P. Aanstad, N. Santos, K. C. Corbit, P. J. Scherz, L. Trinh et al., , vol.19, pp.1034-1039, 2010.

B. L. Allen, T. Tenzen, and A. P. Mcmahon, The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development, Genes Dev, 2007.

A. Gallet, L. Ruel, L. S. , and P. P. , Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia, Development, vol.133, pp.407-418, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00322327

S. Artavanis-tsakonas, M. D. Rand, and R. J. Lake, Notch signaling: cell fate control and signal, Integr. Dev. Sci, vol.284, pp.770-776, 1999.

A. Avanesov and S. S. Blair, The Drosophila WIF1 homolog Shifted maintains glypicanindependent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi, Development, vol.140, pp.107-116, 2013.

K. L. Ayers, A. Gallet, L. Staccini-lavenant, and P. P. Thérond, The Long-Range Activity of Hedgehog Is Regulated in the Apical Extracellular Space by the Glypican Dally and the Hydrolase Notum, Dev. Cell, vol.18, pp.605-620, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497174

S. Bandari, S. Exner, C. Ortmann, V. Bachvarova, A. Vortkamp et al., Sweet on Hedgehogs: Regulatory Roles of Heparan Sulfate Proteoglycans in Hedgehog-Dependent Cell Proliferation and Differentiation, pp.66-76, 2015.

Y. Bellaiche, I. The, and N. Perrimon, Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion, Nature, vol.394, pp.85-88, 1998.

A. Bilioni, D. Sánchez-hernández, A. Callejo, A. C. Gradilla, C. Ibáñez et al., Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif, Dev. Biol, 2013.

M. Bischoff, A. C. Gradilla, I. Seijo, G. Andrés, C. Rodríguez-navas et al., Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia, Nat. Cell Biol, vol.15, pp.1269-1281, 2013.

M. J. Bitgood, L. Shen, and A. P. Mcmahon, Sertoli cell signaling by Desert hedgehog regulates the male germline, Curr. Biol, 1996.

R. Blake-pepinsky, C. Zeng, D. Wen, P. Rayhorn, D. P. Baker et al., Identification of a Palmitic Acid-modified Form of Human Sonic hedgehog*, 1998.

W. J. Bodeen, S. Marada, A. Truong, and S. K. Ogden, A fixation method to preserve cultured cell cytonemes facilitates mechanistic interrogation of morphogen transport, Development, vol.144, pp.3612-3624, 2017.

J. Briscoe and P. P. Thérond, The mechanisms of Hedgehog signalling and its roles in development and disease, Nat. Rev. Mol. Cell Biol, vol.14, pp.418-431, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831295

J. Briscoe, Y. Chen, T. M. Jessell, G. Struhl, W. Street et al., Struhl Mol Cell 01.pdf, vol.7, pp.1279-1291, 2001.

N. H. Brown, S. L. Gregory, and M. D. Martin-bermudo, Integrins as Mediators of Morphogenesis in Drosophila, Dev. Biol, vol.223, pp.1-16, 2000.

J. A. Buglino and M. D. Resh, Palmitoylation of Hedgehog Proteins, Vitam. Horm, vol.88, pp.229-252, 2012.

N. A. Bulgakova, I. Grigoriev, A. S. Yap, A. Akhmanova, and N. H. Brown, Dynamic microtubules produce an asymmetric E-cadherin-Bazooka complex to maintain segment boundaries, J. Cell Biol, 2013.

T. A. Bunch, R. Salatino, M. C. Engelsgjerd, L. Mukai, R. F. West et al., Characterization of Mutant Alleles of myospheroid, the Gene Encoding the @ Subunit of the Drosophila PS Integrins, 1992.

, Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells, Cell, vol.99, pp.803-815

E. F. Byrne, G. Luchetti, R. Rohatgi, and C. Siebold, Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates, Curr. Opin. Cell Biol, vol.51, pp.81-88, 2018.

A. Callejo, Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix, 2006.

A. Callejo, J. Culi, and I. Guerrero, Patched, the receptor of Hedgehog, is a lipoprotein receptor, Proc. Natl. Acad. Sci, vol.105, pp.912-917, 2008.

A. Callejo, . Bilioni, E. Mollica, N. Gorfinkiel, G. Andres et al., Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium, Proc. Natl. Acad. Sci, vol.108, pp.12591-12598, 2011.

D. Camp, K. Currie, A. Labbé, D. J. Van-meyel, and F. Charron, Ihog and Boi are essential for Hedgehog signaling in Drosophila, Neural Dev, vol.5, p.28, 2010.

