D. Evans, The Internet of Things How the Next Evolution of the Internet The Internet of Things How the Next Evolution of the Internet Is Changing Everything, 2011.

M. Jaber, 5G Backhaul Challenges and Emerging Research Directions : A Survey, vol.4, pp.1743-1766, 2016.

, Framework and overall objectives of the future development of IMT for 2020 and beyond, 2015.

E. C. Strinati and T. Choi, The first 5G system PoC in conjunction with the PyeongChang winter Olympics, 2018.

C. Lagane, L'UIT dévoile IMT-2020, le petit nom normatif de la 5G

P. P. Fellow, K. F. Trillingsgaard, and S. Member, 5G Wireless Network Slicing for eMBB , URLLC , and mMTC : A Communication-Theoretic View, 2016.

. Ericsson, 5G systems: 5G for humans and machines: use cases and requirements, White Pap, vol.284, pp.3-5, 2017.

D. Number, P. Name, and T. I. Society, Scenarios , requirements and KPIs for 5G mobile and wireless system Scenarios , requirements and KPIs for 5G mobile and wireless system, 2013.

. Ngmn-5g-alliance, , 2015.

. 5g-white-paper, 5G Vision , Requirements , and Enabling Technologies, Deliverable, vol.2, issue.0, pp.10-14, 2016.

J. G. Andrews, What Will 5G Be ?, vol.32, pp.1065-1082, 2014.

E. G. Larsson, Massive MIMO for Next Generation Wireless Systems, IEEE Commun. Mag, vol.52, issue.2, pp.186-195, 2014.

D. Lee, Coordinated Multipoint Transmission and Reception in LTE-Advanced : Deployment Scenarios and Operational Challenges, IEEE Commun. Mag, vol.50, issue.12, pp.148-55, 2012.

C. Wen, W. Shih, and S. Jin, Deep Learning for Massive MIMO CSI Feedback, IEEE Wirel. Commun. Lett, vol.7, issue.5, pp.748-75, 2018.

J. M. and K. Thomas, What Is Massive MIMO Technology?

F. Rusek, P. Daniel, B. K. Lau, and E. G. Larsson, Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays, IEEE Signal Processing Magazine, vol.30, issue.1, pp.40-60, 2012.

H. Q. Ngo, S. Member, E. G. Larsson, S. Member, and T. L. Marzetta, Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems, IEEE Trans. Commun, vol.61, issue.4, pp.1436-1449, 2013.

R. Janaswamy, Effect of element mutual coupling on the capacity of fixed length linear arrays, IEEE Antennas Wirel. Propag. Lett, vol.1, pp.157-160, 2002.

M. Duarte and A. Sabharwal, Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results, Conf. Rec. -Asilomar Conf. Signals, Syst. Comput, pp.1558-1562, 2010.

M. Jain, Practical, real-time, full duplex wireless, Proc. 17th Annu. Int. Conf. Mob. Comput. Netw. -MobiCom '11, p.301, 2011.

P. W. Chan, The Evolution Path of 4G Networks : FDD or TDD ?, IEEE Commun. Mag, vol.44, issue.12, pp.42-50, 2006.

S. Hong, Applications of self-interference cancellation in 5G and beyond, IEEE Communications Magazine, vol.52, issue.2, pp.114-121, 2014.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan et al., Inband full-duplex wireless: Challenges and opportunities, IEEE J. Sel. Areas Commun, vol.32, issue.9, pp.1637-1652, 2014.

D. Kim, H. Lee, and D. Hong, A Survey of In-Band Full-Duplex Transmission: From the Perspective of PHY and MAC Layers, IEEE Commun. Surv. Tutorials, vol.17, issue.4, pp.2017-2046, 2015.

B. Debaillie, In-band full-duplex transceiver technology for 5G mobile networks, Eur. Solid-State Circuits Conf, pp.84-87, 2015.

D. Bharadia, E. Mcmilin, and S. Katti, Full duplex radios, Proc. ACM SIGCOMM 2013 Conf. SIGCOMM -SIGCOMM '13, p.375, 2013.

