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Abstract

Video streaming is the dominant contributor of today’s Internet traffic. Consequently,

estimating Quality of Experience (QoE) for video streaming is of paramount importance

for network operators. The QoE of video streaming is directly dependent on the network

conditions (e.g., bandwidth, delay, packet loss rate) referred to as the network Quality

of Service (QoS). This inherent relationship between the QoS and the QoE motivates

the use of supervised Machine Learning (ML) to build models that map the network

QoS to the video QoE. In most ML works on QoE modeling, the training data is usually

gathered in the wild by crowdsourcing or generated inside the service provider networks.

However, such data is not easily accessible to the general research community. Conse-

quently, the training data if not available beforehand, needs to be built up by controlled

experimentation. Here, the target application is run under emulated network environ-

ments to build models that predict video QoE from network QoS. The network QoS can

be actively measured outside the data plane of the application (outband), or measured

passively from the video traffic (inband). These two distinct types of QoS correspond

to the use cases of QoE forecasting (from end user devices) and QoE monitoring (from

within the networks). In this thesis, we consider the challenges associated with network

QoS-QoE modeling, which are 1) the large training cost of QoE modeling by controlled

experimentation, and 2) the accurate prediction of QoE considering the large diversity

of video contents and the encryption deployed by today’s content providers.

Firstly, QoE modeling by controlled experimentation is challenging due to the high

training cost involved as each experiment usually consumes some non-negligible time

to complete and the experimental space to cover is large (power the number of QoS

features). The conventional approach is to experiment with QoS samples uniformly

sampled in the entire experimental space. However, uniform sampling can result in

significant similarity in the output labels, which increases the training cost while not

providing much gain in the model accuracy. To tackle this problem, we advocate the use

of active learning to reduce the number of experiments while not impacting accuracy.

We consider the case of YouTube QoE modeling and show that active sampling provides

a significant gain over uniform sampling in terms of achieving higher modeling accuracy

with fewer experiments. We further evaluate our approach with synthetic datasets and

show that the gain is dependent on the complexity of the experimental space. Overall, we

present a sampling approach that is general and can be used in any QoS-QoE modeling

scenario provided that the input QoS features are fully controllable.

Secondly, accurate prediction of QoE of video streaming can be challenging as videos

offered by today’s content providers vary significantly from fast motion sports videos

to static lectures. On top of that, today’s video traffic is encrypted, which means that
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network operators have little visibility into the video traffic making QoE monitoring

difficult. Considering these challenges, we devise models that aim at accurate forecast-

ing and monitoring of video QoE. For the scenario of QoE forecasting, we build a QoE

indicator called YouScore that quantifies the percentage of videos in the catalog of a

content provider that may play out smoothly (without interruptions) for a given out-

band network QoS. For the QoE monitoring scenario, we estimate the QoE using the

inband QoS features obtained from the encrypted video traffic. Overall, for both sce-

narios (forecasting and monitoring), we highlight the importance of using features that

characterize the video content to improve the accuracy of QoE modeling.

Keywords: Quality of Service, Quality of Experience, Machine Learning,

Active Learning, Controlled Experimentation, Internet Video, YouTube



Résumé

Le streaming vidéo est l’élément dominant au trafic Internet actuel. En conséquence,

l’estimation de la qualité d’expérience (QoE) pour le streaming vidéo est de plus en plus

importante pour les opérateurs réseau. La qualité d’expérience (QoE) de la diffusion

vidéo sur Internet est directement liée aux conditions du réseau (par exemple, bande

passante, délai) également appelée qualité de service (QoS). Cette relation entre QoS

et QoE motive l’utilisation de l’apprentissage automatique supervisé pour établir des

modèles reliant QoS à QoE. La QoS du réseau peut être mesurée activement en dehors

du plan de données de l’application (outband) ou de manière passive à partir du trafic

vidéo (inband). Ces deux types de qualité de service correspondent à deux scénarios

d’utilisation différents: la prévision et la surveillance. Dans cette thèse, nous examinons

les défis associés à la modélisation de la QoE à partir de la QoS réseau, à savoir 1) le

coût élevé de la phase expérimentale, et 2) la considération de la grande diversité du

contenu vidéo et du chiffrement déployé.

