks groups of servers are connected to the leaves.

Aggregation

Edge

Figure 5.1: Fat-tree Topology.

When network reliability and availability are considered at the early network design
phases, topologies are built with multiple network fault domains. A fault domain is
said to be a single point of failure. It represents a group of machines that share a com-
mon power source and a network switch and it is defined based on the arrangement
of the hardware. A machine, rack or pod can be a fault domain.

In tree-based, switch-centric DC network topology such as Fat Tree and Spine and
Leaf [10], we can define the fault domains easily. In Fat-Tree topologies, each pod is
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Figure 5.2: Spine-and-Leaf Topology
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Figure 5.3: SFC Request Topology.

considered as one fault domain. In Spine-and-Leaf topologies, each leaf switch and
the hosts connected to it form a fault domain.

On the contrary, it is not possible to define fault domains in server-centric DCs — such
as Dcell and Bcube [183]. We therefore do not consider such topologies in our work.

5.2.2 Service Function Chains independence and workload

Public cloud DCs share the same physical infrastructure with heterogeneous services
operated by multiple tenants. In this chapter, we consider the case of tenants willing
to deploy SFCs in the DC. An SFC is a group of virtual functions ordered in sequences
to provide a service to an end user. Each function uses the output of the previous
one in the chain as an input |78|.

An SFC can be represented as a directed graph. Each node represents a virtual
function annotated with its resource requirements (e.g., CPU, memory, etc.) while
each edge represents a virtual link vLink annotated with its requirements (e.g., band-
width). A virtual link logically represents the flow of traffic between two functions
where the destination node (i.e., function) consumes the traffic generated by the ori-
gin node (i.e., function). If no traffic is directly exchanged between two functions, no
vLink is defined. While in the general case SFCs can be arbitrary directed graphs,
we restrict our work to the common case of directed acyclic graphs [110].

In this work, each function is dedicated to only one SFC, and an SFC is under the
sole control of a single tenant. This assumption holds in case of public clouds, where



5.3. SFC Placement with Robustness 53

tenants are independent actors and the DC operator considers functions as opaque
virtual machines. If a function is implemented by using multiple instances of the
same VM (e.g., because of processing limitations of a single host), we assume that
the load is equally and instantaneously balanced between all the function instances,
e.g., through LBaaS in OpenStack.

To preserve performance while sharing the same physical hosts between many ten-
ants, the total amount of the physical host resources is always larger than the sum
of the used resources by various VMs deployed on that host.

As we do not consider the deployment phase of SFCs and given that we consider
Fat-Tree and Spine-and-Leaf topologies in this chapter, we can safely assume that
the network provides infinite bandwidth w.r.t. SFCs demands.

5.2.3 Online Placement

In some specific private cloud deployments, one can control the workload and thus
apply offline optimization techniques to decide on the placement of virtual service
chain functions in the data center. However, in the general case of a public cloud,
the workload and the management of the infrastructure are handled by different
independent entities (i.e., tenants and the cloud provider). As a result, the placement
of SFCs must be determined in an online manner that is oblivious to future demands.

5.2.4 Robustness and Failure Model

We target the placement of SFCs with robustness guarantees, where the k robustness
level stands for the ability of an SFC to remain fully operational upon the failure of
k entities of the infrastructure and without having to re-deploy or migrate virtual
machines upon failures in order to guarantee zero downtime.

When a tenant requests the placement of a service function, it provides the service
function graph with its required resources — the VM flavor for each chain function —
and the SLA commitment for the chain (e.g., five nines).

Assuming a strict fail-stop failure model [157] with uncorrelated events and given the
knowledge of its infrastructure (MTBF and MTTR of the physical equipment), the
SFC graph and subscribed duration, and the requested SLA commitment [132], the
data center operator can determine the maximum number of concomitant physical
node failures that the chain may encounter during its lifetime.

5.3 SFC Placement with Robustness

In this section, we propose a two-phase algorithm to place SFCs in a DC such that
whenever a chain is deployed, it offers robustness guarantees. To avoid downtime
upon failures in the physical infrastructure, we cannot rely on a reactive approach
that would redeploy functions after failure detection [117]. Instead, we propose to
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account in advance for the potential fail-stop node failures that the chains may
encounter during their life cycle.

BW = 30 Mbps

Aggregation

Edge

Podl Pod2 Pod3 Pod4

Figure 5.4: Initial placement. Link capacity: 20 Mbps, Core per hosts:3, where (Fx: y) —
(Function name : Required C PU Cores)

Core

ggregation

Dl
<1

Edge

Pod1 Pod2 Pod3 Pod4

Figure 5.5: Final placement. Link capacity: 20 Mbps, Core per hosts:3, where (Fx: y) —
(Function name : Required C PU Cores)

To that aim, our algorithm replicates multiple times the chain and scales down each
replica such that each replica has an equal fraction of the total load of the initial
chain. In the remaining of this chapter, we refer to such scaled down replicas with the
term scaled replica. Our algorithm is called each time a request to install an SFC is
received. Specifically, for a robustness level R, the algorithm determines how many
scaled replicas to create for that SFC and where to deploy them within the data
center such that the chain will be robust to at least R simultaneous fail-stop node
failures without impairing the robustness guarantees of the chains already deployed.
In other words, even if R nodes fail, every chain deployed in the data center will keep
working at its nominal regime.
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To guarantee the isolation between scaled replicas of a chain, each replica of a chain
is deployed in a different fault domain [100]. Also, as we assume a fail-stop failure
model, at least R + 1 scaled replicas are needed to be robust to R failures. At first,
the algorithm creates R+ 1 scaled replicas' and tries to find R+ 1 fault domains able
to host the scaled replicas. If no solution exists, the algorithm is repeated for R + 2,
R+ 3,..., maz iteration replicas until a solution is found. If a solution is found, the
scaled replicas can effectively be deployed in the data center.

To determine whether a placement is possible for a given robustness level, the algo-
rithm considers the normal committed resources, i.e., the minimum resources (e.g.,
cores, memory) that a compute node must dedicate to guarantee proper functioning
under normal conditions (i.e., no failures) and the worst-case committed resources,
i.e., the minimum number of resources required on compute nodes to guarantee
proper functioning upon R simultaneous compute node failures impacting the chain.

Figure 5.4 and Figure 5.5 illustrate the behavior of the algorithm with the deployment
of a chain composed of two functions: the first function requires 4 cores, while the
second one requires 2 cores and the flow between these two functions requires 30 Mbps
to properly work, with the target of being robust to one node failure. Figure 5.4 shows
the placement of the chain in a Fat-Tree data center where each node in the DC has
3 cores. Each replica receives 50% of the expected load, shown in red (e.g., Function
F1 in each replica needs 2 CPU cores instead of 4 CPU cores). After checking the
robustness, the algorithm decides to split the chain since the first placement does
not meet the robustness requirements because the worst-case commitment is not
respected, as one failure would result in the need of 4 cores on the remaining hosts.

Moreover, the physical network links cannot support more than 20 Mbps while in the
worst-case the link requirement is 30 Mbps. The placement in Figure 5.5, depicted
in green, meets the robustness level as when a node fails, one of the scaled replica
will fail but the other replicas will be able to temporarily support the whole load of
the failed one as in the worst case each link needs to hold 5 Mbps more.

In order to find such a placement, we propose a two-step algorithm, listed in Algo-
rithm 1. In the first step, SolveCPU(G, C, R, M) solves the problem of placing
the service function chain C' on the DC topology G taking into account the required
robustness level R and the functions CPU requirements (see Sec. 5.3.1). If the so-
lution is empty, this means that no function placement can be found and the SFC
request will be rejected. Otherwise, the result of this step corresponds to the set of
mappings associating replica functions and the compute nodes on which they have
to be deployed. In the second step, the obtained solution will be used as an input
of Algorithm SolveBW(G, C, CPU-Placement) in which each vLink is mapped
to one or more physical link(s), called path(s), according to the bandwidth require-
ments, see Sec. 5.3.3. If all vLinks can be mapped, the service will be accepted
and deployed on the DC network. Else, the service request will be rejected as the
bandwidth requirements cannot be satisfied.

'Each scaled replica is in charge of R%v—l chain load.
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Algorithm 1: Robust placement algorithm

Input: Physical network Graph: G
C € Chains
Robustness level: R
Maximum number of replicas: max _iterations

M = max _iterations
CPU _Placement= SolveCPU(G, C, R, M)
if CPU_Placement=¢ then
‘ Error (Impossible to place the chain NF's)
else
BW _Placement= SolveBW(G, C, CPU_ Placement)

if BW_Placement=¢ then
‘ Error (Impossible to place the chain vLinks)

else
L deploy (G, CPU _Placement, BW _Placement)

Algorithm 2: SolveCPU algorithm
Input: Physical network Graph: G
C € Chains
Scaled chain replica graph: SC
Robustness level: R
Maximum number of replicas: M

n=R+1
CPU_Placement = ¢

while CPU_Placement = ¢ and M > 0 do
SC = scale_down(C, n)

CPU _Placement = solve_placement (SC, G, n)
n=n-+1
M=M-1

return(CPU _ Placement)

5.3.1 Node placement

In the function placement step (see Algorithm 2), the solve_placement(SC, G,
n) function considers two graphs: the DC topology graph G and the scaled replica
graph SC' where the scale_down(C, n) function computes the scaled replica
scheme, i.e., an annotated graph representing the scaled down chain, for a chain
C if it is equally distributed over n scaled replicas (see Sec. 5.3.2). The goal of
the function solve_placement (SC', G, n) is to project n function replicas of the
scaled replica graph S on the topology graph G with respect to the physical and
chain node constraints.
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Algorithm 3: SolveBW algorithm

Input: Physical network Graph: G
C € Chains
CPU_ Placement: Placement of SFCs nodes

BW _Placement = ¢

foreach replica_placement € CPU_ Placement do
foreach vLink do
paths = all_shortest_paths(G, SC, D)
path = valid_path(paths)
if path # ¢ then
‘ BW _Placement & path
else
BW _Placement = ¢
L break

return(BW _ Placement)

For each fault domain, solve_placement(SC', G, n) tries to find a solution for
the linear problem defined in Sec. 5.3.1.1, which aims at finding a placement for the
scale replica graph in the fault domain while respecting VNFs requirements. If there
are at least n fault domains with a solution to the problem, then any n of them is
a solution to our robust placement problem. Otherwise, no solution is found and an
empty set is returned.

5.3.1.1 ILP Approach

The online robust placement problem can be formulated as an Integer Linear Pro-
gramming (ILP).

Given the physical network undirected graph G = (V, E) and the service function
chain directed graph ¢ = (V',E'). Table 5.1 summarizes all the variables that
define the problem and other variables used in our model formulation to place one
particular service chain.

To solve the placement problem, we introduce two binary decision variables of dif-
ferent types:
(1) Bin used variables. u(h) indicates whether physical host h is used.

(2) Item assignment variables. my indicates whether function f is mapped to phys-
ical host h.
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Parameter Description
G G = (V, E) Undirected graph that represents the physical
network
\Y Set of physical nodes V= S U H, where S represents the

switch nodes for routing and H stands for the nodes with
computational resources used to host service functions

E Set of physical links with available bandwidth resources

C C = (V',E') Directed graph that represents the SFC re-
quested by tenants

SC Scaled graph, similar to C graph but with scaled resources

vV Set of nodes representing virtual functions with computa-

tional resources requirements

E Set of virtual links with bandwidth requirements
H Set of compute hosts h

F Set of virtual functions f of the SFC to place

A Set of start/end points for SFC requests

CPU(h)  Number of available CPU cores on the physical host node
he H: CPU(h)#0

CPU(f) Number of CPU cores required by the chain function
f € F: CPU(f)#0, while Ya € A : CPU(a)=0

CPUR(h) Number of remaining CPU cores on the host node h after
placement

u(h) Binary variable for physical host node assignment:
Vh € H,u(h)=1 if host h is used and u(h) = 0 otherwise
Mg Binary variable for chain function f to host node h mapping

Vh € H\Vf € F,my; =1 if function f mapped to h and
my =0 otherwise.

Tra Mean inter-arrival time of chain placement requests
S Mean service time in which chain remains in the system
R Required robustness level (i.e., maximal number of simulta-

neous physical failures allowed in the system)

Table 5.1: Notations used in the chapter
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5.3.1.2 ILP Formulation

Objective:
i PUg(h 1
max min (CPUR(h)) (5.1)
Subject to:
Assignment constraints:
Vf € F, > mpnp=1 (5.2)
heH
VheH, u(h)=1if Y mysy>1 (5.3)
fer

Capacity constraints: Vh € H,

> mygn . CPU(f) < CPU(h) (5.4)
feF
CPUg(h) = CPU(h) = > myy . CPU(f) (5.5)
fer

5.3.1.3 ILP Explanation

Normally, to implement their policies, operators must define their objective function;
for example, service providers may want to reduce the placement cost or the energy
consumption by minimizing the number of used hosts involved in the placement.

For our model, the optimization objective presented in Equation 5.1 aims at maxi-
mizing the minimum remaining CPU resources on each physical host in the network.
This objective corresponds to spreading the load over all the hosts in the DC.

Constraint (5.2) guarantees that each virtual function is assigned only once while
Constraint (5.3) accounts for the used hosts. Constraints (5.4) and (5.5) ensure that
hosts are not over-committed and account for their usage, where CPU(h) is the
amount of available CPU cores of the physical host (k) and CPU(f) is the number
of CPU cores required by function (f).
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5.3.2 Replication Model

When a new SC request is received, in order to fulfill its required robustness level,
the chain is replicated in additional chains; each one is called a scaled replica. The
idea behind replication is to exactly replicate the functionality of a chain such that
the load can be balanced equally among all replicas. Each replica requires only a
fraction of the initial required resources. More precisely, each scaled replica requires
% of the resources of the main chain if the chain has been replicated n times.

The scale_down(C', n) function computes an annotated graph representing the
same graph as C but where the resources associated to each node and link have been
scaled down by a factor n. It is worth noting that some resources are discrete or
cannot go below some threshold, meaning that the function may not be linear. For
example, if the unit of core reservation is 1 core, then scaling down 3 times a resource
that requires 2 cores will result in requiring 1 core on each replica.

5.3.3 vLink placement

The BW _problem (see algorithm 3) represents the last step in our placement process.
Its objective is to map virtual links to actual network paths, based on the placement
of virtual network functions obtained from the CPU_placement step.