M. I. Capurro, P. Xu, W. Shi, F. Li, A. Jia et al., Glypican-3 Inhibits Hedgehog Signaling during Development by Competing with Patched for Hedgehog Binding, Dev. Cell, 2008.

M. I. Capurro, F. Li, and J. Filmus, Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian Hedgehog, EMBO Rep, 2009.

M. I. Capurro, W. Shi, and J. Filmus, LRP1 mediates Hedgehog-induced endocytosis of the GPC3-Hedgehog complex, J. Cell Sci, 2012.

E. Caussinus, O. Kanca, and M. Affolter, Fluorescent fusion protein knockout mediated by anti-GFP nanobody, Nat. Struct. Mol. Biol, vol.19, pp.117-121, 2011.

Z. Chamoun, R. K. Mann, D. Nellen, V. Kessler, D. P. Bellotto et al., Skinny Hedgehog, an acyltransferase required for palmitoylation and activity of the Hedgehog signal, 2001.

J. K. Chen, J. Taipale, M. K. Cooper, and P. A. Beachy, Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened, Genes Dev, vol.16, pp.2743-2748, 2002.

M. H. Chen, Y. J. Li, T. Kawakami, S. M. Xu, and P. T. Chuang, Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates, Genes Dev, vol.18, pp.641-659, 2004.

W. Chen, H. Huang, R. Hatori, and T. B. Kornberg, Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc, 2017.

H. Chino and R. G. Downer, Insect hemolymph lipophorin: A mechanism of lipid transport in insects, Adv. Biophys, 1982.

A. Christ, A. Christa, E. Kur, O. Lioubinski, S. Bachmann et al., , 2012.

, LRP2 Is an Auxiliary SHH Receptor Required to Condition the Forebrain Ventral Midline for Inductive Signals, Dev. Cell

L. Christ, C. Raiborg, E. M. Wenzel, C. Campsteijn, and H. Stenmark, Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery, Trends Biochem. Sci, vol.42, pp.42-56, 2017.

J. L. Christian, Morphogen gradients in development: From form to function, Wiley Interdiscip. Rev. Dev. Biol, 2012.

M. Cohen, M. Georgiou, N. L. Stevenson, M. Miodownik, and B. Baum, Dynamic Filopodia Transmit Intermittent Delta-Notch Signaling to Drive Pattern Refinement during Lateral Inhibition, Dev. Cell, vol.19, pp.78-89, 2010.

M. E. Coulter, C. M. Dorobantu, G. A. Lodewijk, F. Delalande, S. Cianferani et al., The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles, Cell Rep, vol.24, pp.973-986, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02338285

C. Crosnier, D. Stamataki, L. , and J. , Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control, Nat. Rev. Genet, vol.7, pp.349-359, 2006.

G. D'angelo, T. Matusek, S. Pizette, and P. P. Thérond, Endocytosis of hedgehog through dispatched regulates long-range signaling, Dev. Cell, vol.32, pp.290-303, 2015.

C. Danesin, Ventral Neural Progenitors Switch toward an Oligodendroglial Fate in Response to Increased Sonic Hedgehog (Shh) Activity: Involvement of Sulfatase 1 in Modulating Shh Signaling in the Ventral Spinal Cord, J. Neurosci, vol.26, pp.5037-5048, 2006.

R. J. Dawber, S. Hebbes, B. Herpers, F. Docquier, . Van-den et al., Differential range and activity of various forms of the Hedgehog protein, BMC Dev. Biol, vol.5, pp.1-14, 2005.

N. Denef, D. Neubüser, L. Perez, and S. M. Cohen, Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened, Cell, vol.102, pp.521-531, 2000.

S. C. Desbordes, The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila, Development, vol.130, pp.6245-6255, 2003.

J. R. Dwyer, N. Sever, M. Carlson, S. F. Nelson, P. A. Beachy et al., Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells, J. Biol. Chem, vol.282, pp.8959-8968, 2007.

S. Eaton and T. B. Kornberg, Repression of ci-D in posterior compartments of Drosophila by engrailed, Genes Dev, vol.4, pp.1068-1077, 1990.

L. Etheridge, T. Q. Crawford, S. Zhang, and H. Roelink, Evidence for a role of vertebrate Disp1 in long-range Shh signaling, Development, vol.137, pp.133-140, 2010.