A. Mohammad, X. Zhang, and A. Arbor, The Case for Antenna Cancellation for Scalable Full-Duplex Wireless Communications, Hotnets, pp.0-5, 2011.

M. E. Knox, Single antenna full duplex communications using a common carrier, 2012 IEEE 13th Annu. Wirel. Microw. Technol. Conf. WAMICON 2012, 2012.

D. W. Bliss, P. A. Parker, and A. R. Margetts, Simultaneous Transmission and Reception for Improvedwireless Network Performance, Stat. Signal Process, pp.478-482, 2007.

D. Bharadia and S. Katti, Full duplex MIMO radios, Proc. 11th USENIX Syposium Networked Syst. Des. Implement, pp.359-372, 2014.

M. G. Sarret, G. Berardinelli, N. H. Mahmood, B. Soret, and P. Mogensen, Can full duplex reduce the discovery time in D2D communication?, Proc. Int. Symp. Wirel. Commun. Syst, pp.27-31, 2016.

. Docomo, DOCOMO 5G White Paper Requirements , Concept and Technologies, 2014.

T. S. Rappaport, Millimeter Wave Mobile Communications for 5G Cellular : It Will Work !, IEEE Access, vol.1, pp.335-349, 2013.

, Telecommunications Network and Service Architectures Principles , Concepts and Architectures 2 Global System for Mobile Communications ( GSM ), 2010.

D. López-pérez, I. Güvenç, G. De-la-roche, M. Kountouris, T. Q. Quek et al., Enhanced intercell interference coordination challenges in heterogeneous networks, IEEE Wirel. Commun, vol.18, issue.3, pp.22-30, 2011.

T. Lte and G. P. Release, LTE Technology Introduction White Paper, 2009.

X. Ge, S. Tu, G. Mao, C. X. Wang, and T. Han, 5G Ultra-Dense Cellular Networks, IEEE Wireless Communications, vol.23, issue.1, pp.72-79, 2016.

H. Zhang, Y. Dong, and S. Member, Fronthauling for 5G LTE-U Ultra Dense Cloud Small Cell Networks, IEEE Commun. Mag, vol.23, issue.6, pp.48-53, 2016.

R. Baldemair, Ultra-dense networks in millimeter-wave frequencies, IEEE Commun. Mag, vol.53, issue.1, pp.202-208, 2015.

R. Misra and S. Katti, QuickC : Practical sub-millisecond transport for small cells, Proc. 22nd Annu. Int. Conf. Mob. Comput. Netw, pp.109-121, 2016.

P. Gahan, K. Mumford, D. Standeford, M. Sims, C. Viola et al., The 4G and 5G Spectrum Guide, pp.13-55, 2017.

, International Telecommunications Union-T K-series Recommendations, 2017.

J. C. Wiltse, History of millimeter and submillimeter waves, IEEE Trans. Microw. Theory Tech, vol.32, issue.9, pp.1118-1127, 1984.

P. Adhikari, Understanding Millimeter Wave Wireless Communication, Loea Corp, 2008.

M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, Edge Computing Meets Millimeter-wave Enabled VR : Paving the Way to Cutting the Cord, Proc. IEEE WCNC, pp.3-8, 2018.

J. M. Bryant and M. Newman, Simple Transmission Formula *, Proc. I.R.E. Waves Electrons, vol.34, issue.5, pp.254-256, 1946.

, Line-by-line calculation of gaseous attenuation Specific attenuation, 1997.

. Vi and . Références,

S. Jaeckel, M. Peter, K. Sakaguchi, W. Keusgen, and J. Medbo, 5G Channel Models in mm-Wave Frequency Bands, Proc. Eur. Wireless Conf. (EW), 2016.

M. Matinmikko, A. Roivainen, M. Latva-aho, and K. Hiltunen, Interference Study of Micro Licensing for 5G Micro Operator Small Cell Deployments, Proc. Int. Conf. Cogn. Radio Oriented Wirel. Networks, 2017.

H. J. Visser, Array and Phased Array Antenna Basics, 2005.

R. Wansch, H. Adel, and H. Humpfer, MiniTerminal -a small antenna for satellite reception, INICA 2007 2nd Int. ITG Conf. Antennas, 2017.