For each virtual link between two functions in each service scaled replica, it retrieves
all the shortest paths between the source and the destination physical servers that
host these two functions (i.e., the traffic traversing a vLink may cross several phys-
ical links). Among these shortest paths, the valid_path(paths) function tests the
shortest paths randomly in order to find one path that can hold the required traffic.
Thus, for each vLink it tries to find one valid shortest path.

If none exists, it returns an empty set, which means that the placement will be
rejected. Else, this accepted path will be appended to the list of accepted paths.
The set of vLinks placement (BW _ Placement) is returned so that the chain can
ultimately be deployed by using the Deploy(G, CPU_Placement, BW_Placement)
function (i.e., virtual functions are instantiated and network routes are installed in
the switches).

5.3.4 Discussion

Defining the optimal of an online problem is always a challenge as it potentially
requires solving at any time ¢ a problem whose optimal depends on time ¢’ > t for
which the knowledge is incomplete or absent.

In this chapter we aim at finding, in an online manner, placements for SFCs in large
data centers that guarantee robustness and with the objective of maximizing the SFC
request acceptance ratio. Our problem is a variation of the online job shop scheduling
problem with multiple operations (i.e., functions) per job (i.e., SFCs) for a number
of resources > 2 (i.e., servers and links), with penalties and unknown jobs arrival
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and duration. This particular problem is reputed to be NP-complete [67,90,172]. To
the best of our knowledge, no bounded heuristic is known for this problem.

We approximate this problem with a two-step algorithm to be executed at each SFC
request arrival. The first step finds an optimal feasible placement for the different
constituting functions of the service function chain within one fault domain. A
feasible placement is a placement for which there is no over-commitment of CPU
cores on the server (i.e., a function never shares a core with another function and the
number of consumed cores on a server does not exceed the number of cores of the
server) and an optimal placement is a placement for which each server maximizes its
number of available cores for future potential function placements.

Even though this is a variation of the Knapsack problem, which optimization is
NP-hard, in practice as chains are small and as fault domains do not face high
contention situations, finding the optimal is feasible in short time (see Sec. 5.4 for
practical examples on very large data centers). Once the placement of functions
is decided at the first step, regardless of the network situation, a feasible path is
decided in the second step of the algorithm in polynomial time using shortest path
computation exploration.

It is worth it to mention that our approximation algorithm does not guarantee to
maximize the acceptance ratio of SFC requests. However, it approximates it by
ensuring that after each placement, each server will offer the maximum number of free
CPU cores. In tight scenarios with high contention, this would be far from optimal.
However, in practical cases with limited resource contention, this approach offers
both good acceptance ratios and acceptable computation times, as demonstrated in
Sec. 5.4.

5.4 FEvaluation

In the following we evaluate the robust SFC placement algorithm introduced in
Sec. 5.3.

5.4.1 Simulation Environment

We have implemented a discrete event simulator in Python.? In the evaluation,
requests to deploy a chain are independent and follow an exponential distribution
of mean T4, where T74 is the mean inter-arrival time of chain placement requests
(measured in arbitrary time unit). Service function chains have a service time of
S time units, i.e., the time the chain remains in the system is randomly selected
following an exponential distribution of mean S. An SFC that cannot be deployed in
the topology is lost, i.e., there is no further request for the rejected chain. In total,
our synthetic workload for the simulations contains 1,000 service request arrivals
made of 20 arbitrary chains.

2All the data and  scripts used in  this chapter are  available  on
https://team.inria.fr/diana/ITEEEAccess/.
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In the simulations, every SFC forms a linear chain of functions put in sequence. Each
chain has one single starting point and one single destination point. The number of
functions between the two endpoints is selected uniformly between 2 and 5, based
on typical use cases of networks chains [107], and the requirements of each function
in terms of cores is 1, 2, 4, or 8 inspired by the most common Amazon EC2 instance
types [8]. Each vLink consumes 250 Mbps.

Simulations are performed on the three following topologies: (i) 48-Fat-Tree topol-
ogy, with 48 pods, each of them having 576 hosts for a total of 27,648 hosts; (ii)
Spine-and-Leaf topology, a network with 48 leaf switches directly connected to 512
hosts for a total of 24,576 hosts, and generic topology, which is built from 54 switches
connected to each other and each one of them is connected to 512 host nodes. Each
switch represents one fault domain with a total number of 27,648 hosts in this topol-
ogy. The three topologies are representative of today’s data centers and are directly
comparable (they have either the same number of fault domains, or the same num-
ber of hosts and cores). Resources are homogeneous in the topologies: all hosts have
the same number of cores (4 cores per host); all links between aggregation and core
switches in the Fat Tree and between leaf and spine switches are 10 Gbps links; and
hosts are connected to their ToR/leaf switch through a 1 Gbps link.

To ensure that we are not studying transient results with the workload, we verified
that the whole system is in steady state before running a workload of 1,000 service
requests. We fixed T74 to the value 0.01 such that in the ideal case, the Fat-Tree
topology would be loaded at about 90%. Because of space limitations, we fixed R
to be equal for each chain in a run, however the algorithm allows using a different
value of R for each chain. Our simulations have been performed in Grid’5000.% In
addition, all the following experiments were repeated 10 times using ten different
workloads with the same parameters.

5.4.2 Acceptance Ratio

In this section we study the impact of required robustness level R on the ability to
satisfy SFCs placement requests. To that aim, we use the acceptance ratio defined
as the number of accepted requests over the total number of requests.

Figure 5.6 shows the evolution of the acceptance ratio with the 3 different large
data-center topologies described above (i.e., Fat Tree, Spine and Leaf, and Generic)
w.r.t. the robustness level. The particular choice of topologies permits to evaluate
the impact of the number of fault domains and the number of core resources on the
acceptance ratio. Here we distinguish between two configurations for our placement
algorithm: in strict we impose the number of scaled replicas to be exactly R + 1
while in relazx the number of scaled replicas can be any integer value between R+ 1
and (R+1)-2.

Moreover, we consider two different function placement algorithms: (i) Optimal
solves the optimization problem specified in Sec. 5.3.1.1 and (i) FFD uses the well-
known First-Fit Decreasing (FFD) greedy heuristic [18,189].

3We ran the experiments on the site located in Rennes, https://www.grid5000.fr/.
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Figure 5.6: Comparing acceptance ratio of the Optimal solution and Greedy FFD
for 3 different topologies with 3 robustness levels.

In general we can expect that the acceptance ratio decreases when the robustness
level increases as increasing robustness means dedicating more resource to each func-
tion. This trend is confirmed by Figure 5.6. One can also expect to have better
acceptance ratio with Optimal than with FFD but even if it is true, in practice the
difference is negligible as shown in Figure 5.6.

While the impact of R and the impact of using FFD instead of the optimal are
evident to forecast, it is much harder to speculate on the impact of being strict in
the number of scaled replicas or not (i.e., strict versus relaz). On the one hand being
strict reduces the amount of resources used for each deployed function and should
thus give more space for other functions. On the other hand not being strict allows
splitting chains further such that the replicas can be “squeezed” in servers with less
available resources. This duality is clearly visible in Figure 5.6.

For R = 0 we observe that by being strict, only around 81% of the requests can be
satisfied while allowing more than R+ 1 scaled replicas allows to satisfy all demands.
The difference between the two scenarios can be explained by the fact that we inten-
tionally made the workload such that in 19% of the demands at least one function in
the chain requires 8 cores. As the servers only have 4 cores, it is then impossible to
install them unless we allow using multiple replicas (which is the case for relax with
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R Topology Fat-Tree SpineéLeaf Generic
0 0.808 0.808 0.808
1 0.838 0.797 0.836
2 0.649 0.615 0.647
3 0.570 0.542 0.578

Table 5.2: Similarity Index between the strict and relaz configuration for the three
different topologies.

R = 0 case but not for strict with R = 0 case). This first observation confirms that
allowing more scaled replicas gives more flexibility in finding a placement solution.

This trend is clearly visible, except for R = 1 where we can see that in the Spine-
and-Leaf topology (see Figure 5.6b) strict outperforms relaz. The reason of this
difference lays in the fact that in the strict case it is still impossible to install the
19% of requests with at least one function requiring 8 cores. Indeed, in case of failure
the only remaining replica would still require 8 cores, while under normal operations
each of the two replicas only needs 4 cores. As these chains are not installed, they
leave enough room for the others to be installed. On the contrary, with the relaz
case, these requests can be satisfied but consume a substantial amount of resources;
they need at least 3 scaled replicas to be deployed, which prevents other chains to
be installed, hence reducing the overall acceptance ratio.

It is worth mentioning that if the acceptance ratios for R = 1 seem to be identical
for both cases in the Fat-Tree and the Generic topologies, they are actually slightly
different and the similitude is only an artifact of the workloads and topologies that
we used. Indeed, even though the acceptance ratios are very close, the placements
are largely different as shown by the Jaccard similarity coefficient [87] of only 0.84
(see Table 5.2). In general, the dissimilarity of placements increases with R. For
example, the Jaccard similarity coefficient is as low as 0.54 in the Spine-and-Leaf
topology when R = 3.

Keeping in mind that the Fat-Tree topology has the same number of fault domains
as the Spine-and-Leaf topology but has more cores in total, and that the Generic
topology has the same number of cores as the Fat-Tree topology but with more fault
domains, the comparison between the 3 topologies leads us to conclude that as long
as the number of fault domains is larger than max _iterations, the number of cores
is what influences the most the acceptance ratio.

To complement the acceptance ratio study, Figure 5.7 and Figure 5.8 provide the
empirical cumulative distribution functions of the number of scaled replicas created
when placing SFCs while guaranteeing different robustness levels for the three differ-
ent topologies with the relaz configuration. As we consider highly loaded topologies,
most of the time R+ 1 or R + 2 replicas are enough to ensure robustness level of R
and we seldom reach the (R+1)-2 limit, as most resources are consumed by replicas
of other chains.
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Moreover, if we take a careful look at the number of scaled replicas for R = 0,
about 80% of services are placed with only 1 replica which is the same value of
the acceptance ratio for R = 0 with the strict configuration in Figure 5.6 — and
about 20% with two scaled replicas. This extra replica leads to an increase in the
acceptance ratio where the acceptance ratio reaches 1 when we relax the replication
(in Figure 5.6).
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Figure 5.7: The ECDF for the number of created replicas with 3 robustness levels
with 3 different topologies for the optimal algorithm.

If we study the probability of a chain to be accepted as a function of its requested
number of cores (see Figure 5.9 and Figure 5.10), we see that our algorithm favors
the installation of small chains over large ones, particularly for large values of R.*

5.4.3 Acceptance ratio in case of network congestion

In Sec. 5.4.2 when a request is rejected, the reason is always that the placement
algorithm was not able to find hosts with enough free cores, and never because of
the network capacity. This is because each host is connected to the network with a

“We can explain that the figures do not show smooth decreasing lines by the fact that we only
used 20 different chain types, which is not enough to cover all potential cases.
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Figure 5.8: The ECDF for the number of created replicas with 3 robustness levels
with 3 different topologies for the FFD algorithm.

1 Gbps link and has 4 cores. As our algorithm cannot overcommit hosts we know
that a host will never run more than 4 functions simultaneously. Therefore, as each
vLink requests 250 Mbps, the traffic to or from a host never exceeds 1 Gbps which
is not enough to overload the host links and as we use clos topologies, it means that
the backbone network also cannot be overloaded.

In this section, we aim at stressing the network as well as the hosts. To that aim we
keep the same workload as in Sec. 5.4.2 but vLinks request 500 Mbps instead of 250
Mbps, which may result in network congestion.

Figure 5.11 shows the acceptance ratio for this new scenario (labeled w/ congestion
and compares it to previous results (labeled as w/o congestion). For R = 0, the
acceptance ratio drops by 50% or more because the network cannot handle the load.
Even though the drop is important in both cases, as the relax option allows to create
multiple replicas, it outperforms the strict option. However, as soon as R > 1, we
obtain the same results than in Sec. 5.4.2 as we fall back in a case with no network
congestion because when every function uses at least 2 scaled replicas, the network
demand for a host will not exceed 1 Gbps.
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Figure 5.9: Probability of service chain being accepted based on the number of
requested CPU cores for different robustness levels with 3 different topologies using
the Optimal algorithm.

5.4.4 SFC Request Placement Time

To be acceptable, the time spent on finding a placement must be at most of the same

order of magnitude as the deployment of the VMs themselves in order not to impact
the deployment time of a service.

Figure 5.12 shows the whisker plot of all computation times of Algorithm 1 for the
harder instance of the problem, namely the Fat-Tree topology with the relax scheme

for both the optimal and FFD. The simulations were performed in Grid5000 [26] on
the Rennes site in fall 2018.

We make the distinction between the time elapsed when requests result in an effec-
tive placement (Accepted Services) in Figure 5.12b and when they do not (Rejected

Services) in Figure 5.12¢, while Figure 5.12a (All Services) aggregates computation
time for all requests, regardless of the outcome.

The computation time increases rather linearly with the robustness level and never
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Figure 5.10: Probability of service chain being accepted based on the number of
requested CPU cores for different robustness levels with 3 different topologies using
the FFD algorithm.

exceeds a few seconds, which is negligible compared to the typical time neces-
sary to deploy and boot virtual functions in data centers [116]. This rather lin-
ear increase is because an increase of R incurs a proportional increase of the num-
ber of iterations (maz iteration) and the number of required fault domains (n in
solve_placement (S, G, n)) but does not change the size of the solve-placement
problem (see Sec. 5.3) as the size of the fault domain is not impacted by R.

Furthermore, for both figures, the computation time is longer when requests are
rejected than when they are accepted as the rejection of a service request can only be
decided after having tested all the allowed number of replicas (i.e., max _iteration).

Note that all demands are accepted for the relaxed case when R = 0 which explains
the absence of observations for R = 0 in Figure 5.12c.

Regarding accepted services, (e.g., for R = 1 in Figure 5.12b), the spread between
median and upper quartile is smaller than the spread between median and lower
quartile as most of placements require R + 1 or R + 2 replicas only. However,
in some scenarios, the algorithm is iterated until the maximum allowed iterations

reached in order to find this valid placement, which explains having the outliers in
the Figure 5.12.
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Figure 5.11: Comparing acceptance ratio of the Optimal solution for the different
topologies with 3 robustness levels for the two workloads.

Interestingly, even though the execution time is shorter when FFD is used, it remains
of the same order of magnitude as when the optimal placement is used instead.

5.5 Conclusion

In this chapter we proposed a solution to deploy tenants’ service function chains in
public cloud data centers with guarantees that chains are robust to R independent
fail-stop physical node failures. The idea is to replicate the chain in multiple inde-
pendent locations in the data center and to balance the load between these replicas
based on their availability in order to prevent downtime upon failures in the physical
infrastructure.