Premièrement, la modélisation de la QoE par expérimentation contrôlée constitue un

défi, les dimensions d’espace d’expérimentations ainsi que le temps non négligeable de

chaque expérience rend cette modélisation plus complexe. L’approche classique consiste

à expérimenter avec des échantillons (de qualité de service), échantillonnés de manière

uniforme dans tout l’espace expérimental. Cependant, un échantillonnage uniforme peut

entrâıner une similarité significative au niveau des labels, ce qui entraine une augmen-

tation du coût sans gain en précision du modèle. Pour résoudre ce problème, nous

recommandons d’utiliser apprentissage actif pour réduire le nombre d’expériences sans

affecter la précision. Nous examinons le cas de la modélisation QoE sur YouTube

et montrons que l’échantillonnage actif fournit un gain significatif par rapport à

l’échantillonnage uniforme en termes d’augmentation de la précision de la modélisation

en moins d’expériences. Nous évaluons ensuite notre approche avec des ensembles de

données synthétiques et montrons que le gain dépend de la complexité de l’espace

expérimental. Dans l’ensemble, nous présentons une approche générale d’échantillonnage

qui peut être utilisée dans n’importe quel scénario de modélisation QoS-QoE, à condition

que la fonctionnalité de QoS en entrée soit entièrement contrôlable.

Deuxièmement, prévoir la qualité de l’expérience de la vidéo avec précision s’avère dif-

ficile, d’une part les vidéos des fournisseurs de contenu actuels varient énormément,

des vidéos sportives rapides aux vidéos éducatives statiques. De plus, le trafic vidéo

actuel est crypté, ce qui signifie que les opérateurs de réseau ont une visibilité réduite

sur le trafic vidéo, ce qui rend la surveillance de la QoE plus complexe. Face à ces

défis, nous développons des modèles afin de prévoir ainsi que surveiller avec précision

la qualité de l’expérience vidéo. Pour le scénario de prévision QoE, nous construisons
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un indicateur QoE appelé YouScore qui prédit le pourcentage de vidéos pouvant être

lues sans interruption en fonction de l’état du réseau sous-jacent. En ce qui concerne la

surveillance QoE, nous estimons la QoE à l’aide des fonctionnalités de qualité de service

inband obtenues à partir du trafic vidéo crypté. En conclusion, pour les deux scénarios

(prévision et surveillance), nous soulignons l’importance d’utiliser des fonctionnalités

qui caractérisent le contenu vidéo afin de pouvoir améliorer la précision des modèles.

Mots-clés: Qualité de Service, Qualité d’Expérience, Apprentissage Machine,

Apprentissage Actif, Expérimentation Contrôlée, Streaming Vidéo, YouTube
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Chapter 1

Introduction

Video streaming is the most dominant contributor to global Internet traffic. By 2021

the global share of IP video traffic is expected to reach 82%, up from 73% in 2016

[2]. Similarly, by 2023, mobile video traffic is expected to increase from 56% in 2017

to 73% in 2023 [3]. The huge demand for Internet video pushes network operators

to proactively estimate Quality of Experience (QoE) of video streaming users in their

networks. The QoE of Internet video, as per prior subjective studies, is dependent

on application Quality of Service (QoS) features such as initial loading time (startup

delay or join time), frequency of re-buffering/stalling events, playout quality (spatial

resolution) and its variations [4], [5], [6]. Network operators usually do not have such

information about the video traffic generated in their networks as most of the traffic is

getting encrypted. So the only possible solution for gauging the QoE of video streaming

is to rely on network-level features obtained from the encrypted video traffic traces, or

independent network measurement tools executed outside the video application data

plane.

Prior works on video QoE estimation have shown that network-level performances (e.g.,

bandwidth, delay, packet loss rate) directly impact QoE [5]. This motivates the use

of supervised machine learning (ML) to link the network level measurements (referred

here as the network QoS) to QoE. Supervised ML based QoS-QoE modeling requires

some ground truth dataset that maps the input QoS to the output QoE. Typically,

such datasets are built either by controlled experimentation or by crowdsourcing. In

controlled experimentation, the target application is run (on an end user device) in a

controlled environment where the input QoS features are fully controlled, resulting in

a QoS-QoE dataset that maps the enforced QoS to the observed QoE [7], [8], [9], [10].

On the other hand, in crowdsourcing the ground truth data is collected in the wild

without any control over the QoS metrics, and typically by a large number of users

1
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who are asked to rate the QoE of a given application over the Internet [11], [12], [13],

[14]. Crowdsourcing suffers from a lack of control over the test conditions [15] and not

everyone can have access to such data from a large set of real users, which pushes most

researchers to rely on building their own datasets by controlled experimentation.