J. Rodriguez, Fundamentals of 5G Mobile networks, 2015.

C. A. Balanis, Antenna Theory: Analysis and Design, 2005.

L. Josefsson and P. Persson, Conformal array antenna theory and design, 2006.

W. H. Kummer, Basic Array Theory, Proc. IEEE, vol.80, pp.127-140, 1992.

J. K. Hong, Dynamic two-stage beam training for energy-efficient millimeter-wave 5G cellular systems, pp.111-122, 2015.

D. A. Miller, Spatial channels for communicating with waves between volumes, Opt. Lett, vol.23, issue.21, pp.1645-1647, 1998.

D. A. Miller, Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths, Appl. Opt, vol.39, issue.11, pp.1681-1699, 2000.

Y. Y. Bai, S. Xiao, M. C. Tang, Z. F. Ding, and B. Z. Wang, Wide-angle scanning phased array with pattern reconfigurable elements, IEEE Trans. Antennas Propag, vol.59, issue.11, pp.4071-4076, 2011.

M. S. Sharawi, S. Member, S. Deif, A. Shamim, and S. Member, An Electronically Controlled 8-Element Switched Beam Planar Array, vol.1225, pp.8-11, 2015.

W. Cao, B. Zhang, A. Liu, T. Yu, D. Guo et al., A Recon fi gurable Microstrip Antenna With Radiation Pattern Selectivity and Polarization Diversity, vol.11, pp.453-456, 2012.

A. Muhammad-kamran, . Saleem, A. S. Majeed, and A. F. Sheta, Swith beam dielectric resonator antenna array with four reconfigurable radiation patterns, Indian J. Sci. Technol, vol.6, issue.1, pp.3872-3875

H. Boutayeb, P. R. Watson, W. Lu, and T. Wu, Beam Switching Dual Polarized Antenna Array with Reconfigurable Radial Waveguide Power Dividers, IEEE Trans. Antennas Propag, vol.65, issue.4, pp.1807-1814, 2017.

J. S. Duniam, G. Hubert, and B. A. Langhorn, Electromagnetic wave lens and mirror systems, 1961.

L. Guo, P. K. Tan, and T. H. Chio, Beam-scanning improvement of reflectarrays using single-layered sub-wavelength elements, Proc. 2015 IEEE 5th Asia-Pacific Conf. Synth. Aperture Radar, APSAR 2015, vol.51, pp.131-134, 2015.

C. H. Tseng, C. J. Chen, and T. H. Chu, A low-cost 60-GHz switched-beam patch antenna array with butler matrix network, IEEE Antennas Wirel. Propag. Lett, vol.7, pp.432-435, 2008.

Y. Cao, K. S. Chin, W. Che, W. Yang, and E. S. Li, A Compact 38 GHz Multibeam Antenna Array with Multifolded Butler Matrix for 5G Applications, IEEE Antennas Wirel. Propag. Lett, vol.16, issue.c, pp.2996-2999, 2017.

R. F. Turner, Wide-Angle Microwave Lens for Line Source Applications*, 1963.

Y. J. Cheng, Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications, IEEE Trans. Antennas Propag, vol.56, issue.8, pp.2504-2513, 2008.

M. A. Hassanien, R. Hahnel, and D. Plettemeier, A Novel Electronically Wideband Steering System using Rotman Lens for 5G Applications at 28 GHz, vol.4, pp.2-6, 2018.

Y. F. Cheng, X. Ding, W. Shao, M. X. Yu, and B. Z. Wang, A Novel Wide-Angle Scanning Phased Array Based on Dual-Mode Pattern-Reconfigurable Elements, IEEE Antennas Wirel. Propag. Lett, vol.16, issue.c, pp.396-399, 2017.

S. E. Valavan, D. Tran, A. G. Yarovoy, and A. G. Roederer, Dual-band wide-angle scanning planar phased array in X/Ku-Bands, IEEE Trans. Antennas Propag, vol.62, issue.5, pp.2514-2521, 2014.