To that aim, we proposed an online two-phase algorithm that determines the num-
ber of replicas and where to place them to guarantee some robustness level based
on an ILP solution or its approximation. Moreover, we extensively evaluated this
algorithm on very large data center networks — up to 30,528 nodes — to assess the
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Figure 5.12: Algorithm computation time with different robustness levels for the
Fat-Tree topology with relax configuration.

feasibility of our proposition in very large scale data-centers. We showed that ap-
proximating the solution with the widely used FFD technique was not mandatory
as optimal placement of independent replicas was feasible in acceptable time, which
allows placement decisions to be made on-demand and without prior knowledge on
the DC workload.

We studied the impact of the choice of the topology and the expected robustness
level on the acceptance ratio and on the placement computation time. It shows that
when the data center is sufficiently provisioned, our algorithm is able to provide a
robust placement for all the chains. On the contrary, when the DC lacks resources,
the algorithm tends to favor shorter chains as they consume less resources, giving
them more placement options.

However, the deterministic solution provided in this chapter works well when the
requested services are deployed by a service provider that has a full control and
knowledge of the underlying infrastructure. Thus, in the next chapter we will present
a stochastic approach to deploy the services requested by tenants oblivious to the
underlying physical network.
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As mentioned before, complex inter-connections of virtual functions form the so-
called Service Function Chains (SFCs) deployed in the Cloud. Such service chains
are used for critical services like e-health or autonomous transportation systems and
thus require high availability. Respecting some availability level is hard in general,
but it becomes even harder if the operator of the service is not aware of the physical
infrastructure that will support the service, which is the case when SFCs are deployed
in multi-tenant data centers. In the previous chapter, we considered the situation
in which the service provider has a full control and knowledge of the underlying
infrastructure.

In this chapter, we propose an algorithm to solve the placement of topology-oblivious
SFC demands such that placed SFCs respect availability constraints imposed by the
tenants. The algorithm leverages Fat-Tree properties to be computationally doable
in an online manner. The simulation results show that it is able to satisfy as many
demands as possible by spreading the load between the replicas and enhancing the
network resources utilization.
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6.1 Introduction

As mentioned before, in NF'V environments, multiple VNFs share the same physical
resources of the underlying infrastructure; even a single failure in the underlying
network can affect a large number of the services of the operators. Therefore, ensuring
the required availability level is an important feature in virtualized environments.

Replication mechanisms have been proposed in the literature (e.g., [27,59,113]) to
improve the required service availability based on VNF redundancy, which allow
configurations in Active-Backup or Active-Active modes. However, some proposi-
tions [29] focus on replicating the SFCs in multi-tenant data centers where the tenant
demands are oblivious to the actual physical infrastructure of the Data Center. Such
an environment is particularly challenging as the demand is not known in advance
and cannot be controlled. For the data center operator, it is therefore important to
limit the number of replications to its minimum, yet respecting the level of service
agreed with its tenants.

Differently from the solution presented in the previous chapter, in this chapter, we
propose a placement algorithm for topology-oblivious SFCs in Data Centers relying
on Fat-Tree topologies. The algorithm is run by the network hypervisor and guar-
antees that Service Level Agreements (SLA) with the tenants are respected, given
the availability properties of the hardware deployed in the data center. Our propo-
sition is based on an iterative linear program that solves the placement of SFCs
in an online manner without prior knowledge on placement demand distribution.
The algorithm is made computationally doable by leveraging symmetry properties
of Fat-Tree topologies. Our evaluation on a very large simulated network topology
(i.e., 27,648 servers and 2,880 switches) shows that the algorithm is fast enough for
being used in production environments.

The rest of the chapter is organized as follows. Section 6.2 describes the problem
statement. Section 6.3 formulates the optimization model. Finally, Section 6.5 eval-
uates the performance of our solution and Section 6.6 concludes this chapter.

6.2 Problem Statement

This section defines the problem of placing SFCs in Data Centers under availability
constraints.

Without any loss of generality, and inspired by works ( [68,81]), we only consider
server and switch failures and ignore link failures. We also consider that all equip-
ment of a same type has the same level of availability (more details are provided in
Section 6.5.1).

6.2.1 Detailed description on the problem

This work develops an availability-oriented algorithm for resilient placement of VNF
service chains in Fat-Tree based DCs where component failures are common [81].
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The Fat-Tree topology is modeled as a graph where the vertices represent switching
nodes and servers, while the edges represent the network links between them. Fur-
thermore, SFC provides a chain of network functions with a traffic flow that need
to traverse them in a specific order. We only consider acyclic SFCs. As we are in
a multi-tenant scenario, functions are deployed independently and cannot be aggre-
gated (i.e., function instances are not shared between SFC instances or tenants).

Each function is considered as a single point of failure. Thus, to guarantee the
availability of a chain we use scaled replicas: we replicate the chain multiple times
and equally spread the load between the replicas.

Upon independent failures, the total availability for the whole placed SFC replicas
will be computed using Eq. (6.1) (availability for parallel systems).
availability = 1 — H (1 — avas,) , (6.1)

1€n_replicas

where avasg, is the availability of replica 7 of service chain sc and n_ replicas is the
number of scaled replicas for this service chain. The availability of each service chain
replica avas, is defined by

AVage; = H Ayr,Vi € n_replicas (6.2)
fer

where Ay is the availability of a service chain function f, which corresponds to the
availability of the physical node that hosts this function ( [29,59]).
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Figure 6.1: Fat-Tree topology example.

In Fat-Tree network topologies (Fig. 6.1), the availability of a system composed
of multiple functions depends on its placement in the topology. For example, the
availability of a SFC for the three scenarios for SFCs placement presented in Fig. 6.1
is calculated as follows: (i) Scenario 1, where service chain (SC1) is mapped to only
one physical host, the availability of SC1 is equal to the availability of its host node
(h1) while (i) in Scenario 2, SC2 is placed on 2 different hosts under the same ToR
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switch, so the availability of this service is equal to the availability of all participating
host nodes in addition to the availability of their parent ToR switch as follows:

Asc2 = Aps-Ane-AToR- (6.3)

However, in Scenario3 where the chain SC3 is placed on different hosts connected
to different ToR switches within the same pod, the availability is given by:

Ascs = Apg- A1 (Aror)? . [1 — (1 — Aagg)?] - (6.4)

In the general case of a k-ary Fat-Tree, each host is connected to one ToR switch
(edge switch) which is directly connected to k/2 switch in aggregation layer and each
switch in the aggregation layer is then connected to k/2 switches in the core layer.
The generalized availability equation becomes:

ASC3 = (Ahost)n_h-(AToR)n_TORs- 1-— (1 - AAgg)k/g] ) (65)

where n__h refers to the total number of used hosts and n_ToRs refers to the total
number of ToRs involved in the placement.

6.3 Model Description and Formalization

6.3.1 Model Variables
We present here the variables used in our model formulation to place one particular
service chain:

e pe P:podld, t € ToRs: ToR Id, h € Hosts: host Id and F is a sequence of
NFs id f of the SFC;

e m,: binary variable, equals to 1 if the pod p is used, and 0 otherwise;
e 7, availability for the mapped service chain;
e R € [0,1]: SFC requested availability in the SLA;

® U, 5 5 binary variable, equals to 1 if the function f is mapped to a specific
physical host identified by its pod p, its ToR ¢, and its Id h, and 0 otherwise;

® & p: binary variable, equals to 1 if the host h under the ToR ¢ of the pod p
is used, and 0 otherwise;

® p;p: binary variable, equals to 1 if the ToR ¢ on the pod p is used, and 0
otherwise;

® J7,: a binary variable that equals 1 if the function f is mapped to the pod p,
and 0 otherwise;

e c,: total number of used hosts under pod p;

e 0,: total number of used ToRs under pod p;
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e (y: required CPU resources for function f;

e (}: total available CPU resources on host h;

o Ay, As: availability of host h and switch node s, respectively.

6.3.2 Model Formulation

The optimization objective is to minimize the number of scaled replicas (i.e. number
of used pods as each replica is placed in a different pod). This translates into:

Obj : Miny _ mp.
peP

Subject to the following constraints:

Ta >=R

VheHpepter * Ehpt =1 ifz Upthf =1
fer

Vierpep : prp =11t Z Z Uptng =1
heH feF

Vicrpep : O0fp =1 ifz Z Upthf =1
teT heH

Vpep i mp =1 1> > Y pps>1

teT heH feF

VpeP, Vier Vycp sy i 0fp <0y

Vier, Vpep : Z Z Upthf <1
teT heH

Vpep : €p = Z Z Ehpit

teT heH

Vpep i op = Zpt,p

teT
0, ife, =0
v Ah, if Ep = 1
Ly =
R ' if e, >1and o, = 1

AP AT (1—(1—A))2), ifo,>1

(6.6)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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To=1-]]1-q) (6.17)

peP

Vher Z Z Z Uptng Cr < Ch (6.18)

pEP teT fEF

Constraint (6.7) ensures that the placement offers an availability at least as high as
the one required in the SLA. Constraint (6.8) (resp. (6.9)) marks that the host (resp.
ToR) is used if at least one NF is deployed on it (resp. on a host connected to it).
Similarly, Constraint (6.11) indicates whether or not a specific pod is used.

Constraint (6.10) indicates that a function f is placed on a specific pod p.

Constraint (6.12) ensures that if one function of a scaled service replica is placed
in one pod p then all other functions of this replica are placed in this same pod.
Constraint (6.13) ensures that two replicas of the same function are never placed in
the same pod.

Equation (6.14) refers to the total number of used hosts under each pod p, while
Equation (6.15) indicates to the total number of used ToRs under each pod p in
order to use them in Equation (6.16) to compute the availability of each scaled SFC
replica. The latter takes one of four possible values based on the values we get from
Equations (6.14) and (6.15). Finally, Constraint (6.18) ensures that the functions
placed on a physical host node cannot use more CPU resources than its host resource
capacity.

Constraints (6.16) and (6.17) are non-linear; we show how to linearize them in Ap-
pendix A.1. In our evaluation section, we used the linearized version of the model.

6.4 SFC Placement with Robustness

Directly solving the model of Sec. 6.3 for a large DC topology is impractical. Instead
we apply the model on a (small) subset of the topology, more precisely, only in one
fault domain (pod), for the new model: Equations (6.7, 6.17) will be removed, and
the new objective is to maximize the placement availability over that fault domain :

Obj : Max(oyp). (6.19)

Our algorithm is called each time a request to install an SFC is received. Specifically,
for a required availability R, the algorithm determines how many scaled replicas to
create for that SFC and where to deploy them; taking into account the availability of
network elements (servers and switches) without impairing the availability guarantees
of the chains already deployed. To guarantee the isolation between scaled replicas,
each replica of a chain is deployed in a different fault domain.
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Algorithm 4 presents the pseudo-code of our algorithm where scale_down(C, n)
is a function that computes the scaled replica scheme, i.e., an annotated graph rep-
resenting the scaled down chain, for a chain C if it is equally distributed over n
scaled replicas and where solve_placement (S, G, n) solves the problem of plac-
ing n replicas S on the network topology G. The solution of a placement is a set of
mappings associating replica functions and the compute nodes on which they have
to be deployed. The solution is empty if no placement can be found.

Our algorithm starts with one replica of a service request and first checks that no
function is requesting more resources than what the pod can offer.

In the case it is not possible to find a placement with one replica, the algorithm
scales down the chain S by adding one more replica and tries to find a placement for
each one of these replicas in different fault domains. Otherwise, the algorithm tries
to find a placement for it under one fault domain of the network (the fault domain is
chosen randomly to spread the load over the entire DC) using solve_placement (S,
G, n) function; if no placement is found in the current fault domain, we check the
another fault domain, otherwise we compute the total availability for the current
placement.

This strategy continues until a termination condition is met: (i) if the requested
availability is reached then the service can be deployed with (deploy (placement));
(7i) if the maximum acceptable time for finding a placement is reached then no
solution is found; (7i7) if the number of created scaled replicas reached the maximum
number of replicas (i.e., maximum number of fault domains), then no solution is
found. The compute_ava function computes the availability of a chain placement
according to the formulas presented in Sec. 6.2.

6.4.1 Scale down function

When multiple replicas are used, each one gets a fraction of the load and their
individual resource requirements is lower than the one needed if there is only one
chain instance. The resources depend on the availability of the other replicas and
can be upper-bounded by:

Ry, = F%f +(n—1)- G (1-— Avaf)—‘ , (6.20)
n n
where R #.n is an upper-bound on the average amount of resources that would require
a replica of a function f if it is replicated n times while Ry is the number of resources
required by f in case it is not replicated at all, and Avay is the availability of the
least available replica among the n replicas.

6.4.2 Solve placement function

The solve_placement (S, G, n) function considers two graphs: the DC topology
graph G and the scale replica graph S. The purpose of this function is to project
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Algorithm 4: Availability-aware placement algorithm

Input: Physical network Graph: G
chain € Chains
Scaled chain replica graph: replica scheme
Required availability: R

T = max_time; n = 1; tot_ava = 0; tot_time = 0;
placement = ¢

replica_ scheme = chain

while tot ava<R and tot_ time<T and n<max n do
if maz_req > maz_ava then

n=n+1

replica_ scheme = scale_down(chain, n)

else

placement = solve_placement ( replica_scheme, G, n)
if not placement then

n=n++1

replica_scheme = scale_down(chain, n)

else
tot ava = compute_ava(placement)
n=n++1

tot_time.update()

if tot_ava > R then
‘ deploy (placement)

else if tot time < T then
‘ Error ("max time is reached !")

else
L Error ("max number of replicas is reached !")

the scaled replica graph S on the topology graph GG with respect to the physical and
chain constraints.

For each fault domain in the network, solve_placement(S, G, n) tries to find a
solution for the linear problem defined earlier that aims at finding a placement for
the scale replica graph in one fault domain while maximizing the availability of the
replica placement.

6.5 Evaluation

In the following we evaluate the Availability-aware placement algorithm introduced
in the previous section.
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6.5.1 Simulation Environment

We have implemented a discrete event simulator in Python interfaced with the Gurobi
Optimizer 8.0 solver [138|. All simulations have been run on a Intel i7-4800MQ CPU
at 2.70GHz and 32GB of RAM running GNU/Linux Fedora core 21.!

In the evaluation, requests to deploy SFCs are independent and follow an exponential
distribution of mean inter-arrival time 774 (measured in arbitrary time units). SFCs
have a service time of S time units, i.e., the time the SFC remains in the system is
randomly selected following an exponential distribution of mean S. If an SFC cannot
be deployed in the network, it will be rejected. In total, our synthetic workload for
the simulations contains 2,000 SFC request arrivals made of 20 random SFCs. As we
are only interested in the steady state of the system, the servers are preloaded with
service chains. All experiments presented here were repeated 5 times (5 different
workloads of 2,000 SFC requests).