C. Eugster, D. Panáková, A. Mahmoud, and S. Eaton, Lipoprotein-Heparan Sulfate Interactions in the Hh Pathway, Dev. Cell, 2007.

A. Gallet and P. P. Therond, Temporal modulation of the Hedgehog morphogen gradient by a patched-dependent targeting to lysosomal compartment, Dev. Biol, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00322329

A. Gallet, R. Rodriguez, L. Ruel, and P. P. Therond, Cholesterol modification of Hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to Hedgehog, Dev. Cell, vol.4, pp.191-204, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00322333

A. Gallet, L. Staccini-lavenant, and P. P. Thérond, Cellular Trafficking of the Glypican Dallylike Is Required for Full-Strength Hedgehog Signaling and Wingless Transcytosis, Dev. Cell, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00319094

A. J. Giráldez, R. R. Copley, and S. M. Cohen, HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient, Dev. Cell, vol.2, pp.667-676, 2002.

B. Glise, C. A. Miller, M. Crozatier, M. A. Halbisen, S. Wise et al., Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of hedgehog, Dev. Cell, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00169827

J. A. Goetz, S. Singh, L. M. Suber, F. J. Kull, and D. J. Robbins, A highly conserved aminoterminal region of Sonic Hedgehog is required for the formation of its freely diffusible multimeric form, J. Biol. Chem, 2006.

L. González-méndez, I. Seijo-barandiarán, and I. Guerrero, Cytoneme-mediated cell-cell contacts for hedgehog reception, Elife, vol.6, pp.1-24, 2017.

N. González-morales, T. K. Holenka, and F. Schöck, Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion, PLoS Genet, vol.13, pp.1-25, 2017.

N. Gorfinkiel, J. Sierra, A. Callejo, C. Ibañez, and I. Guerrero, The Drosophila ortholog of the human Wnt inhibitor factor shifted controls the diffusion of lipid-modified hedgehog, Dev. Cell, 2005.

A. C. Gradilla and I. Guerrero, Cytoneme-mediated cell-to-cell signaling during development, Cell Tissue Res, 2013.

A. C. Gradilla, E. González, I. Seijo, G. Andrés, M. Bischoff et al., Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion, Nat. Commun, vol.5, 2014.

J. C. Gross, V. Chaudhary, K. Bartscherer, and M. Boutros, Active Wnt proteins are secreted on exosomes, Nat. Cell Biol, vol.14, pp.1036-1045, 2012.

C. Han, Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynaminindependent process, 2004.

Y. G. Han, N. Spassky, M. Romaguera-ros, J. M. Garcia-verdugo, A. Aguilar et al., Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells, Nat. Neurosci, vol.11, pp.277-284, 2008.

C. Han, D. Yan, T. Y. Belenkaya, and L. X. , Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc, Development, vol.132, pp.667-679, 2005.

T. R. Hartman, D. Zinshteyn, H. K. Schofield, E. Nicolas, A. Okada et al., , 2010.

, Drosophila Boi limits hedgehog levels to suppress follicle stem cell proliferation, J. Cell Biol, vol.191, pp.943-952

U. Hinz, B. Giebel, and J. A. Campos-ortega, The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes, Cell, 1994.

J. E. Hooper and M. P. Scott, Communicating with hedgehogs, Nat. Rev. Mol. Cell Biol, 2005.

E. Y. Hsia, Y. Zhang, H. S. Tran, A. Lim, Y. H. Chou et al., , 2017.

, Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs, Nat. Commun

J. C. Hsieh, L. Kodjabachian, M. L. Rebbert, A. Rattner, P. M. Smallwood et al., A new secreted protein that binds to Wnt proteins and inhibits their activites, Nature, vol.398, pp.431-436, 1999.

F. Hsiung, F. A. Ramirez-weber, D. David-iwaki, and T. B. Kornberg, Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic, 2005.

J. Hua-tian, B. D. Jeong, C. J. Harfe, and A. P. , Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand, Development, vol.132, pp.133-142, 2004.

H. Huang and T. B. Kornberg, Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium, vol.4, pp.1-22, 2015.

H. Huang and T. B. Kornberg, Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes, Elife, vol.5, pp.1-20, 2016.

P. Huang, D. Nedelcu, M. Watanabe, C. Jao, Y. Kim et al., Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling, Cell, vol.166, pp.1176-1187, 2016.

P. W. Ingham and M. J. Fietz, Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing, 1995.

P. W. Ingham, Hedgehog signalling, Curr. Biol, vol.18, pp.238-241, 2008.

P. W. Ingham and A. P. Mcmahon, Hedgehog signaling in animal development : paradigms and principles Hedgehog signaling in animal development : paradigms and principles, Genes Dev, vol.15, pp.3059-3087, 2001.