In controlled experimentation, the videos are played out in emulated network conditions,

as shown in Figure 1.1, to build the dataset for training the ML algorithms to build

the QoE prediction models. These models estimate video QoE by relying only on the

network QoS features. Most works on network QoS-QoE modeling use QoS features

that are collected from video traffic traces for QoE monitoring. However, in a recent

work based on QoS-QoE modeling for Skype [16], the notion of QoE forecasting from

end-user devices is presented. This consists of using network QoS measured outside the

data plane of the application and without relying on the application traffic (Skype in this

particular case). The benefit of this approach is that it allows the same measurements

to be used to predict QoE for many different applications. In this thesis, we consider

video streaming where we build prediction models (by controlled experimentation) that

allow both the forecasting and the monitoring of video QoE using network QoS only.

We discuss in greater detail each of the prediction scenarios and the associated network

QoS measurement types next.

1. QoE forecasting. In QoE forecasting, the network QoS is based on measurements

made by the clients towards the target measurement servers placed at different

vantage points in the network. These measurements are out-of-band w.r.t to the

video traffic, which means that no video traffic is required to measure them. The

benefit of the QoE forecasting approach is that the QoE of any Internet application

can be forecasted in advance, without the need to run the application itself. This

method of QoE forecasting is used by mobile applications such as ACQUA [17]

and Meteor [18] where QoS-QoE models (built offline) forecast the QoE of apps

such as YouTube and Skype using the QoS measurements of bandwidth, delay,

jitter, etc.

2. QoE monitoring. The QoE monitoring approach is used to monitor the QoE

from within the core of the networks. This approach uses models that require

network QoS to be measured directly from video traffic. These measurements are

inband w.r.t to the video traffic and are obtained passively without disrupting

the video traffic. Examples of such measurements can include the instantaneous

throughput, the packet interarrival times and the packet sizes [5]. The QoE moni-

toring approach is deployed on network middleboxes that parse the network traffic

to estimate the QoE of the videos played out [5], [19].
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As already mentioned, the outband features include measurements such as bandwidth

and packet loss rate. These measurements can be emulated in the lab by network em-

ulators such as Linux traffic control (tc), and so are fully controllable. On the other

hand, inband measurements such as packet sizes and their variation are hard to con-

trol as they depend on how the video application adapts to the network conditions.

The controllability of the features is an important property that defines the sampling

method we employ to vary the QoS in our experiments, we discuss these in the next

section. Overall, a summary of the characteristics of the two types of network QoS

measurements is shown in Figure 1.2, where we can see that outband features are fully

controllable, whereas inband features are not fully controllable, and are based on passive

measurements obtained from the video traffic.

Considering these scenarios, we tackle two challenges in this thesis that are related to

1) the large training cost associated with QoE modeling by controlled experimentation,

and 2) the accurate prediction of video streaming QoE. These form the basis of the work

presented in this thesis. In the next section, we individually discuss the challenges and

the solutions proposed in the thesis.



4 Introduction

1.1 Challenges tackled in this thesis

1.1.1 The large experimental space to cover in controlled experimen-

tation

Typically in QoS-QoE modeling using ML, the training datasets are either collected

in the wild or built by controlled environments. The conventional approach of building

such datasets by controlled experimentation is to experiment over a large set of unlabeled

network QoS configurations uniformly sampled over the entire experimental space, i.e.,

the range within which the individual network QoS features are varied. The challenge

here is in the large space to cover (power of the number of QoS features) and the non-

negligible time required by each experiment to complete. For example, to obtain a

dataset of 10N samples, N being a positive integer number, in a scenario of N QoS

features, with roughly 10 unique values per QoS feature if samples are placed on a grid,

and if each experiment requires X minutes to complete, then the total time consumed in

building such a dataset would be equal to X.10N minutes. If N equals 4 features and X

equals two minutes, this is roughly 14 days! This experimentation cost is exacerbated by

the fact that some QoS features span different orders of magnitude (as the bandwidth),

and also by the fact that Internet applications are diverse and rapidly evolving, thus

requiring the QoE models to be re-built regularly.