Furthermore, all SFCs are linear, i.e., they are formed of functions put in sequence
between exactly one start point and one destination point. The number of NFs
between the two endpoints is selected uniformly between 2 and 5, based on typical
use cases of networks chains [107], and the requirements of each function in terms
of cores is 1, 2, 4, or 8 inspired by the common Amazon EC2 instance types [8].
Simulations are performed on a 48-Fat-Tree topology with 48 pods having each 576
hosts for a total of 27,648 hosts where all hosts have the same number of cores
(4 cores per host). The availability of the physical devices in the Data Center are
assigned accordingly to the statistical study of these works ( [68,81]), namely 0.99
for servers, 0.9999 for ToR and aggregation switches, 0.99999 for core switches, and
1.0 for links.

Because of space limitations, we fixed the SLA to be equal for each SFC in a run (we
consider the 0.95, two, three, four and five nines for SLA), however the algorithm
allows using a different SLA value for each SFC.

To avoid impacting the deployments of services, finding their placement must be
computed in reasonable time. Therefore, we limited the computation time to at
most 6s per request. If no solution is found within this time, the request is rejected
(the acceptable time for finding a placement must be at most of the same order of
magnitude as the deployment of the VMs themselves to not impact the deployment
time of a service).

6.5.2 Acceptance Ratio

The required availability level has an impact on the ability of a network to accept or
not SFC requests. To study this impact, we consider the acceptance ratio defined as
the number of accepted SFC requests over the total number of requests.

Figure 6.2 shows the evolution of the acceptance ratio w.r.t. the 5 different SLA lev-
els. We can notice that the acceptance ratio decreases when the required availability

Al the data  and  scripts used in  this chapter are  available on
https://team.inria.fr/diana/robstdc/.
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Figure 6.3: The ECDF for the number of created replicas with 5 different SLA with
48-Fat-Tree topology

level increases as each chain must reserve more resources than for lower availability
levels as the physical topology is kept untouched. This can be explained by the fact
that when increasing the required availability of a chain, it is necessary to replicate
it further and then to consume more resources as at least one core is attributed to
each function, replicated or not.

6.5.3 Level of Replication

To complete the acceptance ratio study, Figure 6.3 provides the Empirical Cumu-
lative Distribution Function (ECDF) of the number of scaled replicas created for
accepted SFCs for the different studied SLAs. It is clear that for the lowest required
availability (0.95), 80% of SFCs were satisfied with exactly one replica as the avail-
ability of network elements are higher than this SLA level. However, when a SFC
request needs more resources than the available resources in the network, it is split
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Figure 6.4: The ECDF for the host core utilization for different SLAs with 48-Fat-
Tree topology

(20% of services were split for SLA=0.95) and, as the required availability increases,
the required number of replicas are increased to satisfy the SFC SLA.

Interestingly, as in practice the availability of the infrastructure is high we can observe
than even for an aggressive SLA of 0.9999, 90% of SFC requests can be satisfied with
no more than 3 replicas. Figure 6.3 shows that the number of replicas tops to 5 even
though in theory it would be possible to observe up to 48 replicas in a 48-Fat-Tree
topology as there are 48 pods. We can explain this, as the computation time of our
optimization is restricted to be less than 6 seconds.

Nevertheless, we can observe that a general increase of availability requirement in-
creases the required number of replicas, which explains why the acceptance ratio
decreases when the availability requirements increase.

6.5.4 Servers utilization

Figure 6.4 shows the ECDF of the server core utilization where the host utilization
is the ratio between the total consumed CPU time and the total CPU time offered
by the server. For example, for an experiment that lasts 2 units of time, if a server
has 4 cores, the total CPU time offered by the server is 8. If during the experiment
3 functions are installed on the server and each function lasts 1.1 units of time and
requires 2 cores, the total consumed CPU time is 3-2- 1.1 = 6.6, which means that

the server is utilized at 82.5% of its capacity (&8 = 82.5%).

We can see that more than 40% of the servers are fully occupied, in SLA scenarios.
However as the required level increases, more servers CPU resources are used which
explains why when the required availability increases, the overall load of the servers
increases. When the required availability is as high as 0.99999, more than 80%
of servers are more than 80% occupied. These results show that even when the
infrastructure is close to be saturated, our algorithm is able to efficiently allocate
resources in order to satisfy as much demands as possible.
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6.5.5 SFC Request Placement Time

To avoid impacting the deployments of services, finding their placement must be
computed in reasonable time, this is why we limited the computation time to at
most 6s per request [116]. If no solution is found within this time the request is
rejected.
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Figure 6.5 shows the whisker plot for the placement computation time. We make
the distinction between the time elapsed when requests are accepted (Accepted Ser-
vices) in Figure 6.5b and when it does not (Rejected Services) in Figure 6.5¢, while
Figure 6.5a (All Services) aggregates computation time for all requests, regardless
of the outcome.

The computation time increases rather linearly with the availability level and never
exceeds a few seconds, which is negligible compared to the typical time necessary
to deploy and boot virtual functions in data centers some-ref. The reason of the
higher computation time is that the required SLA incurs a proportional increase of
the number of iterations to fulfill this required availability.
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Furthermore, the computation time is longer when requests are rejected than when
they are accepted as the rejection of a service request can only be decided when
the algorithm iterates over available fault domains, trying to satisfy the requested
availability, until a termination condition is met. Furthermore, the spread between
the median and upper quartile is smaller than the spread between the median and
lower quartile 6.5b as most of placements require more replicas.

6.6 Conclusion

In this chapter, we propose an online algorithm for SFC placement in data centers
that leverages the Fat-Tree properties and respects the SFC availability constraints
dictated by the tenant, taking into account the network components availability. The
simulation results show that our algorithm is fast enough for being used in production
environments and is able to satisfy as many demands as possible by spreading the
load between the replicas while improving the network servers CPU utilization at
the same time.

This proposed solution could be extended to consider other data center topologies,
such as Leaf-and-Spine and BCube.

In this chapter, the service provider has full control over the environment with only
one kind of failures, namely fail-stop nodes failures, are considered. However, when
moving to a collaborative environment, other failures should be taken into account.
In the next chapter, we explore this problem and propose a new protocol to ensure the
correctness of the users’ applications against different types of failures (i.e., byzantine
and rational nodes).
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All solutions presented in the previous chapters are feasible and applicable in the
centralized environment, namely Data Center networks, with a main authority that
controls the underlying infrastructure. In such an environment, users requested
services are deployed and need to be robust in the presence of only simple fail-stop
physical failures.

However, in some scenarios, there is a need for a collaboration between many con-
tributors in order to run tenants’ applications, specifically MapReduce applications.
In such cooperative scenarios, when different partners or enterprises collaborate to-
gether to provide cooperative services based on peer-to-peer network systems, we
move to a completely decentralized environment that is subject to not only byzan-
tine failures, but also rational actors that have self-interested behavior. However,
these applications used in DC have been developed for trusted homogeneous en-
vironments and so the algorithms and protocols used in such applications are not
adapted to untrusted heterogeneous environments.

Therefore, we need to move from the network level to the application one where the
MapReduce application should be changed and adapted to be able to work correctly
under the existence of both byzantine and rational nodes in the system before solving
the placement problem. In this chapter, we present a new MapReduce framework,
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named MARS, with a new scheduling mechanism conceived to be robust against
byzantine and rational actors in untrusted peer-to-peer environments. The work
presented here been done in collaboration with M. Alberto Zirondelli in the context
of a Master research internship.

7.1 Introduction

We live in the data age as a result of the rapid development of the Internet that has
led to large volumes and variety of data becoming available. Additionally, the rate at
which data is generated is increasing enormously [162]. For example, it is reported
that Facebook collects approximately 500 terabytes per day [165]. These charac-
teristics are known to be the fundamental of Big Data [52]. Collecting, managing,
and analyzing such data within a tolerable elapsed time require massive storage and
intensive computational power.

Big Data analytics is the center of attention nowadays but surprisingly even though
these data are scattered around the world from heterogeneous source [134], most
data analytics solutions rely on the execution of analytics on data centers that are
massively centralized [140]. The MapReduce programming model [49], presented by
Google in 2004, with its popular implementation Hadoop framework is often used for
data analytics.

Hadoop MapReduce is based on a master/slave architecture. It processes data in
a massively parallelized way by dividing a user’s MapReduce program, referred to
as a MapReduce job, into a set of independent Tasks. The MapReduce job is the
execution of a Mapper or Reducer across a set of data [49]. However, its tasks’
scheduling is usually controlled by elected nodes [178], potentially replicated [93,139]
to cope with failures, and it is assumed that nodes are trustworthy and reliable to
some extent |50, 181] (See Sec. 2.5 for more details about MapReduce model and
Hadoop framework).

However, with the advent of the sharing economy businesses and the globalization of
the information, a collaboration between different actors becomes common to pro-
vide the so-called Collaborative Services or Cooperative Services (e.g., collaborative
editing systems [112] and Wikipedia [24]).

Within the Data analytics area, collaboration among different companies to collect
data in order to analyze and extract information to gain insights and take decisions
automatically becomes required [134] as the analysis of this large amount of data
is typically expensive, both in terms of bandwidth, storage, and computational re-
sources. Thus, with the advent of peer-to-peer business built on peer-to-peer (P2P)
network systems [160] (e.g., most crypto-currencies [21]), one can avoid relying on
centralized entities that could control the system. In this case, the analysis of data
will be distributed to the nodes constituting the P2P system called peers. Unfortu-
nately, such systems are inherently untrustworthy and unreliable as the final outcome
depends on all peers [194].
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In this scenario, peers from multiple administrative domains collaborate in order to
provide some services that benefits each participant nodes in the system but with the
absence of any central authority to control the nodes’ behaviors. Thus, no one can
fully trust the other participant nodes where nodes in such environment may deviate
from following the protocol for two different reasons. Firstly, nodes may be broken
arbitrarily because of component failure or malicious attacks. Secondly, nodes might
be selfish and follow their interest in order to increase their utility [3,4,41].

This complex environment in which we have to operate, typical of collaborative
services, is defined as BAR, i.e., Byzantine, Altruistic, Rational, by Aiyer et al.
in [4]. In this BAR model, nodes are classified into three categories.

e Byzantine nodes: They deviate arbitrarily from the suggested protocol for any
reason. They may be broken (e.g., misconfigured, hacked, or malfunctioning)
or may just be optimizing for an unknown utility function that differs from the
suggested utility function.

e Altruistic nodes: that follow the suggested protocol exactly. Intuitively, altru-
istic nodes correspond to correct nodes in the fault-tolerance literature.

e Rational nodes: which are self-interested nodes aim at maximizing their benefit
according to a known utility function. The utility function accounts for a node’s
costs (e.g., CPU cycles, storage, network bandwidth, or power consumption)
and benefits. Rational nodes will deviate from following the required protocol
if, and only if, doing so increases their net utility from participating in the
system.

Under BAR model, the goal is to provide a protocol that guarantees the correct
behavior with the presence of both byzantine and rational actors, which is called
BAR Tolerant (BART) protocol. The BART protocols must satisfy these following
properties: (i) Safety, i.e., only correct results are accepted as final solutions or
failure will be received, and (ii) Liveness, i.e., actions are eventually finished [4].

To analyze a large amount of data, distributed across different actors data-stores,
a new kind of MapReduce processing framework needs to be designed. To address
this need, we present in this chapter MARS, a decentralized MapReduce for BAR
Systems. MARS is a blockchain-based BART extension to MapReduce framework
eligible to work within untrusted peer-to-peer environments.

The rest of this chapter is organized as follows. In Sec. 7.2, we present our system
concepts and the main requirements. The details of our protocol methodology and
algorithms are provided in Sec. 7.3 . Next, in Sec. 7.4 we evaluate our proposition
and compare it to the state of the art. Finally, we conclude this work in Sec. 7.5.

7.2 MARS Concepts

Typically, Hadoop MapReduce relies on a master node that maintains the state of
the job, schedules the map and reduce tasks on worker nodes and reschedules failed
tasks. Moreover, the Hadoop distributed file system HFDS has a master Namenode,
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which maintains the system namespace metadata to keep track of where data is
stored in the cluster of slave nodes (more details in Sec. 2.5).

This traditional approach works well in trusted environments but is a severe lim-
itation under the BAR model. The collaboration is limited by the trust problem
as these cooperated enterprises could be competing against each other in the same
market. Thus, each participant company will try to gain the maximum dividend
from the analysis of the big data while minimizing their resources consumption.

For these reasons, there is a need to find a new way to perform distributed big data
computations across multiple collaborated actors, but still have the trust with the
computation result. To that aim, we propose MARS, a new MapReduce framework
that is able to work in such a cooperative environment and tolerate both f malicious
attackers and unbounded rational nodes. In MARS, we replace the centralized entity
by a fully distributed mechanism robust to both byzantine and rational actors (i.e.,
no master node is available). To that aim, MARS is based on a decentralized deter-
ministic, yet unpredictable (i.e., the scheduling of MapReduce tasks is unknown by
the actors before starting the computation) MapReduce task assignment by the use
of the Blockchain technology.

In MARS system, many participant enterprises are collaborating and each enterprise
is represented with its own controlled computational resources, connected using priv-
ileged peer-to-peer mechanism. Each enterprise has nodes that collaborate to analyze
a shared dataset which is considered secure against tampering. The group of enter-
prises is known and considered static; it does not evolve over time. Thus, once a
group of enterprises establishes a collaboration, no one else will join it. Moreover,
each enterprise’s node has a unique identity correlated to a secure cryptographic key,
issued by a known certification authority and linked to a participant enterprise. This
key is used to sign messages exchanged in the network.

Byzantine and Rational nodes may return incorrect results for the tasks they are
assigned to. However, the system doesn’t know which nodes have such behavior
and do not know the correct result of a task. Thus, to tolerate f byzantine nodes
and an unbounded number of rational nodes, MARS uses the replication and voting
mechanism, for which to have a correct result, each task is assigned up to (2f + 1)
nodes [97,141]. Each task is considered completed when consensus is reached with
(f + 1) similar result [45,106,137].