P. W. Ingham, Y. Nakano, and C. Seger, Mechanisms and functions of Hedgehog signalling across the metazoa, Nat. Rev. Genet, vol.12, pp.393-406, 2011.

P. Jakobs, S. Exner, S. Schurmann, U. Pickhinke, S. Bandari et al., Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells, J. Cell Sci, vol.127, pp.1726-1737, 2014.

P. Jakobs, P. Schulz, C. Ortmann, S. Sch�rmann, S. Exner et al., Bridging the gap: Heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells, 2016.

J. Feng, B. White, V. Oksana, B. Tyurina, and . Guner,

J. D. Karlstrom, Synergistic and antagonistic roles of the Sonic hedgehog N-and C-terminal lipids, Development, vol.131, pp.4357-4370, 2004.

J. Jiang and C. C. Hui, Hedgehog Signaling in Development and Cancer, Dev. Cell, vol.15, pp.801-812, 2008.

K. Jiang, Y. Liu, J. Fan, J. Zhang, X. A. Li et al., PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail, PLoS Biol, vol.14, pp.1-26, 2016.

R. L. Johnson and C. Tabin, The long and short of hedgehog signaling, Cell, vol.81, pp.313-316, 1995.

S. Kakugawa, P. F. Langton, M. Zebisch, S. Howell, Y. Liu et al., Europe PMC Funders Group Notum deacylates Wnts to suppress signalling activity Europe PMC Funders Author Manuscripts, vol.519, pp.187-192, 2015.

J. Kang, P. J. Mulieri, C. Miller, D. A. Sassoon, and R. S. Krauss, CDO, A Robo-related Cell Surface Protein that Mediates Myogenic Differentiation, vol.143, pp.403-413, 1998.

J. Kang, P. J. Mulieri, Y. Hu, L. Taliana, and R. S. Krauss, BOC , an Ig superfamily member , associates with CDO to positively regulate myogenic differentiation, vol.21, 2002.

J. M. Kavran, M. D. Ward, O. O. Oladosu, S. Mulepati, and D. J. Leahy, All mammalian hedgehog proteins interact with cell adhesion molecule, down-regulated by oncogenes (CDO) and brother of CDO (BOC) in a conserved manner, J. Biol. Chem, vol.285, pp.24584-24590, 2010.

H. Khaliullina, D. Panakova, C. Eugster, F. Riedel, M. Carvalho et al., , 2009.

J. D. Kohtz, H. Y. Lee, N. Gaiano, J. Segal, E. Ng et al., N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons, Development, vol.128, pp.2351-2363, 2001.

J. D. Kohtz, H. Y. Lee, N. Gaiano, J. Segal, E. Ng et al., N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons, Development, vol.128, pp.2351-2363, 2001.

A. Kopp, D. , and I. , Anteroposterior patterning in adult abdominal segments of Drosophila, Dev. Biol, vol.242, pp.15-30, 2002.

. Kopp, M. Muskavitch, D. , and I. , The roles of hedgehog and engrailed in patterning adult abdominal segments of Drosophila, Development, vol.124, pp.3703-3714, 1997.

. Kopp, R. K. Blackman, D. , and I. , Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila, Development, vol.126, pp.3495-3507, 1999.

T. B. Kornberg, Cytonemes extend their reach, EMBO J, vol.32, pp.1658-1659, 2013.

J. Kreuger, L. Perez, A. J. Giraldez, and S. M. Cohen, Opposing activities of Dally-like glypican at high and low levels of wingless morphogen activity, Dev. Cell, 2004.

P. E. Kuwabara and M. Labouesse, The sterol-sensing domain: multiple families, a unique role?, Trends Genet, vol.18, pp.193-201, 2002.

J. D. Lee and J. E. Treisman, The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc, Development, vol.128, pp.1519-1529, 2001.

J. D. Lee, P. Kraus, N. Gaiano, S. Nery, J. Kohtz et al., , 2001.

, An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development, Dev. Biol, vol.233, pp.122-136

J. J. Lee, S. C. Ekker, V. Kessler, D. P. Porter, J. A. Sun et al.,

M. Levin, R. L. Johnson, C. D. Sterna, M. Kuehn, and C. Tabin, A molecular pathway determining left-right asymmetry in chick embryogenesis, Cell, vol.82, pp.803-814, 1995.