To reduce this training cost, we observe that the space in which the experiments are

carried out can show a high degree of similarity in the output labels of QoE. Exper-

imenting with this similarity provides little improvement in modeling accuracy in the

case of uniform sampling of the experimental space. We aim to exploit this similarity

to reduce the training cost while building the QoE models. In light of this observation,

we advocate the use of active learning to reduce this training cost without compromis-

ing accuracy. Active learning is a semi-supervised ML approach where the learner is

intelligent enough to select which samples it wants to label and learn from as part of

an iterative process. In active learning literature, pool based uncertainty sampling is the

most widely used active learning strategy, where the ML model has a pool of unlabeled

data and the objective is to intelligently label samples from this pool to build an accurate

model quickly with fewer labeled samples.

In this thesis, we first apply the pool based uncertainty sampling in our scenario of QoS-

QoE modeling for YouTube video streaming by controlled experimentation and show

that pool based sampling provides a significant gain over uniform sampling. We then

illustrate a potential issue with uncertainty sampling with very large pools and propose

an active sampling approach that does not require any pool. Finally, we illustrate with

synthetic datasets that the gain of active sampling depends on the complexity of the
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feature space for any given experimentation scenario. To the best of our knowledge,

this is a first attempt at applying active learning in the context of network QoS-QoE

modeling by controlled experimentation.

1.1.2 Accurate prediction of video streaming QoE

1.1.2.1 The large diversity of contents of today’s video content providers

Today’s video content providers typically store a large number of videos that vary in

content type ranging from fast motion sports videos to static educational lectures. Due

to the difference in contents, the QoE can vary significantly from one video to the other

for the same network QoS. Considering this variation in content, we propose to build

global QoE indicators for video streaming that can accurately highlight the variation in

the QoE of videos due to the difference in contents. Such indicators can allow network

operators to measure the extent to which the QoE of video streaming users can degrade

in poor network conditions considering the diversity of the contents offered by today’s

content providers.

Internet video is typically stored in a variety of video encoding formats including FLV,

MP4, and VP9. Most commonly, the Variable BitRate (VBR) encoding techniques are

used by modern video content providers where complex scenes of the video are allocated

higher bitrates while less complex scenes are allocated lower bitrates. Owing to this,

different videos can have different video bitrates. Fast-moving videos tend to have a

higher video bitrate compared to slow-moving videos. The video bitrate, in turn, affects

the network QoS required for smooth video playout.

Based on the inherent relationship between average bitrate, QoS and QoE, we build a

global QoE indicator, which we call YouScore, that can predict the percentage of videos

in the catalog of the content provider (e.g., YouTube) that may play out smoothly

(without stalls) for a given network QoS. To devise YouScore, we first build a large

catalog of 1 million YouTube videos consisting of metadata including the average video

bitrate of each video. We then build a training QoS-QoE dataset by playing out a

diverse set of YouTube videos (sampled from the catalog) under a wide range of network

conditions where the sampling of the videos and the selection of the relevant conditions

for network emulation is done using active sampling. The collected dataset is then used

to train supervised ML algorithms to build a QoS-QoE model that takes as input the

outband network QoS (downlink bandwidth and RTT) and the average video bitrate to

predict whether the video plays out smoothly or not –by using the video bitrate, we show

a 13% improvement in model accuracy highlighting the importance of using features that
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characterize video content. Finally, we use this model to devise YouScore, which takes

as input the outband network QoS only and predicts the percentage of videos (in the

catalog) that may play out smoothly.

The benefit of YouScore is that it can be used by network operators to benchmark their

performance w.r.t video streaming considering the large diversity of contents offered by

today’s content providers. We show this benefit by applying YouScore on a real dataset

of network measurements to compare the performance of different mobile networks for

video streaming.

1.1.2.2 The encryption of today’s video traffic

Today’s Internet video traffic is mostly served using end to end encryption. This means

that network operators have no visibility into the video content traversing their networks

and traditional methods of parsing HTTP packets to monitor QoE [20] are no longer

applicable. So the only option left for network operators to monitor end user QoE is

to rely on the inband network QoS measurements generated inside the core of their

networks. Considering this scenario, we build ML models that use inband features

obtained from the network traffic to estimate the video QoE. The characteristics of

inband features are highly dependent on the internal dynamics of the video application

generating the traffic and are not fully controllable. Therefore, we propose to use a

trace based sampling approach where we vary the network QoS as it is observed in the

wild. Here, we sample the space based on the measurement distributions of applications

such as RTR-Netz [21] and MobiPerf [22]. Overall, we build QoE prediction models to

estimate the objective QoE metrics of the startup delay, the quality switches and the

resolution of playout, and the subjective MOS from the encrypted video traffic traces1.