MARS is targeting untrusted distributed systems. Thus, it cannot rely on the tra-
ditional MapReduce data storage systems that are usually managed by a reliable
NameNode. Instead, MARS uses the Blockchain assisted distributed storage sys-
tem proposed by Kumar and Rahman [95]. With this solution, the NameNode
of MapReduce becomes distributed and replicated to make it BAR tolerant. The
nodes that constitute the MARS system are then used as storage units connected in
a peer-to-peer way and accessible by every participated node while all storage related
meta-data are managed with the Blockchain maintained by all nodes.
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7.2.1 MARS Assumptions

To make MARS model feasible, the following assumptions are considered. First, a set
of different enterprises are collaborating to perform data analytics. We assumed that
the participating enterprises in MARS are known before starting the computations
and each enterprise’s node has a unique identity correlated to a secure cryptographic
key, issued by a known certification authority and linked to a participant enterprise.
This key is used to sign messages exchanged in the network.

Moreover, each enterprise has the same number of nodes, so no enterprise is over-
represented or under-represented in the voting process to reach the consensus. These
nodes are connected using privileged P2P network [160] by low-latency high available
bandwidth links.

Furthermore, we assume that there are not any other jobs to be executed on the nodes
dedicated to MapReduce jobs. This assumption is made because all participating
nodes should respect the agreement made which requires them to use their resources
to execute the MapReduce tasks and give the result in a reasonable time. Making
external jobs on the same resources would break this promise as rational nodes could
exploit that by pretending to use their resources to do other jobs in order to avoid
doing the required MapReduce tasks.

Similarly to Aiyer et al. [4], we assume that the rational nodes [164] when they
have long-term benefits from participating in the computations as the computation
final result will serve all the participants. The rational nodes r will deviate from
following the standard execution only if doing this will lead to maximizing their
utility, e.g., getting the maximum benefits while reducing costs (e.g., computation
cycles, storage, network bandwidth and etc.) [114] otherwise they will continue to
follow the protocol. However, rational nodes will not collude together.

On the contrary, byzantine nodes [31,97,115] may deviate arbitrarily from the specific
protocol for any reason. They can be random fault during the processing or malicious
nodes that can modify data, delete data or even corrupt the results. To reach an
agreement among a group of m peers, among which up to f byzantine nodes can
depart from the protocol arbitrarily. Abraham et al. in [151] have shown that
byzantine agreement requires that (f < n/3), but can be solved if (f < n/2) [91]. In
MARS we consider the assumption that we can tolerate up to (f < n/2). With this
assumption, we guarantee that an agreement for each executed task will be reached
eventually. Moreover, both byzantine and rational nodes are accountable for the
decision of non-executing or a task or for their misbehaving, that would constitute
a Proof of Misbehavior (PoM) proposed by Aiyer et al. [4].

Although the byzantine nodes can tamper the result of MapReduce tasks, the dataset
that needs to be analyzed is considered secure against tampering and modifications
of the stored information.

7.2.2 MARS Design Requirements

This section presents the main requirements around MARS protocol design.
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Figure 7.1: MARS P2P Environment
7.2.2.1 Underlying P2P Environment

To achieve our proposed collaborative MapReduce, we consider a cloud-based sce-
nario composed of nodes (also called peers) that belong to a set of different enter-
prises. These nodes are connected using privileged P2P network by low-latency high
available bandwidth links [160] (See Figure 7.1). These peers make a portion of their
resources, such as processing power, disk storage or network bandwidth, directly
available to other network participants, without the need for central coordination by
servers or stable hosts.

In this distributed environment, the participated nodes need to communicate to-
gether to agree on the tasks assignments, to exchange the MapReduce intermediate
results, and to reach the consensus on the final results.

This underlying P2P network supports the broadcast messaging. When a node sends
a broadcast message, this message is given to the P2P network to be delivered. It is
assumed that the underlying network will eventually transfer the message with the
same content as sent, to all connected nodes (yet this message may take arbitrarily
long to arrive). When a message is transferred to these nodes, it is said that the
message is received by them.

However, with fault-tolerant distributed systems, where nodes can fail during a task
execution, a reliable broadcast is needed to ensure the safe transfer of a message [71].
A best-effort broadcast is the weakest broadcast type. It is a form of a broadcast
that guarantees reliability only if the sender is correct (i.e., the sender does not crash
while broadcasting).

The best-effort broadcast says that every correct node will deliver the message being
broadcasted. A correct node here means the node that does not crash and runs
as expected. The best-effort broadcast also guarantees that there is no duplicate
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message and no message being delivered without being sent before. Thus, the best-
effort broadcast just uses the reliable links for broadcasting without any additional
feature.

However, in MARS, the number of participating nodes is assumed to be bigger
enough comparing with the number of byzantine nodes (f << n) and thus there is
no need for stronger broadcast (such as reliable broadcast, uniform reliable broadcast,
etc.) to ensure that a consensus will be reached.

7.2.2.2 Blockchain Technology

A blockchain is a distributed database of records or public ledger of all transactions
or events that have been executed and shared among different participating par-
ties [192|. Each transaction in this ledger is verified and confirmed by the consensus
of a majority of the system’s participants. Whenever information is registered, it can-
not be erased. The blockchain contains a specific record for every single transaction
ever made.

Blockchain technology has specific applications in both financial and non-financial
sectors. In 2008, Satoshi Nakamoto published a paper that solved the double spend-
ing problem for distributed cryptocurrencies [135], which implementation gave life
to Bitcoin. Bitcoin is the most common example that uses blockchain technology. It
uses cryptographic proof instead of trusting a third party for a transaction execution
by two parties over the Internet. Each transaction is protected by a signature. The
transactions are verified and broadcasted through the P2P network to all involved
peers.

The blockchain technology has introduced new possibilities to create collaborative
services among different enterprises. It has the potential to revolutionize the digital
world by enabling a distributed consensus where every online transaction, past and
present, could be verified at any time in the future. This could be done without
compromising the privacy of the peers involved. The distributed consensus and
immutability are the most important characteristics of the blockchain technology.

Blockchain can prevent the double spending problem. When a peer registers a trans-
action, this transaction will be broadcasted to the entire network of peers and asks
them to determine whether the transaction is legitimate. If they collectively decide
that the transaction is in order, then this transaction will be accepted and everyone
will update their blockchain. Thus, if this peer tries to spend this request multi-
ple times, other peers on the network will notice, and the transaction will not go
through.

All the blocks of the blockchain are linked together by the use of two hash values,
current hash computed from the current block and previous hash from the previous
block. The previous hash links each block with the next one, which makes the entire
blockchain immutable. The data that is stored in the blockchain database is not
stored in one single location; instead, it is distributed on every peer in the P2P
network.
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One essential emerging use case of the blockchain technology is the smart contracts.
Smart contracts are basically computer programs that can automatically fulfill the
terms of a contract. They can be executed consistently by a network of distrusting
nodes, without the need of a trusted authority. Because of their resilience to tam-
pering, smart contracts are appealing in many scenarios. Open source companies
like Ethereum [182] and many companies which operate on bitcoin and blockchain
technologies are beginning to support the smart contracts.

The blockchain orders the transactions by placing them in groups named blocks and
then these blocks are linked to form what is called a blockchain. The transactions
in one block are considered to have happened at the same time. These blocks are
linked to each other in a proper chronological and linear manner with every block
containing the hash of the previous block (See Figure 7.2). In addition, each block
has a time-stamp that refers to the moment it was created.

To decide which block should be next in the blockchain, a mathematical mecha-
nism known as proof-of-work is being used in Bitcoin and Ethereum [135]. With
this method, each node generating a block in the network needs to prove that it
can provide an adequate computing power to solve this mathematical puzzle. For
example, each node has to find a nonce value which when hashed with the current
data records and the previous hash attached in that block should generate a specific
number of leading zeros. However, other alternative algorithms have been proposed
in the literature (such as proof-of-stake [192|)

Moreover, valid transactions should be registered on the blockchain in a certain time
interval instead of every time. This time is called block creation time which refers to
the average time it takes for a peer in the network to generate one more block in the
blockchain.

Whenever there is a new result that needs to be published to the blockchain, the
creation of a new block will not occur immediately. Thus, we need to wait to have
enough data in order to create a new block as creating a new block imposes an
overhead. In particular, we need to keep a lot of information in addition to the
new data ensure the resistance of the blockchain such as a cryptographic hash of the
previous block and time-stamp. Typically, in Bitcoin, the expected block time is 10
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minutes, while in Ethereum it is between 10 to 19 seconds. However, faster block
creation times are good because they provide more granularity of information.

7.2.2.3 Blockchain for Decentralized MARS

MARS is presented as a decentralized MapReduce framework eligible to work under
the BAR model with no central control and in presence of nodes that cannot be
trusted. Thus, we build it around the blockchain as the latter has the required
characteristics to ensure the needed trust on the result of MapReduce computation.

The MARS system revisits MapReduce by proposing a new way of tracking jobs with
a Blockchain. The Blockchain is used every time a decision has to be taken in the
system. Namely, the blockchain has three roles.

(7) Tt is used to keep the metadata of the programs that need to be executed by the
MapReduce instances. When someone wants to run a job on data available in the
system, it publishes a smart contract with a link to the program that needs to be
executed on the data and the information about it. This contract is immutable and
can be verified by any node in the system.

(74) The Blockchain is used to distribute the tasks of the various published jobs to
the network nodes. For this purpose, a global consensus is required to assign and
schedule the tasks on the nodes. All decisions will be published on the Blockchain.
Thus, the system can verify that the entire execution of the job has respected the
specifications. If the assignment and scheduling algorithms used to execute the
jobs are able to ensure both safety and liveness properties (see Sec. 7.3.2), then
publishing all decisions in the Blockchain guarantees the correct execution of the
programs published in the Blockchain as any misbehavior would be spotted.

(7i7) MapReduce is all about reading and generating data. However, as MARS targets
untrusted distributed systems, it cannot rely on the data storage systems usually
used in MapReduce frameworks managed by a reliable NameNode.To guarantee that
the storage system can be trusted even though some nodes may provide incorrect
data, the blockchain is also used to ensure the integrity of data used throughout the
execution of the job. Thus, MARS uses the Blockchain assisted distributed storage
system proposed by Kumar and Rahman [95]. With this solution, the NameNode
of MapReduce framework becomes distributed and becomes BAR Tolerant. See
Sec. 7.2.2.5 for more details. When a consensus is reached on the correctness of a
data, it will be published to the Blockchain with the hash of the data the nodes
agreed to be correct and the incorrect data will be discovered and ignored.

As all decisions are published on the blockchain, the system can verify that the
entire execution of the job has respected the specifications. If the assignment and
scheduling algorithms used to execute the jobs are such that they can ensure safety
and liveness properties, then publishing all decisions in the blockchain guarantees the
correct execution of the programs published in the Blockchain as any misbehavior
would be spotted and denounced.
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7.2.2.4 Distributed Tasks Assignment and Scheduling

One of the main problems with centralized systems is their vulnerability to a central
point of failure if this central node fails, service stops. Moreover, in order to be
competitive in today’s rapidly changing business world, organizations have moved
from a centralized to a more decentralized structure in many areas of decision making
including scheduling.

In this context, problems are delegated to lower levels of the organizational hierarchy
and solved locally and independently by different entities of the system. The solutions
are then coordinated together under a global objective. In reality, the need for such
a system was felt since the early days of computing, but throughout the recent years,
their applications increased drastically.

In such a distributed environment, there is a need for a new strategy for assigning
jobs to nodes that constitute the whole system, or so called scheduling algorithm.
A scheduling algorithm deals with the allocation of scarce resources to tasks over
time [145].

The need for making scheduling decisions in decentralized systems has given rise to a
new area, that is called distributed scheduling (DS). The distributed scheduling [171]
is defined as an approach in which smaller parts of a scheduling problem are solved
by local decision makers (i.e., peers) who possibly have inconsistent objectives, but
coordinate their sub-solutions through certain communication mechanisms to achieve
the overall system objectives.

In a centralized environment, a global scheduler issues a schedule for the entire system
(See Figure 7.3a ). A central node, called master, acts as a resource manager to
schedule jobs to all the surrounding nodes that are part of the system. Here, each
job is first submitted to the central scheduler, which then dispatches the tasks to
the appropriate nodes. This scheduling paradigm is often used in data centers where
resources have similar characteristics and usage policies.

Centralized scheduling can produce better scheduling decisions because it has all the
necessary information about the available resources in the system. However, it does
not scale well with the increasing size of the environment. Moreover, the master
itself could become a bottleneck, and if there is a failure, it presents a single point
of failure in the system.

Differently from centralized systems, there is no single decision maker in a decen-
tralized system (Figure 7.3b). The participating parties make their decisions locally
to solve the smaller parts of the scheduling problem. To determine to which node
a specific task is assigned to, each node executes its own scheduling algorithm to
decide which task to execute next, as there is not a single master job tracker that
schedules the tasks.

'Figure 7.3 is inspired by https://www.slideshare.net/sandpoonia/11-grid-scheduling-and-
resource-managament.
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Because the peers that compose the system prepare their schedules independently
from each other, these partial schedules may produce some conflicts. Carefully de-
signed communication mechanisms are required to eliminate such conflicts. There are
two mechanisms for communicating between peers [101]: (i) Direct Communication
in which each peer can directly communicate with other peers for job dispatching,
and (77) Indirect Communication where peers can communicate via a central job pool.
In this scenario, jobs that cannot be executed immediately are sent to a central job
pool.

Node 1/ Node 2/
Scheduler 1 Scheduler 2

Central
Scheduler

7
Qs*e

o
o

Node 3/ Node 4/

Node 1 Node 2 Node 3 Scheduler 3 Scheduler 4
(a) Centralized Scheduling (b) Decentralized Scheduling

Figure 7.3: Scheduling Paradigms

Another fundamental problem in distributed systems is to achieve overall system
reliability in the presence of a number of faulty peers. This often requires network
peers to agree on some data value that is needed during computation. This problem
is referred to as comsensus. Examples of applications of consensus include whether
to commit a transaction to a database, state machine replication, blockchain, and
others.

The global consensus abstraction deals with having many nodes in a network trying
to agree on a common value. Initially, each node proposes its value to all other
nodes, but when the consensus algorithm terminates, each node should decide the
same value. [48].

One approach to generating consensus is for all peers to agree on a majority value.
In this context, a majority requires at least one more than half of the available votes
(where each process is given a vote).

A consensus protocol tolerating failures (any byzantine failure) must satisfy the fol-
lowing properties: (i) Termination which means that eventually, each correct node
decides some value, (7i) validity: if all the correct nodes proposed the same value v,
then v must have been proposed by some correct nodes, and (iii) Agreement which
means that all correct nodes must agree on the same value. A protocol that can
correctly guarantee consensus among n different nodes of which at most f fail is said
to be f-resilient [23].
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To achieve distributed MapReduce jobs on systems that sustain the BAR envi-
ronment, the MARS framework supported by the blockchain is proposed with dis-
tributed scheduling algorithm to achieve the correct execution of MapReduce jobs,
where no master node is available to decide the scheduling of map and reduce tasks
on participated peers.