P. M. Lewis, M. P. Dunn, J. A. Mcmahon, M. Logan, J. F. Martin et al., Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1, Cell, 2001.

F. Li, W. Shi, M. Capurro, and J. Filmus, Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling, J. Cell Biol, vol.192, pp.691-704, 2011.

S. Li, Y. Chen, Q. Shi, T. Yue, B. Wang et al., Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila, PLoS Biol, vol.10, 2012.

X. Lin, Functions of heparan sulfate proteoglycans in cell signaling during development, Development, vol.131, pp.6009-6021, 2004.

X. Lin and N. Perrimon, Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila, Matrix Biol, 2000.

L. Lum, S. Yao, B. Mozer, A. Rovescalli, D. Kessler et al., Identification of Hedgehog Pathway Components by RNAi in Drosophila Cultured Cells

Y. Ma, A. Erkner, R. Gong, S. Yao, J. Taipale et al., Hedgehogmediated patterning of the mammalian embryo requires transporter-like function of dispatched, Cell, vol.111, pp.63-75, 2002.

M. M. Madhavan and K. Madhavan, Morphogenesis of the epidermis of adult abdomen of Drosophila, J. Embryol. Exp. Morphol, vol.60, pp.1-31, 1980.

D. C. Martinelli and C. M. Fan, Gas1 extends the range of Hedgehog action by facilitating its signaling, Genes Dev, vol.21, pp.1231-1243, 2007.

B. Mattes and S. Scholpp, Emerging role of contact-mediated cell communication in tissue development and diseases, Histochem. Cell Biol, vol.150, pp.431-442, 2018.

T. Matusek, F. Wendler, S. Polès, S. Pizette, G. D'angelo et al., , 2014.

, The ESCRT machinery regulates the secretion and long-range activity of Hedgehog, Nature, vol.516, pp.99-103

J. S. Mclellan, S. Yao, X. Zheng, B. V. Geisbrecht, R. Ghirlando et al., Structure of a heparin-dependent complex of Hedgehog and Ihog, Proc. Natl. Acad. Sci, 2006.

J. S. Mclellan, X. Zheng, G. Hauk, R. Ghirlando, P. A. Beachy et al., The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla, Nature, vol.455, pp.979-983, 2008.

A. P. Mcmahon, More surprises in the Hedgehog signaling pathway, Cell, vol.100, pp.185-188, 2000.

C. Micchelli, I. The, E. Selva, V. Mogila, and N. Perrimon, Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling, Development, vol.129, pp.843-851, 2002.

G. Michaux, A. Gansmuller, C. Hindelang, and M. Labouesse, CHE-14, a protein with a sterolsensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells, Curr. Biol, vol.10, pp.1098-1107, 2000.

C. Micchelli, I. The, E. Selva, V. Mogila, and N. Perrimon, Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling, Development, vol.129, pp.843-851, 2002.

M. J. Butler1, T. L. Jacobsen2, D. M. Cain2, M. G. Jarman1, M. H. et al.,

R. Whittle1, *. Phillips1, and A. Simcox1, Discovery of genes with highly restricted expression patterns in the Drosophila wing disc using DNA oligonucleotide microarrays, Development, vol.2, pp.659-670, 2003.

J. Mohler, Requirements for hedgehod, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila, Genetics, 1988.

K. Moriyoshi, L. J. Richards, C. Akazawa, D. D. O'leary, and S. Nakanishi, Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP, Neuron, 1996.

Y. Nakajima, E. Kuranaga, K. Sugimura, A. Miyawaki, and M. Miura, Nonautonomous apoptosis is triggered by local cell cycle progression during epithelial replacement in Drosophila, Mol. Cell. Biol, vol.31, pp.2499-2512, 2011.

Y. Nakano, H. R. Kim, . Kawakami, S. Roy, .. F. Schier et al., Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo, Dev. Biol, vol.269, pp.381-392, 2004.

H. Nakato and J. P. Li, Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models, In International Review of Cell and Molecular Biology, 2016.

N. Ninov, D. A. Chiarelli, and E. Martin-blanco, Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis, Development, vol.134, pp.367-379, 2007.

N. Ninov, D. A. Chiarelli, and E. Martin-blanco, Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis, Development, vol.134, pp.367-379, 2007.

N. Ninov, C. Manjón, and E. Martín-blanco, Dynamic control of cell cycle and growth coupling by ecdysone, egfr, and PI3K signaling in Drosophila histoblasts, PLoS Biol, vol.7, pp.892-0903, 2009.