For the MOS, we rely on the standardized ITU-T P.1203 model that provides a MOS

ranging from 1–5 taking into account the QoE metrics such as the resolution and bitrate

of chunks, and, the temporal location and duration of the stalling events. To the best of

our knowledge, this is the first attempt at linking network QoS to the ITU P.1203 model.

Prior works [5, 23, 24] do not consider the subjective MOS, they consider objective QoE

metrics only (e.g., average video quality). Finally, we compare the performance between

the outband and the inband network QoS features and highlight that the inband features

enriched with video chunk sizes (inferred directly from the encrypted traces) improve

the accuracy of the models for all the QoE metrics. The models presented are based on a

highly diverse dataset of around 100k unique video playouts from different geographical

locations of France (Sophia Antipolis, Grenoble, Rennes, Nancy, Nantes).

1We also refer the objective metrics by the term application QoS in our work.
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Chapter Sampling method Dataset size Network QoS QoE metrics
3 Uniform and active

sampling
10k (uniform),
4k (active)

outband Number and duration
of stalls

4 Active sampling 2k outband Startup delay and
stalls

5 Trace based sam-
pling

100k outband, inband Startup delay, quality,
stalls, quality switches,
ITU-T P.1203

Table 1.1: Summary of the datasets collected in this thesis.

1.2 Thesis Outline

The thesis is organized as follows:

In Chapter 2, we review the methods used in literature for measuring and modeling

video streaming QoE.

In Chapter 3, we present our intelligent sampling framework for QoE modeling where

we validate our framework for the case of YouTube QoE modeling. The work presented

in this chapter has been published in [25], [26] and [27].

In Chapter 4, we apply our active sampling methodology for modeling QoE for a large

number of videos and develop the YouScore for performance benchmarking of network

operators w.r.t Internet video. The work of this chapter is published in [28].

In Chapter 5, we devise and evaluate the performance of the ML models for QoE moni-

toring of video streaming from encrypted network traffic. This work has been published

in [29].

Finally, in Chapter 6, we conclude the thesis with a discussion on the possible future

research work. The datasets collected as part of this work are summarized in Table 1.1

where we highlight the sampling method (used to vary the network QoS), the number of

samples, the type of the input network QoS features and the output QoE metrics used

for each dataset. We make these datasets publicly available at [30] and [31].





Chapter 2

State of the Art on QoE Modeling

for Internet Video Streaming

In this chapter, we describe the methods used in the literature for measuring and model-

ing Internet video QoE. We first discuss the technologies used in today’s video streaming

services in Section 2.1 followed by a discussion on the video QoE metrics in Section 2.2.

Finally, in Section 2.3, we discuss the techniques used for modeling video QoE in liter-

ature.

2.1 Video streaming delivery techniques

Video streaming refers to the process where the video content is viewed by an end

user while being delivered by a content provider concurrently. Typically, the videos

start playing once the initial part of the video is downloaded and the remaining part

continues to be fetched from the servers while the video is being viewed.

Traditionally, video streaming was based on protocols such as RTSP (Real Time Stream-

ing Protocol) [32] and RTP (Real Time Protocol) [33] for real time delivery of video

content. These protocols relied mostly on UDP to ensure minimal delay in video trans-

mission. However, with UDP, the video playback can suffer from visual impairments,

i.e., some video frames might get distorted or dropped due to packet losses [34], [35].

Modern video streaming systems of today use the HTTP protocol for delivering the

video content. Using HTTP for video streaming is easy to deploy as most firewalls allow

HTTP/HTTPS traffic, which means additional network configurations for handling the

video traffic are not needed [36]. This ease of deployment propelled the widespread use

of HTTP based video streaming [37]. HTTP runs over protocols such as TCP or QUIC,

9
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which means that video content is reliably delivered to the client and there can be no

visual distortions (frame drops) in video playout. However, it can suffer from additional

delays due to the use of an application buffer at the client. We discuss this issue next.