Therefore, to determine to which node a specific task will be assigned, each node
executes its own scheduling algorithm to decide which task to execute next, as there is
no master job tracker that schedules the tasks. In addition, to force the rational nodes
to follow the standard protocol execution, each peer needs to know to which nodes a
given task is assigned. In this way, in case of an uncompleted task, it is possible to
check which nodes were accountable for that work. The consensus concerning tasks
assignment is reached as a result of this deterministic tasks’ assignment.

In MARS, byzantine and rational nodes may return incorrect results for the tasks
there are assigned to. However, the system does not know which nodes have such be-
havior neither know the correct result of a task. It is thus necessary to replicate tasks
on multiple nodes and to rely on a distributed consensus mechanism to determine,
among all potential results, which one is considered as the correct one.

For that reason, to ensure the safety propriety, each task should be assigned to 2f+1
different nodes, where f is the number of misbehaving nodes [97]. Note that this
high replication strategy for each MapReduce task comes at a high cost. However,
we can be more optimistic as the byzantine failures can be assumed to be a rare
event and the rational nodes do not collude with the byzantine ones and they are
forced to follow the exact protocol otherwise they will be denounced with a PoM.
Therefore, we can start with only f + 1 replicas of the same task [31,43,45]. If a
consensus could not be reached for one result, more replicas (up to f) are started,
until there are f + 1 matching replies.

7.2.2.5 BART Distributed File System

The Hadoop Distributed File System (HDFS) for MapReduce framework was de-
signed for trusted environments (more details are presented in Sec. 2.5.2). Therefore,
the model to store data is built around the NameNode that keeps track of where files
are located, called metadata [165], since the data are distributed across different
nodes called DataNodes. Then, as all nodes are correct, the destination node just
needs to make a get data request to the source node to get the required data. This
NameNode is a centralized entity that can be replicated for robustness reasons but
in all circumstances, the NameNode is considered trustworthy and reliable.

However, MARS is working with no central control under the BAR model, where
nodes can never be totally trusted and the metadata is not secured. Thus, the
MapReduce framework cannot rely on a single node as it could compromise its safety
and liveness properties.

To tackle this problem, we use the distributed NameNode solution proposed by Ku-
mar and Rahman [95]. In their paper, the authors modify the standard HDFS [165]
such that the functions of the NameNode (e.g., managing information regarding the
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distribution of data blocks, replicas management, and block size) are fulfilled in a
distributed way without a single point of decision or failures, by the means of a
Blockchain for safe distribution of metadata over a distributed system (more details
are provided in Sec. 7.3.1).

The nodes that constitute the MARS system are then used as storage units connected
in a peer-to-peer way. Data are stored in DataNodes and not on the blockchain.
However, at any time, any node can verify the consistency of the stored data to a
related event on the blockchain (i.e., each node can check who has registered that
data and who has accepted it). This distributed data is available and accessible by
all participated nodes and also replicated for robustness reasons. Distributed storage
with enough replicas satisfies the requirements of availability and data preservation
in case of byzantine DataNodes and crashes.

Moreover, all storage related metadata are managed in a distributed way with the
Blockchain. Hence, the destination node makes the first request to the source node
that maintains the required data; if this request is valid; the source node will reply
with the information. If anything goes wrong, the destination node can use the
blockchain to request safely the message from the other node. If a source node was
rational or byzantine (trying to deny or send incomplete data to the destination
node), this would result in sending the request to blockchain and this node will be
punished with PoM.

7.3 MARS Protocol Working Methodology

In this section, we provide a detailed description of MARS protocol design. We
enhance the previous Map-Reduce BFT protocols based on voting mechanism to
introduce a decentralized deterministic assignment for the tasks, a realistic-threat
based data propagation BART protocol, a decentralized BART map, shuffle and
reduce phases.

7.3.1 MARS Workflow

When a user wants to run a job on the data available in our system, the user creates
the corresponding job jar file and then publishes a smart contract with a blockchain
with the program and tasks to be run on the data while storing the jar on the
distributed filesystem. This contract is immutable and can be verified by any node
in the system. The Blockchain is then used to distribute the tasks of the various
published jobs to nodes in the network.

After the job is being recorded on the blockchain, it will be executed at a deterministic
moment by the participating nodes. Then, each node will check the blockchain for
new job execution requests and retrieves the job jar file from the distributed storage
to start the execution.

Moreover, as we are under the BAR model, the nodes are untrusted and both byzan-
tine and rational nodes could return wrong results. However, which nodes are correct
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and which are not is unknown in advance, thus, each MapReduce task in MARS sys-
tem will be replicated and assigned up to (2f + 1) different nodes [97], where f refers
to the number of tolerated byzantine nodes.

For the map phase, the scheduling choice is made following the locality principle.
First, to respect the data-locality principle, a list of nodes that are storing the chunk
is prepared, then this list is used in the random assignment of nodes described above.
Second, if the number of nodes that contains the chunk is less than (2f + 1), the
remaining nodes are chosen randomly from all the nodes, without locality consider-
ations. This decision is made to avoid the transfer of large chunks of information
across the data center.

Thereafter, the assigned nodes need first the definition of the map tasks. The dataset
metadata is retrieved, describing which files are composing the dataset, and the size
of the chunks that compose each file. The total number of chunks that constitute
the whole dataset is the number of map tasks that have to be executed by the job.

When the mapper node has retrieved the information (data fetching is assumed to
be secure), it starts computing the map function over it to produce the Key-Value
pairs. Then, when mapper has finished, it publishes the result to the system declaring
the reach of the result. When consensus is reached by receiving f + 1 declarations
of the same results, i.e., with the same result hashes, the map task is considered
completed. The consensus is made as a transaction to the blockchain, in which the
result is identified by its hash. Then, each peer checks the blockchain for updates
about new task results and maintain a mapping on the results and their locations in
the system.

Even if a byzantine or rational node claimed to have reached a result by copying the
hash published on the blockchain by the other mappers, during the shuffling phase
the map results are requested and verified by the reducer nodes which makes this
node accountable for misbehaving. Rational node won’t try to defer the execution
of the map computation. Moreover, a byzantine node can simulate to crash, but this
action does not hamper the liveness of the protocol as a task’s rescheduling will be
performed.

When the map phase has finished, the shuffle phase will start. Typically, the shuffling
phase has a high impact on the performances, as it requires to move the large results
of the map tasks to the Reducers, putting on stress the network.

To ensure the safety property, each reducer must get the correct key-values pairs
which need to be the same in all the replicas of the reduce task. Meanwhile, the
liveness property must guarantee that the shuffling phase ends in a finite time with
all the reducer with their key-values.

All the scheduled reduce tasks are known, as well as the nodes that have been
assigned to a map task and which one of the map tasks have produced a correct
result. Each reducer has been assigned to process a determined key, and for each
key may have multiple values produced by map tasks. All this information is shown
in the metadata published on the blockchain. Finally, to move the key-value pairs of
each map task we use a threat-based data propagation protocol, in which the mapper
is the source node and the reducer is the destination node.
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During the data propagation, a source node must provide the information to the
destination node, when is required by the destination node. However, in MARS,
rational nodes can refrain from transmitting partial information or nothing at all to
avoid the data propagation cost. The byzantine nodes can have the same behavior
of the rational nodes. Moreover, they can try to create an effective DoS attack
requesting to all the nodes all the chunks, to congest the network.

Thus, to create a BART data propagation, we make the source node accountable to
give information exclusively to the destination node. The accountability is proved by
the context available to everyone, in which the responsibilities are assigned (e.g., a
reducer needs the result of a certain mapper). In addition, the destination node has
secure access to the metadata of the information it retrieves to verify its integrity
(i.e., a hash from the blockchain).

The destination node makes an authenticated get data request to the source node.
If the get data request is not legit (i.e., the node is not authorized to make this
request), the blockchain publishes the request as a PoM and does not send the data.
Otherwise, the source node replies with the information to the destination node that
checks its validity. If the data is not valid or the source node refrains from sending
the data, the destination can use the blockchain to request safely the message from
the other node, and a PoM is published denouncing the source node. On the other
hand, if the destination node does not make the request to the source node, a PoM
is published denouncing the destination node.

By doing this, a rational mapper will not deny or make an incomplete reply to the
legitimate reducer as it will trigger the sending of the request to the blockchain. A
byzantine source node cannot give incomplete or incorrect information to the legit-
imate destination node, as it will constitute a PoM against this node. A byzantine
mapper can exploit the data propagation protocol to slow down the system, but it
can’t affect the safety or liveness property. If it tampers with the key-value pairs the
protocol will create a PoM, as in case the information is missing or is refused.

If a mapper crashes, another deterministic assignment is used to assign another
mapper (i.e., mapper have the same data as the failed one) to the reducer. However,
if all the correct mappers for a specific map task failed, a failed job will be declared.

Finally, the reduce phase takes a couple < Key, List < Values >> to produce a
unique result for each key. For the reduce phase, the scheduling algorithm is based
on the deterministic node assignment up to 2f + 1, similar to the one used in the
map phase, but without the locality principle.

When a reducer has completed a reduce task, it broadcasts the hash of this result to
all peers and when f+ 1 same results are collected for a reduce task this is considered
completed. However, if a rational reducer avoids the computation of the reduce task,
it will be accountable for not publishing the result at the end of the reduce task.
A rational node also will not support any broadcasted result that does not have
accumulated more than f + 1 votes without making the computation on its own, as
it cannot know if the result has been published by a byzantine node. Furthermore,
a byzantine node cannot affect the safety principle, as the voting mechanism is
applied, nor the liveness principle, as a crashed node is re-assigned and even in case
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of f byzantine nodes there will be f 4 1 altruistic and rational nodes that will get
to the final result.

Eventually, the MapReduce job ends successfully with a result or with failure, and
its state and history of published results are always available on the blockchain. The
job ends successfully when f+1 different nodes declared the job finished with success.
This is triggered when at the end of the reduce phase of the job, more than f + 1
different result confirmations are provided for each key produced by the previous
map tasks. The job failure is declared when f + 1 different nodes declared the job
failed (i.e., too many nodes crashed and it is impossible to schedule the map tasks
on 2f + 1 different nodes).

At the end of the jobs, the clients can access to the results by copying the information
using the data propagation protocol described above, in which all the nodes are con-
sidered legitimate destinations of the latest results of the last phase. This motivates
the rational clients to keep a copy of their achieved results as long as requested.

7.3.2 Unpredictable Deterministic Assignment

As there is not a single master job tracker that schedules the tasks to workers, to
determine to which node a specific task will be assigned, each node will execute
locally its own scheduling algorithm to decide which task to execute next. Moreover,
each node in the MARS system will have information about all tasks’ assignment.

The randomized choice, for which tasks to be executed whenever a node is free, would
have been made randomly among all the ready tasks. Random scheduling works well
with the presence of only byzantine nodes. However, adding rational nodes to the
system will impact the liveness property. Thus, there is a need for a new strategy to
tolerate rational behavior by forcing rational nodes to follow the standard protocol.
Moreover, the resource consumption will not be optimal, as we could have had cases
in which a task will be repeated unnecessarily even by all the participant nodes, as
they independently decided randomly.

To solve these problems, we used the guideline proposed in the original BAR paper [4]
to minimize the uncertainty and move to a deterministic scheduling algorithm that
assigns each task to a fixed number of nodes. Thus, the rational nodes are account-
able for the decision of non-executing the assigned tasks, that would constitute a
PoM, as they were assigned provably to them.

Removing random decisions requires the usage of deterministic repeatable algorithms
for scheduling. The deterministic scheduling algorithm used in MARS is based on a
Pseudo Random Number Generator (PRNG) [176], where the PRNG is deterministic
and initiated by a seed that is known by all peers in the P2P network.

However, this seed must be unpredictable from any nodes before starting the job
execution to prevent the byzantine and rational nodes from tampering the results.
The deterministic assignment for tasks will help in accountability where each mis-
behaved node would be spotted and each participating node can assess the correct
assignment of tasks on nodes. This unpredictable deterministic is fundamental to
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achieve a true BART protocol that bears rational nodes without the need for using
external incentives [4].

As the blockchain information is immutable and accessible by every node, we use
the hash value of the current block in the blockchain as a seed in this scheduling
algorithm since the current hash value is unpredictable and all peers share the same
blockchain.

To ensure the determinism, each peer needs to know to which nodes a given task is
assigned. In this way, in case of an uncompleted task, it is possible to check which
nodes were accountable for that work. An accountability measure is a way of forcing
rational nodes to execute the assigned tasks. Algorithm 5 shows the pseudo-code of
our unpredictable deterministic task assignment.

Algorithm 5: Task assignment algorithm

Input: Byzantine nodes: f
mapper: required number of map workers
reducer: required number of reducer workers

setOfTasks = GetTasks (mapper, reducer)
nbMinOfNodes = 2 - f + 1

foreach (T € setOfTasks) do
PRNG:.seed (currentBlockhash)

assignedNodes|T| = { }

while len(assignedNodes[T]) < nbMinOfNodes do
L node_id = PRNG.getNode()

assignedNodes|T|.add(node id)

This PRNG is generating a sequence of numbers that refer to the identity of nodes
that are responsible for performing a specific task. The PRNG-generated numbers
are random, but they are still deterministic because they are completely determined
by the unpredictable seed value. As each node executes this scheduling algorithm,
it will know if it is in charge of any task and also all tasks assignments.

7.3.3 Tasks Completion

When a node has completed its assigned job, it broadcasts the hash of the obtained
result to all the other nodes in the system (more details about broadcasting are
available in Sec. 7.2.2.1). To accept the result of any task, a global consensus is
needed. Reaching consensus is a fundamental problem in the MARS framework for
both byzantine broadcast and byzantine agreement with the assumption (f << n)
(See Sec. 7.2.2.4 for more details).

In order to reach a global consensus, each node fetches the output from all task
replicas and then chooses the most voted result. In MARS, at least (f + 1) matching
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results for each task should be received to confirm completion of the tasks. This
approach is motivated by previous works in the literature [45,151].

When a global consensus is reached for a specific task, it will be confirmed that the
result of the task is the one provided by these f + 1 nodes. Thus, other nodes that
execute the task can safely stop the execution of the task to free their resources for
other tasks. As the results of the task have been globally approved, every node can
use the result, meaning that it can safely be used in the following steps of the job,
just by checking that the data of the result correspond to a hash value published in
the Blockchain are corresponding regardless of from where the data was taken.