N. Ninov, S. Menezes-cabral, C. Prat-rojo, C. Manj??n, A. Weiss et al., Dpp Signaling Directs Cell Motility and Invasiveness during Epithelial Morphogenesis, Curr. Biol, vol.20, pp.513-520, 2010.

K. Nybakken and N. Perrimon, Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila, Biochim. Biophys. Acta -Gen. Subj, 2002.

S. K. Ogden, M. Ascano, M. A. Stegman, and D. J. Robbins, Regulation of Hedgehog signaling: A complex story, Biochem. Pharmacol, vol.67, pp.805-814, 2004.

S. Ohlig, U. Pickhinke, S. Sirko, S. Bandari, D. Hoffmann et al., An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions, J. Biol. Chem, 2012.

Y. Olmos, C. , and J. G. , The ESCRT machinery: New roles at new holes, Curr. Opin. Cell Biol, vol.38, pp.1-11, 2016.

W. Palm, J. L. Sampaio, M. Brankatschk, M. Carvalho, A. Mahmoud et al., Lipoproteins in Drosophila melanogaster-assembly, function, and influence on tissue lipid composition, PLoS Genet, vol.8, 2012.

W. Palm, M. M. Swierczynska, V. Kumari, M. Ehrhart-bornstein, S. R. Bornstein et al., Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals, PLoS Biol, vol.11, 2013.

D. Panáková, H. Sprong, E. Marois, C. Thiele, and S. Eaton, Lipoprotein particles are required for Hedgehog and Wingless signalling, Nature, 2005.

A. Parchure, N. Vyas, C. Ferguson, R. G. Parton, M. et al., Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion, Mol. Biol. Cell, vol.26, pp.4700-4717, 2015.

C. Peters, . Wolf, M. Wagner, J. Kuhlmann, and H. Waldmann, The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins, Proc. Natl. Acad. Sci, vol.101, pp.8531-8536, 2004.

T. D. Pollard, Actin and Actin-Binding Proteins, Cold Spring Harb. Perspect. Biol, vol.8, pp.1-17, 2016.

J. A. Porter, D. P. Kessler, S. C. Ekker, K. E. Young, J. J. Lee et al., The product of hedgehog autoproteolytic cleavage active in local and long-range signalling, Nature, 1995.

J. A. Porter, S. C. Ekker, W. J. Park, V. Kessler, D. P. Young et al., Hedgehog patterning activity: Role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain, Cell, 1996.

N. Powers and A. Srivastava, The air sac primordium of Drosophila: A model for invasive development, Int. J. Mol. Sci, vol.19, 2018.

X. Qi, X. Qi, P. Schmiege, E. Coutavas, L. et al., Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex, vol.8843, pp.1-14, 2018.

X. Qi, P. Schmiege, E. Coutavas, J. Wang, L. et al., Structures of human Patched and its complex with native palmitoylated sonic hedgehog, Nature, 2018.

F. Ramírez-weber and T. B. Kornberg, Cytonemes: Cellular Processes that Project to the Principal Signaling Center in Drosophila Imaginal Discs 1995) that signals A cells (Lee et al A cells respond in part by expressing the Dpp gene in a narrow stripe of cells on the anterior side of the A/P border (Figure 1A; Basler and Struhl, matrix proteins, 1997.

F. Ramírez-weber and T. B. Kornberg, Cytonemes: Cellular Processes that Project to the Principal Signaling Center in Drosophila Imaginal Discs 1995) that signals A cells (Lee et al A cells respond in part by expressing the Dpp gene, 1999.

S. Ramsbottom and M. Pownall, Regulation of Hedgehog Signalling Inside and Outside the Cell, J. Dev. Biol, 2016.

N. Ranieri, P. P. Thérond, and L. Ruel, Switch of PKA substrates from Cubitus interruptus to Smoothened in the Hedgehog signalosome complex, Nat. Commun, vol.5, p.5034, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117483

J. Rodenfels, O. Lavrynenko, S. Ayciriex, J. L. Sampaio, M. Carvalho et al., Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development, Genes Dev, vol.28, pp.2636-2651, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01779049

E. Roessler, Y. Ma, M. V. Ouspenskaia, F. Lacbawan, C. Bendavid et al., Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans, Hum. Genet, vol.125, pp.393-400, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00366120

R. Rohatgi, L. Milenkovic, R. B. Corcoran, and M. P. Scott, Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.3196-3201, 2009.