. Vii and . Références,

, ANSYS Electronics Desktop: Electromagnetic Analysis

S. A. Aghdam, Adaptive Antenna Array Beamforming and Power Management With Antenna Element Selection, 2016.

D. M. Pozar, Microstrip Antenna Aperture-Coupled To a Microstripline, Electron. Lett, vol.21, issue.2, pp.49-50, 1895.

A. Kuchar, Aperture-Coupled Microstrip Patch Antenna Array, 1996.

O. Jo, J. Kim, and J. Yoon, Exploitation of Dual-polarization Diversity for 5G Millimeter-Wave MIMO Beamforming Systems, IEEE Trans. Antennas Propag, vol.65, issue.12, pp.6646-6655, 2017.

S. Uda, Wireless beam of short electric waves, J. Inst. Elec. Eng, vol.472, issue.452, pp.1209-1219, 1927.

H. Yagi, Beam transmission of ultra short waves, Proc. IRE, vol.16, pp.715-741, 1928.

, b les faisceaux pointent bien dans l'axe z avec un niveau de polarisation principale égal à 15,2dBi grâce à l'effet constructif des différents ports d'excitation. Le niveau de la polarisation croisée est en dessous de 0dBi dans les deux plans. Grâce à cette forte directivité, ce réseau d'antennes offre une faible ouverture à mi-puissance de 21° entre -11° et 10° dans chaque plan orthogonal. Lorsque le port d'excitation P5 est actif et les autres chargés à 50 ?, les quatre éléments rayonnants sont excités formant ainsi un réseau linéaire, p.0

, Le niveau de polarisation principale est égal à 13,2dBi et celui de la polarisation croisée le plus élevé vaut -3dBi. Cette différence de niveau entre les deux polarisations principales entre les ports P5 et P7 est due certainement à cette longueur de 180° entre les deux ports. Dans le plan phi=90°, le diagramme de rayonnent est directif dans la direction ?=25° si le port 6 est excité (Figure 4.39.b) ou dans la direction ?=-25° si le port 8 est actif (Figure 4.40.b). Les mêmes couvertures obtenues dans le plan (xoy) pour les ports 5 et 7 on était retrouvées dans le plan (yoz) lorsqu'uniquement le port 6 ou le port 8 est activé. Dans cette structure, la combinaison des six faisceaux permet d'obtenir une couverture à mi-puissance de 110° dans chaque plan orthogonal

, Liste des publications

A. N'gom, A. Diallo, K. Talla, A. Chaibo, I. Dioum et al., A reconfigurable beam dual polarized microstrip cross patch antenna, Proceedings of the 11th European Conference on Antennas and Propagation (EuCAP) 2017

A. Ngom, A. Diallo, K. Talla, A. Chiabo, I. Dioum et al., Antenne à double polarisation et diagramme reconfigurable destinée aux « smallcells » pour la 5G, 20 Journées Nationales Microondes, 2017.

A. Chaibo, A. Ngom, M. Youssouf-khayal, and K. Talla, Aboubaker Chedikh Beye "A Novel Bow-Tie Antenna with Triple Band-Notched Characteristics for UWB Applications, Journal of Electromagnetic Analysis and Applications, vol.8, pp.271-282, 2016.

A. N'gom, A. Diallo, A. C. Beye, and J. M. Ribero, Sous-réseau d'antennes adaptatif destiné aux réseaux 'small cells' pour la 5G" Assemblée générale GDR ONDES "Interférences d'Ondes, 2017.

A. N'gom, A. Diallo, J. Ribero, and A. C. Beye, Design of an Adaptive Subarray Antenna for Multi-Beams Wireless Small Cell Backhaul in mmWave, 2018.

K. Diallo, N. Assane, A. Gom, J. Diallo, I. Ribero et al., Efficient Dual-Band PIFA Antenna for the Internet of Things (IoT), Conference on antenna measurement and applications (CAMA2018)
URL : https://hal.archives-ouvertes.fr/hal-01825723

M. and M. Khouma,

F. Sidi-mouhamed, Dual-band pattern reconfigurable 5G antenna using dual-band blc, 2018.