In Figure 7.4, we explain in details the task’ completion step. Figure 7.4 shows a
P2P network with three nodes, namely N1, N2, and N3 that perform the task T1.
In this system, we assume that in the number of byzantine nodes f is 1. Thus, to
be BFT, T1 should be replicated and executed on at least 3 different nodes.

N1 N2 N3
TI[(N1,11)]

TI[(N1,r1)]

E sl S Al s i s e T1[(N1,r1), (N2, r2) ]

T1[(N2,r2)]
T1[(N1,r1),(N2,r2)] T1[ (N2, r2), (N1,r1)]

E [ (N2, r2), (N1, r1), (N3, r1) ]

TA[ (N1, r1), (N2, r2), (N3

Consensus -

(T1:11)

Figure 7.4: Task confirmation in MARS System, where beb refers to best-effort
broadcast

First, at time t1 the node N1 finishes this task and broadcasts a message with the
obtained result (r1) (namely, best-effort broadcast (beb)). This message contains
the following information: (i) Node Id that has sent this message, (ii) The Id of the
executed task, and (ii7) The hash value of the obtained result. Then, this message
will be received by other nodes, at different times.

As the tasks assignment is deterministic, each destination node in the system can
verify if the task has been executed by the appropriate node. It then saves the
message locally otherwise, the message will be ignored and the node that sent the
message will be spotted and denounced with a Proof-of-Misbehavior.
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At the time ¢2 the node N2 finishes the same task, but with a different result (r2),
assuming that N2 is a byzantine node. Then, a new broadcast will be initiated
by this node and will be received by the two nodes and also kept in local storage.
Finally, the last node N3 completes the execution of this task at time ¢3 and then
broadcasts the obtained result (r1) to all nodes.

Eventually, at time ¢4, all task replicas are finished. A global consensus will be
reached as the majority voting is given the result 1 with f+ 1 matching results from
N1 and N3 correct nodes (with MARS, rational nodes are obliged to be correct).

Algorithm 6 shows the pseudo-code of our task completion decision algorithm.
The new_ con firmation _receivedr refers to receiving a new message with a hash
value of result for the executed task from a peer in the system. This received value
is similar to another stored result.

Algorithm 6: Task completion algorithm

Input: Byzantine nodes: f
runningTasks: list of the ongoing map and reduce tasks

completedTasks= { }

for T € runningTasks do

n_confirmation = 0

Consensus= f + 1

if new _confirmation_receivedr then
n_confirmation += 1

if n_ confirmation == Consensus then
L completedTasks.add (T)

A simplistic solution to make MARS BART MapReduce was to replicate and schedule
each map /reduce task to 2f + 1 different nodes. Then, the voting mechanism can
be used to agree on a value for each task. However, this solution is very expensive
as it replicates everything 2f + 1 times: task execution, map task inputs reading,
message communication, and storage of reduce task outputs.

To avoid this cost, we can be somewhat optimistic and say that the byzantine fail-
ures could be assumed as uncommon events, once they are guaranteed to be discov-
ered [45]. Moreover, being optimistic makes sense as we assume that (f << N) (See
Sec. 7.2.1), so when nodes are chosen randomly it is unlikely to have misbehaving
nodes between the elected nodes.

Thus, instead of executing (2f+1) replicas for each map /reduce task, we can execute
simply the first (f 4+ 1) nodes generated by the scheduling algorithm [31,43,45] and
defer the execution of the last f copies until there is a need. In case of failure to
reach the global consensus with the correct result for the same task or if a task
timeout elapses, the execution of replicas (up to f) from the deferred nodes that are
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already produced with the deterministic assignment algorithm are started until the
consensus is reached.

Tasks timeouts are used to avoid starving by waiting a too long time for a task to
be completed. When a timeout occurs, the task is canceled on the node and it is
rescheduled on another node chosen from the list of nodes generated by the PRNG
(in Algorithm 5). If a node selected by the PRNG is not available (e.g., overloaded
or already executed the same task) then the node corresponding to another random-
generated number will be selected.

Timeouts are triggered observing the blockchain, as to know when a task has not
published a result for more than Timeout time. Our unpredictable deterministic
assignment and scheduling method prevents nodes from providing incorrect results.
In conjunction with the timeout, it also guarantees that the task will be eventually
completed with a correct value. In addition, our mechanism incentivizes nodes only
for their useful work as wrong results are discarded. This means that while byzantine
behavior can still be observed— but without impairing safety and liveness— rational
nodes will only properly execute the assigned tasks as they have no incentive left in
not doing so.

As the result of the task has been globally approved, one of the nodes will publish the
hash of this result to the blockchain (See Sec. 7.2.2.2 for more details). Thereafter,
every node in the system can check the blockchain for updates about new task results
and maintain a mapping on the results and their location in system and the result
could be used safely in the following steps of the job, where the node (i.e., DataNode
component) retrieves the information and verifies what has been downloaded com-
paring it with the relative hash retrieved by the node (i.e., NameNode component)
from the blockchain.

Here, we present one way where we publish only the hash value of the final result
to the blockchain. This strategy is good as we do not generate a lot of blocks and
do not save a lot of information about MapReduce jobs as the created blocks are
permanent. However, if some nodes crash during the progress of a MapReduce job,
the results of these nodes will be lost. This problem could be solved by saving all
the information (i.e., publish the results obtained by each node not only the global
consensus) to the blockchain instead of the final result. In this way, if a node crash
after finishing the tasks and writing the result to the blockchain, there is no need to
reschedule this task again but with a cost of saving a lot of irrevocable data in the
blockchain.

Furthermore, whenever a new result needs to be published to the blockchain, the
creation of a new block will not be immediate. Thus, we need to wait for some
time, namely block creation time, to have the required data registered as a new
block. Thus, increased block creation time will increase the required time to finish
MapReduce jobs.

Another important thing to consider is that waiting for f + 1 matching map results
before starting a reduce task can delay the job completion. One possible solution is
to start executing the reduce tasks just after receiving the first copies of the required
map results, and then, while the reducer is still running, the consensus is checked.
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If at some point it is detected that the input used by the reducer is not correct,
the reduce task needs to be restarted with the correct input. However, this solution
wastes computing resources.

7.4 FEvaluation

7.4.1 Simulation environment

To evaluate MARS, we have adapted the MRSG MapReduce simulator [93] that
is built on top of SimGrid [30]. More specifically, we have implemented our task
replication and distributed scheduling algorithms and the blockchain in the simu-
lator (see Figure 7.5). In addition, we have developed an analysis framework that
automatically reproduces simulation and generates figures.

We compare MARS with the following reference platforms: (7) the standard version
of Hadoop, only crash-fault, as reference of best-performance, (ii) the BFT Hadoop
version, with f+1 replicas, proposed by Costa et al. [43]?, as it is the nearest platform
to ours while it does not support rational behavior and is centralized, (7i7) finally a
replica-state-machine version of MapReduce execution, in which all the peers perform
all the map and reduce tasks independently and use majority at the end to get the
right result. This final version is called blockchain.

P ——
MARS | Platform topology Job Configuration
Ideploy fies (conf files)
(xml files)
: —
Scheduling - - Data Distribution
Algorithm Algorithm
) Se——
MRSG User Interface
MRSG
DFS MapReduce
SimGrid Interface (MSG)
SimGrid v 3.11
Network CPU

Figure 7.5: MARS Simulator

2Tt was modified to have a majority voting, task replicas scheduling and retrieval of intermediate
results by their location
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Moreover, we use the following versions of MARS: (i) The optimistic MARS, in
which each peer participates with one node that acts as master and worker, and an
external blockchain service with replication factor of f + 1 and (i7) the unoptimized
version, called (pessimistic MARS'), with the replication factor of 2f + 1. Byzantine
nodes are defined randomly in the phase of initialization where the user defines in
the configuration file the percentage of Byzantine nodes in the system, and then the
system instantiates them.

The byzantine nodes make a vote with a byzantine result® while the correct nodes
make a vote with a correct one. A task is considered completed when the master
receives f41 correct result messages, terminating the task. In case it receives a
byzantine result, the task is re-scheduled on a different worker, that never executed
the task before.

The whole implemented code for the experiment is opensource and available on
GitHub*. Table. 7.1 summarizes the simulation parameters we use in this evaluation.

Infrastructure
Number of nodes 10
Fraction of byzantine nodes {0.0;0.1;0.2;0.3;0.4}

Executed job

Sum job

MapReduce parameters

Number of Reduce tasks 1

Chunk size 64 MB

Number of Map tasks 40

Number of DFS Replicas Infinite
Number of Map slots 1

Number of Reduce slots 1

Map task cost 100 gigaFLOPS
Reduce task cost 500 gigaFLOPS
Blockchain parameters

Block size 1000 transactions
Block period {0.5s;15s}

Table 7.1: MARS Simulation Parameters

30ther byzantine behaviors such as not giving the result or tampering the stored data chunk are
not considered in this work
4MARS simulator on https://github.com /quellobiondo/BAR-decentralized-MapReduce-sim.
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7.4.2 Work reproducibility

As the reproducibility of the research experiments has become fundamental in re-
search, we built our simulator on this idea where Simgrid is an efficient tool to make
a reproducible simulation as its executions are deterministic, giving always the same
communications patterns and results.

Moreover, Docker containers are used to isolate the environment from the execution.
Each different platform has its own Dockerfile for the creation of its container and
each platform has been configured to trace information during the execution for later
analysis (namely job duration and resources usage). For results analysis, a python
script is provided to generate the CSV files which are visualized by R scripts included
in the project that is available online.

7.4.3 Simulation results

To assess the performances of MARS, we study the following four metrics: (i) the job
completion time; (i7) the CPU usage; and (¢i7) the bandwidth usage. We study the
evolution of these metrics against two important factors: the fraction of byzantine
nodes in the system and the blockchain block duration period as this time affects
the general performance of the job for the platforms that depend on the blockchain
to register metadata. The values for block creation duration are as the one delivered
by Ethereum [182]. The executed MapReduce job is called sum: it emulates the
extraction of information with just one key and its combination in the result. The
job configuration is shown in Table 7.1.

However, while the platform can tolerate up to f byzantine nodes®®, generally, none
of them is present in the system. So we configure the parameter byzantines with the
percentage of byzantine nodes that the platform has to tolerate with the percentage
of byzantine nodes that are really present in the system. In particular, we have
two scenarios: (i) the scenario in which all the nodes are not byzantines. The
configurations that terminate with (no_real byz), and (i7) the second scenario has
the maximum number of byzantine nodes that should be tolerated by the platform.

Fig.7.6 shows the evolution of the completion time with the fraction of byzantine
nodes in the system, for two different block creation duration periods. The con-
figurations sumzeroblocktime and sumzeroblocktime no_real byz are with (0.5 s)
block creation while the other configurations (i.e., sum and sum_no_real byz)are
configured with 15 s”. As the vanilla MapReduce is not designed to support byzan-
tine nodes, it is only evaluated for 0% of such nodes. Furthermore, for the other
platforms, we cannot go over 40% of byzantine nodes in our simulation as one of
MARS assumptions is that we can tolerate up to (f < n/2) byzantine nodes (see
Sec. 7.2.1 for more details).

® Byzantine nodes are assigned at the beginning of each execution using the PRNG.

5Each execution is repeated with 3 different seeds for PRNG and the average of the performances
is reported.

" In this figure zeroblocktime configuration is 0.5 s while the standard one is 15 seconds.
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Figure 7.6: Job completion time

As a result, we have the following configuration: (i) sum: sum job with 15 s block
creation time and with the maximum number of byzantine nodes that should be tol-
erated by the platform, (i7) sum_no_real byz: sum job with 15 s block creation time
and with no byzantine nodes presented in the system, (iii) sumzeroblocktime: sum
job with 0.5 s block creation time and with the maximum number of byzantine nodes
that should be tolerated by the platform,, and (iv) sumzeroblocktime mno_real_ byz:
sum job with 0.5 s block creation time and with no byzantine nodes presented in the
system.

The completion time shows a linear increase with the number of byzantine nodes for
Hadoop BFT and MARS as these two solutions adapt the number of task replicas
to the number of byzantine nodes. The Blockchain proposition is insensitive to the
number of byzantine nodes as it always fully replicates the tasks to all nodes. By
design, as soon as MARS encounters at least 50% of byzantine nodes, it replicates the
tasks to all the nodes in the system, which explains why completion time saturates
after 50% of byzantine nodes. With Hadoop BFT, the maximum is reached only
when all nodes are byzantine. The difference with MARS is because MARS is more
conservative than Hadoop BFT and always makes 2f + 1 task replicas that guar-
antees that a correct solution will always be found (as long as there is less than 50%
byzantine nodes) without having to reschedule tasks. On the contrary, Hadoop BFT
starts with f + 1 task replicas and make new replicas if it cannot reach a consensus.

However, in case we have byzantine nodes in the system, the tasks need to be re-
executed in Hadoop BFT and MARS optimized. While Hadoop BFT has a faster
response time to the event, scheduling immediately another task when it receives a
wrong result, MARS optimized needs to wait until the tampered result is published
with a block, delaying the task rescheduling. For this reason, its completion time
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increases sharply even with moderate percentages of byzantine nodes.

The Hadoop and Hadoop BFT solutions should have the same completion time in
absence of byzantine nodes. However, the implementation of Hadoop in MRSG is
not optimized. In our implementation of Hadoop BFT we made this optimization,
which explains the difference. We decided to keep the Hadoop implementation of
MRSG as it is, instead of modifying it to have our optimization, to serve as a reference
point for all research work already done with MRSG.

To see the impact of the block creation time in the execution of MARS, Fig 7.7
shows the distribution of the waiting times in the ten nodes cluster for Hadoop and
MARS. For Hadoop (see Fig. 7.7a) the nodes don’t have to wait a lot of time to get
a feedback. For example, at the second 55 the job ends, the latest node publishes the
result and immediately the master declares the job as finished. On the contrary, for
MARS (see Fig 7.7b) at the second 78, the node (graphene-2) has to wait 30 seconds
to know that the job has been completed. First, there is no master, so to know that
the job is finished, all the results have to be published to the blockchain. Publishing
the results to the blockchain implies delays, as the transaction has to wait until it is
included in a creating-block. This block will be created after a time that is necessary
for the consensus to be applied in the blockchain system.