P. Rojas-ríos, I. Guerrero, and A. González-reyes, Cytoneme-mediated delivery of Hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila, PLoS Biol, 2012.

S. Roy, F. Hsiung, and T. B. Kornberg, Specificity of Drosophila Cytonemes. Science, pp.354-358, 2011.

S. Roy, H. Huang, S. Liu, and T. B. Kornberg, Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein, 2014.

A. Ruiz-gómez, C. Molnar, H. Holguín, F. Mayor, and J. F. De-celis, The cell biology of Smo signalling and its relationships with GPCRs, Biochim. Biophys. Acta -Biomembr, vol.1768, pp.901-912, 2007.

K. E. Ryan and C. Chiang, Hedgehog secretion and signal transduction in vertebrates, J. Biol. Chem, 2012.

P. Sagar, F. Wiegreffe, C. Scaal, and M. , Communication between distant epithelial cells by filopodia-like protrusions during embryonic development, 2015.

T. Sanders, E. Llagostera, and M. Barna, Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning, Nature, vol.497, pp.628-632, 2013.

S. Sarrazin, W. C. Lamanna, and J. D. Esko, Heparan sulfate proteoglycans, Cold Spring Harb. Perspect. Biol, 2011.

M. Sato and T. B. Kornberg, FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system, Dev. Cell, 2002.

Q. Shi, S. Li, J. Jia, and J. Jiang, The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation, Development, vol.138, pp.4219-4231, 2011.

J. C. Snyder, L. K. Rochelle, S. Marion, H. K. Lyerly, L. S. Barak et al., Lgr4 and Lgr5 drive the formation of long actin-rich cytoneme-like membrane protrusions, J. Cell Sci, 2015.

H. H. Song and J. Filmus, The role of glypicans in mammalian development, Biochim. Biophys. Acta -Gen. Subj, vol.1573, pp.241-246, 2002.

E. Stanganello, A. I. Hagemann, B. Mattes, C. Sinner, D. Meyen et al., Filopodia-based Wnt transport during vertebrate tissue patterning, Nat. Commun, 2015.

D. R. Stark, Hedgehog signalling: Pulling apart Patched and Smoothened, Curr. Biol, vol.12, pp.437-439, 2002.

D. P. Stewart, S. Marada, W. J. Bodeen, A. Truong, S. M. Sakurada et al., Cleavage activates dispatched for sonic hedgehog ligand release, vol.7, pp.1-24, 2018.

M. Strigini and S. M. Cohen, A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing, Development, vol.124, pp.4697-4705, 1997.

G. Struhl, D. Barbash, L. , and P. , Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen, Development, vol.124, pp.2143-2154, 1997.

G. Struhl, D. Barbash, L. , and P. , Hedgehog acts by distinct gradient and signal relay mechanisms to organise cell type and cell polarity in the Drosophila abdomen, Development, vol.124, pp.2155-2165, 1997.

G. Struhl, D. Barbash, L. , and P. , Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen, Development, vol.124, pp.2143-2154, 1997.

H. Strutt, C. Thomas, Y. Nakano, D. Stark, B. Neave et al., , 2001.

, Mutations in the sterol-sensing domain of patched suggest a role for vesicular trafficking in smoothened regulation, Curr. Biol, vol.11, pp.608-613

T. Tabata, Morphogens, their identification and regulation, Development, vol.131, pp.703-712, 2004.

J. Taipale, M. K. Cooper, T. Maiti, and P. A. Beachy, Patched acts catalytically to suppress the activity of smoothened, Nature, vol.418, pp.892-897, 2002.

S. Takashima, M. Mkrtchyan, A. Younossi-hartenstein, J. R. Merriam, and V. Hartenstein, The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling, Nature, vol.454, p.651, 2008.

Y. Takei, Y. Ozawa, M. Sato, A. Watanabe, and T. T. , Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans, Development, vol.131, pp.73-82, 2004.

S. Takeo, T. Akiyama, C. Firkus, T. Aigaki, and H. Nakato, Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog, Dev. Biol, 2005.

J. Talpale, J. K. Chen, M. K. Cooper, B. Wang, R. K. Mann et al., Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine, Nature, vol.406, pp.1005-1009, 2000.

A. Teleman, M. Strigini, and S. M. Cohen, Shaping morphogen gradients, Cell, vol.105, pp.559-562, 2001.

T. Tenzen, B. L. Allen, F. Cole, J. S. Kang, R. S. Krauss et al., The Cell Surface Membrane Proteins Cdo and Boc Are Components and Targets of the Hedgehog Signaling Pathway and Feedback Network in Mice, Dev. Cell, 2006.