Fig. 7.8a shows the total amount of CPU time consumed to complete the job, not tak-
ing into account the CPU time used for Blockchain related computations. As MARS
and Hadoop BFT replicate the tasks proportionally to the number of byzantine
nodes, we can observe that the CPU usage increases rather linearly with the fraction
of byzantine nodes in the system (with almost the same behavior for the MARS
and Hadoop BFT). As the Blockchain solution always replicates the tasks to all
nodes, its total CPU consumption is independent of the number of byzantine nodes.
Moreover, the replicated execution of all tasks has fewer power requirements that
re-executing the tasks as in MARS and Hadoop BFT.

For the Bandwidth usage (see Fig7.8b), Hadoop solution is also independent of the
number of byzantine nodes. Regarding optimized MARS, as it needs to reschedule
tasks many times until consensus reached which implies retrieving required data to
do the new rescheduled tasks, thus consuming more bandwidth. On the contrary,
with MARS pessimistic solution, as we start with 2 f 4+ 1 replicas from the beginning,
there is no need to do rescheduling to reach the consensus.

7.5 Conclusion

In this chapter, we have proposed the first collaborative MapReduce for BAR
systems, dubbed MARS. This decentralized framework is based on an untrusted
P2P network of nodes instead of using the Client-Server paradigm, supported by
Blockchain/DLT to have a consistent safe view of metadata. The framework toler-
ates up to f byzantine nodes and an unbounded number of rational nodes.

The evaluation of MARS grants the execution integrity in MapReduce linearly with
the number of byzantine nodes in the system. For 10% of byzantine nodes tolerated in
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the system, MARS complete the job in twice the time of the standard MapReduce, as

a result of replication approach. The resources used are dependent on the byzantine
nodes as it implies replication and rescheduling.
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In future work, MARS is a preliminary work that should be studied in cases in which
the storage is limited, and the resources provided by the enterprises are heteroge-
neous. In such cases, a scheduler should not blindly assign the tasks equally or based
on the locality principle. Instead, it should find the best nodes to perform the tasks
while providing fairness in the assignment. Thus, the placement of data should be
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explored as where we place the data can affect the performance as all intermediate
data need to be moved from mapper nodes to the reducer nodes that consume both
bandwidth and time which could increase the needed time to complete the requested
MapReduce job. However, the problem of data placement is not solved because of
time limitation and is left to future work.
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8.1 Summary and Conclusions

The network is becoming more and more ossified with the increased amount of mid-
dleboxes. Thus, network operators are facing great challenges to incorporate new
communication technologies and to keep up with the increasing and evolving de-
mands of new network services addressing the emerging use cases. The necessity to
innovate, develop, test, deploy, integrate new network services, upgrade existing ones
and configure them using vendor-specific tools at a rapid pace have made networks
more complex and costly to operate.

The NFV paradigms promise to transform the network architecture by softwarizing
it. It has been proposed to eliminate the previous challenges by decoupling net-
work functions from the proprietary hardware, thereby providing a cost-effective
softwarized approach for network services development, deployment, integration,
management, and upgradation. In the NFV environment, the network operators and
service providers can run software-based functions (called virtual network functions)
on Commercial-Off-The-Shelf based appliances instead of using expensive purpose-
built hardware, which actually reduces CAPEX and OPEX costs.

The appearance of NFV makes it possible for network operators to achieve strong
network flexibility and fast new service deployment cycle. In this way, network op-
erators are able to satisfy the constantly growing customer requirements and reduce
the network operation and maintenance cost at the same time. Nevertheless, chal-
lenges always coexist with NF'V benefits such as performance issues. Due to the use
of commodity hardware, it is still difficult for the virtual network functions to of-
fer comparable or even better performance than the functions running on dedicated
hardware.

Moreover, as network functions for a given service are separated from the underlying
hardware and implemented as VNFs, a new critical problem appears of where to place
these functions such that the service requirements can be satisfied. This problem is
called VNF resource allocation or placement problem. It is usually hard to find the
optimal solution for VNFs placement problem and it is more challenging when the
service requests come in an online manner.
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Ensuring end-to-end service continuity in the presence of physical failures is another
important concern that should be taken into account when moving to the NFV en-
vironment as the commodity hardware that host VNFs are more prone to failures
compared with dedicated hardware and as virtualization also introduces more vul-
nerabilities.

In this thesis, we started by presenting the basic concepts of NFV and SFC (in-
cluding motivation, standardization efforts, architecture, and challenges). Then we
showed the main works in the literature and provided a new taxonomy for the main
efforts that have been done in the past for the placement problem. Thereafter, we
emphasized on the benefits of smart placements which keep into account resiliency
in addition to the usual performance metrics in Chapter 4. We advocated that re-
siliency should not be left to the orchestrator but should be carefully embedded to
the criteria considered at the virtual-to-physical placement phase. We showed that
just by taking smart placement decisions, we can ensure that continuity of the pro-
vided services in the presence of simple physical network failures, and thus avoiding
the need for the orchestrator intervention.

=

Based on the insights obtained for Chapter 4, we proposed in Chapter 5 a deter-
ministic solution to deploy online tenants’ service function chain requests in public
cloud data centers to guarantee some robustness level R in the presence of indepen-
dent fail-stop physical node failures. Our proposed algorithm solves the placement
problem in two steps. In the first step, the algorithm tries to map the functions of
the requested services to the convenient physical hosts using two different solutions,
namely optimal and greedy solutions. Once the placement of functions is decided,
a feasible path is decided in the second step using the shortest path algorithm. We
extensively evaluated our solution on very large data center networks (up to 30,528
nodes), differently from the state of the art, to assess the feasibility of our proposition
in very large scale data-centers.

The deterministic solution proposed in Chapter 5 is suitable for the situation in which
the service providers have a full control and knowledge of the underlying infrastruc-
ture. Thus, in Chapter 6, we have moved beyond this deterministic solution and
proposed a stochastic solution to solve the placement of topology-oblivious SFC de-
mands such that placed SFCs respect availability constraints imposed by the tenants.
In this solution, we took the availability of the network components into account and
solved the placement problem with the objective of maximizing the obtained avail-
ability level of the placed services. A large data center topology is also used as a
referenced topology in this chapter.

In Chapters 4, 5 and 6, the targeted environment is considered to be trustworthy
and controlled in a centralized manner by the infrastructure owner. However, when
moving to a cooperative environment where many enterprises collaborate together
to provide customer services namely MapReduce applications, there is no central
authority that controls the participated nodes’ actions. Thus, these services should
be provided in a fully distributed and decentralized manner.

In such scenarios where the environment cannot be trusted and participants have
no knowledge or control over this heterogeneous environment, a different problem
appears of how to trust the result with the presence of byzantine nodes (i.e. nodes
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that can have an arbitrary behaviour where they could even send incorrect messages)
and rational partners that have self-interested behavior, which is called BAR model.
Thus, we need to move from the network level to the application level and adapt
the application with the presence of these new challenges of trust and resources
heterogeneity.

Therefore, we introduced in Chapter 7 a blockchain-based decentralized MapReduce
framework, dubbed MARS, eligible to work within untrusted peer-to-peer environ-
ments. To achieve this goal, an unpredictable and deterministic distributed schedul-
ing algorithm is proposed to achieve the execution of jobs.

To evaluate the MARS framework, we adapted the MRSG simulator that is built
on top of the SimGrid simulator. Furthermore, we compared its performance with
Hadoop BFT proposed in the state of the art, as it is the closest solution to our work.
The completion time and resource usage of the optimized version of MARS was close
to the optimized Hadoop BFT; it increased linearly with respect to the number
of tolerated byzantine nodes, demonstrating the feasibility of the framework with
acceptable overhead for limited values of byzantine nodes expected in the system.
To the best of our knowledge, MARS is the first cooperative MapReduce framework
for decentralized BAR systems.

However, MARS is a preliminary work that present a first MapReduce framework
eligible to work in decentralized environment. In the current version, the problem of
trust is solved while problem of resources heterogeneity is not solved because of the
time limitation and it is left to the future work.

8.2 Future Works and Perspectives

Here, we describe some of the future work for our contributions in this thesis along
with possible future directions of the NFV paradigm.

Concerning Chapter 5, we have provided a solution that works efficiently with multi-
tier data center topologies where fault domains could be defined easily. However, this
solution should be adapted to consider any random topology or, more specifically,
server-centric data center topologies such as Dcell and Bcube topologies where it
is not possible to define the fault domains. Furthermore, the stochastic solution
adopted in Chapter 6 needs to be investigated more as it is restricted to a single
data center topology, namely the Fat-Tree network topology.

Moreover, the trade-offs between robustness and other important metrics (such as
cost, latency or energy consumption) could be studied to show if resilient placements
affect the remaining metrics. Formalizing the problem as a multi-objective optimiza-
tion one as well as considering more specific or realistic service requests instead of
synthetic ones for the performance evaluation could be other important extensions.
In addition, we could avoid rejecting tenants SFC requests by queuing the unsatisfied
requests for some time (some networks resources might be released during this time).
By doing this, the obtained acceptance ratio could be increased.
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Furthermore, all placement decisions that we have proposed are static where after a
placement decision is taken by the algorithm, the placed functions of the accepted
SFC will remain at their places and no re-placement or migration decision will be
taken later. As each accepted SFC leaves the network and releases the reserved
resources when the service time finishes, a dynamic placement algorithm within
re-calculation of services VNFs placement could lead to a higher acceptance ratio.
However, this dynamic solution may arise new challenges to other performance met-
rics such as the guaranteed latency as a result of the VNFs migration, especially for
the short-term services.

Another extension to our work regarding the SFCs placement problem, would be
using the failure prediction model to create a new replica in order to guarantee
the continuity of the provided services. In this solution, for each tenant requested
SFC we place only one replica for each function of this service chain. Thereafter,
based on a periodical failure prediction, we can predict that at some point in the
near future which physical nodes are more likely to encounter failure. Then, all the
affected placed functions should be migrated to safe nodes. To that aim, we need
to build good models that quantify the risk of failure for any node in any moment
in time, using machine learning techniques, and then use this information to take
VNFs re-placement decisions.

However, the success of these predictive failure models depends on the following
conditions: (i) Having the right data available to build a failure model, as we need
enough historical data to capture information about events that lead to failure. In
general, more data is not always better, and (i) How long in advance the model
should be able to indicate that a failure will occur.

With regard to the work presented in Chapter 7, named MARS, is interesting to study
the cases in which the storage is limited, and the resources provided by the enterprises
are heterogeneous. In these cases, we can consider a scheduler that does not blindly
assign the tasks equally or based on the locality principle (that is considered in Map
phase), but also it should decide which are the best nodes to perform the tasks, while
providing fairness in the assignment at the same time.

Beyond the topics discussed during this thesis, NF'V is still in the infancy. Therefore,
works will focus on the extensive activity around NFV soon as there are a plethora of
new topics to be explored. For example, considering the combination between SDN
and NFV as SDN is currently attracting significant attention from both academia
and industry as an important architecture to managing large scale complex networks.

Increasingly, researchers are focusing nowadays on applying this integrated archi-
tecture into other scenarios such as 5G, Internet of Things (lo7") and Information-
Centric Networking (ICN) areas. Security and privacy issues are also pivotal to the
success of NF'V and still need more research.
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A.1 Linearization of Nonlinear Constraints

Here we show how to linearize Constraints (6.16) and (6.17). For constraint (6.16)
we introduce auxiliary binary variables €, ; for i € [0,n] where n is the maximum
number of host nodes in one pod and oy, ; for j € [0,m] where m is the maximum
number of ToRs in a pod. ¢, ; refers to each possible number of used hosts under
each pod, and 0,; refers to each possible number of used ToRs under each pod.
VpeP:

epi =1 if e, =1, elsecy; =0, (A.1)
opj=11if op,=7, elsedp;=0. (A.2)

Constraint (A.1) ensures that this variable equals to 1 when the total number of
used host is equal to i else it is equal to 0. Then, Constraint (A.2) ensures that this
variable equals to 1 when the total number of used ToR is equal to j else it is equal
to 0.

igpvi =1 <A3)
=0

D opi=1 (A.4)
=0

Constraints (A.3, A.5) and Constraints (A.4, A.6) ensure that exactly one of €,; /
op,; binary variables is equal to 1 respectively.

ep = Zz - Epi (A.5)
i=0

Op = Zj "Op,j (A.6)
j=0
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Now, we rewrite Constraint (6.16) as:

Vpep oy = 5p,1'Ah -+ O—p,l'As-ZZ;lEp,i-A%"‘ (A 7)
Yt 16pi-Ap X7 0p 5 AL (1 — (1 — Ag)2).

Regarding the other nonlinear constraint (i.e., Equation (6.17)), the following pro-
cedure will be considered to overcome the problem. Firstly, Equation (6.17) can be
written as follows:

In(l—710) =Y In(l—ap). (A.8)

peEP

It is well known that for any real number x > —1, [85]:
In(l+z) <z (A.9)

Inequality (A.9) is also held for any function of the form F'(x) = ax + b, which is a
tangent linear function. Therefore, this inequality can now be written as:

In(l14+z) <ax+b, (A.10)

where the functions F(z) = ax + b and In(1 4+ z) have intersection at a certain
point zg. Note that a and b are constant, and they are calculated later. Based on
Equation (A.10), we can write:

In(l1—ap) < —apay +by (A.11)

or

Z In(l—op) < Z (—apay +bp). (A.12)

peEP peEP

From Equation (A.8) and Inequality (A.9), we find that:

In(l—72) < (—apop +by). (A.13)
peP

However, we need to make sure that 7, > R, which translates into:

In(l—1,) <In(l—R). (A.14)
Inequalities (A.13) and (A.14) do not guarantee whether In(1 — R) <
> pep (—apay + by) or the contrary.

But if we guarantee that the inequality ZpE P
Inequality (A.14) is then met, and consequently:

(—apap +by) < In(l — R) is met,

D (—apay +by) < In(1 - R). (A.15)
peP
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As the function F'(z) is the tangent line, the constant a can be easily calculated by
taking the differentiation of the function in(1 + ) at a certain point xg:

1
d F(x) = .
1+IL‘0

a

(A.16)

dz T=x0

The other constant b can be calculated by taking the value of the two functions at
the point z(, and thus:
In(1+x9)=axg+0b (A.17)

or
b= —azo + In(1 4+ zop). (A.18)

As our interest is to find whether 7, > R, we need to intersect the tangent line

with the logarithmic function at the point g = —R, and thus a, = —— and b, =

—R
L= +in(1 - R).

Finally, in the formal model (6.3.2), we replace Constraint (6.16) by the new Con-
straints (A.1, A.2, A3, A4, A5, A.6 and A.7), while Constraints (6.17) and (6.7)
are replaced by the new Constraint (A.15).
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