I. The, Y. Bellaiche, and N. Perrimon, Hedgehog Movement Is Regulated through tout velu-Dependent Synthesis of a Heparan Sulfate Proteoglycan, 1999.

H. Tanimoto, S. Itoh, P. Ten-dijke, and T. Tabata, Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs, Mol. Cell, 2000.

K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, vol.319, pp.1244-1247, 2008.

H. Tukachinsky, R. P. Kuzmickas, C. Y. Jao, J. Liu, and A. Salic, Dispatched and Scube Mediate the Efficient Secretion of the Cholesterol-Modified Hedgehog Ligand, Cell Rep, vol.2, pp.308-320, 2012.

A. M. Turing, the chemical basis of morphogenesis, vol.237, pp.37-72, 1952.

T. Vaccari, T. E. Rusten, L. Menut, I. P. Nezis, . Brech et al., Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants, J. Cell Sci, vol.122, pp.2413-2423, 2009.

M. Varjosalo and J. Taipale, Hedgehog: Functions and mechanisms, Genes Dev, vol.22, pp.2454-2472, 2008.

J. P. Vincent and L. Dubois, Morphogen transport along epithelia, an integrated trafficking problem, Dev. Cell, 2002.

N. Vyas, D. Goswami, A. Manonmani, P. Sharma, H. A. Ranganath et al., Nanoscale Organization of Hedgehog Is Essential for Long-Range Signaling, pp.1214-1227, 2008.

N. Vyas, A. Walvekar, D. Tate, V. Lakshmanan, D. Bansal et al., Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties, Sci. Rep, vol.4, pp.1-12, 2014.

Y. Wang, Z. Zhou, C. T. Walsh, and A. P. Mcmahon, Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2623-2628, 2009.

D. M. Whalen, T. Malinauskas, R. J. Gilbert, and C. Siebold, Structural insights into proteoglycan-shaped Hedgehog signaling, Proc. Natl. Acad. Sci, 2013.

E. H. Williams, W. N. Pappano, A. M. Saunders, M. Kim, D. J. Leahy et al., , 2010.

, Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response, Proc. Natl. Acad. Sci

A. Wojcinski, H. Nakato, C. Soula, and B. Glise, DSulfatase-1 fine-tunes Hedgehog patterning activity through a novel regulatory feedback loop, Dev. Biol, vol.358, pp.168-180, 2011.

L. Wolpert, Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol, vol.25, pp.1-47, 1969.

L. Wolpert, Positional information and patterning revisited, J. Theor. Biol, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00653684

P. T. Yam, C. B. Kent, S. Morin, W. T. Farmer, R. Alchini et al., 14-3-3 Proteins Regulate a Cell-Intrinsic Switch from Sonic Hedgehog-Mediated Commissural Axon Attraction to Repulsion after Midline Crossing, Neuron, vol.76, pp.735-749, 2012.

Y. Yamazaki, L. Palmer, C. Alexandre, S. Kakugawa, K. Beckett et al., Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs, Nat. Cell Biol, vol.18, pp.451-457, 2016.

D. Yan, Y. Wu, Y. Yang, T. Y. Belenkaya, X. Tang et al., The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development, 2010.

S. Yao, L. Lum, and P. Beachy, The Ihog Cell-Surface Proteins Bind Hedgehog and Mediate Pathway Activation, Cell, 2006.

A. Yavari, R. Nagaraj, E. Owusu-ansah, A. Folick, K. Ngo et al., Role of Lipid Metabolism in Smoothened Derepression in Hedgehog Signaling, Dev. Cell, vol.19, pp.54-65, 2010.

X. Zeng, J. A. Goetz, L. M. Suber, W. J. Scott, C. M. Schreiner et al., A freely diffusible form of Sonic hedgehog mediates long-range signalling, Nature, vol.411, pp.716-720, 2001.

X. Zheng, R. K. Mann, N. Sever, and P. A. Beachy, Genetic and biochemical definition of the Hedgehog receptor, Genes Dev, vol.24, pp.57-71, 2010.

X. Zheng, R. K. Mann, N. Sever, and P. A. Beachy, Genetic and biochemical definition of the Hedgehog receptor, Genes Dev, 2010.

Q. Zhou and D. Kalderon, Hedgehog activates fused through phosphorylation to elicit a full spectrum of pathway responses, Dev. Cell, vol.20, pp.802-814, 2011.