2.1.1 Progressive download using HTTP

In HTTP based video streaming, the video file is divided into chunks of equal duration

and the client downloads the chunks progressively and stores them in the application

buffer. When the user requests to watch a video, the client starts to fill the buffer, once

a sufficient amount of video is downloaded, the playback of the video is started. The

video chunks are downloaded concurrently with the playout of the video, i.e., the buffer

is filled with newly downloaded chunks, while it repletes as the downloaded chunks are

played out. In this scenario, if the network conditions degrade due to issues such as

packet losses or low throughput, larger delays can occur in the downloads, which can

cause the buffer to fill up slowly compared to the playback time of the video. This can

result in the buffer getting empty (buffer underrun) causing the playback of the video to

interrupt. This interruption lasts until the next chunk has been downloaded to continue

the playout. These interruptions are also referred to as stalling or rebuffering events.

2.1.2 HTTP based Adaptive video Streaming (HAS)

Prior subjective studies on video QoE have shown that stalling events in the video

playout significantly degrade the video QoE [38], [39], [4]. In some cases, stalling is

even considered worse than image quality [40], which means that users may prefer lower

quality than having stalls in the playout. Considering these observations, the HTTP

based Adaptive video Streaming (HAS) [41] was developed to allow adaptation of the

quality of playout to prevent the occurrence of any stalls. In adaptive video streaming,

the video chunks are stored in several quality representations (usually in different spatial

resolutions) where the quality of the next chunk to download can change depending upon

the state of the network. This means that in case of poor network conditions, the client

can request a lower resolution for the next chunk to download, a lower resolution would

require lower throughput, which means less time to download and thus, preventing any

interruptions in the playout.

Adaptive video streaming is now widely deployed by most of the video content providers

on the Internet [36]. Examples of different implementations include Microsoft HTTP

Smooth Streaming (HSS) [42], Adobe HTTP Dynamic Streaming (HDS) [43], Apple

HTTP Live Streaming (HLS) [44] and MPEG Dynamic Adaptive Streaming over HTTP

(MPEG-DASH) [41]. Among them, MPEG-DASH is the only solution that is open and
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standardized [34]; the implementation includes the dash.js player managed by the DASH

Industry Forum (DASH-IF) [45].

The method of choosing the best resolution to maximize QoE of a video playout for

a given network condition is referred to as the ABR selection process. Devising algo-

rithms for optimal ABR selection is an active area of research with a plethora of papers

published in the literature [36]. We summarize the main algorithms in the next section.

2.1.2.1 Adaptive BitRate (ABR) selection algorithms

ABR selection algorithms can be rate based, buffer based or a hybrid of both the preced-

ing methods. In traditional rate based methods, the ABR algorithm first estimates the

network throughput and then selects the chunk whose video bitrate (among the available

chunk representations) is the highest but lower than the throughput estimate. Estimat-

ing throughput in today’s mobile networks is challenging and can be prone to errors. In

order to avoid using any erroneous throughput estimates, buffer based approaches were

developed that do not require any estimation of the throughput, rather they rely only

on the buffer occupancy to choose the quality of the chunk to download [46], [47]. The

third method, which is a hybrid method, considers both the throughput estimation and

the buffer occupancy in the chunk selection process [48], [49], [50], and is most widely

used technique in production environments [51]. Apart from these approaches, learning

based methods have also been introduced that use reinforcement learning to learn ABR

algorithms instead of using fixed heuristics [52], [53]. These techniques rely on trace

based video streaming simulations and fundamentally learn the throughput dynamics of

the trace they are trained on.

2.2 Quality of Experience metrics of video streaming

The end user QoE of video streaming is dependent on multiple factors. These factors

can be categorized into the following four categories [20]:

1. System Level factors consider the technical aspect of the video streaming players

and the ABR algorithms used. These factors include the network QoS (bandwidth,

delay), the end user device types (computing power, screen size, mobile/PC, types

of the browser), and the application layer QoS features (video adaptation strate-

gies, rebufferings).
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2. Context Level factors capture the surroundings and the context in which the user

views the video content. These can include factors such as the user’s location, the

purpose of viewing the video (for educational purposes or entertainment), etc.

3. User Level considers the psychological factors of the end user such as the user

expectations, the user’s mood, the user’s background, her/his browsing history,

etc.

4. Content Level factors are related to the characteristics of the video content and are

gauged by metrics such as the encoding rate, the encoding format, the resolution,

the playback duration, the quality of the video, the popularity of the video, etc.

Most studies consider the system-level factors in the QoE modeling studies for video

streaming as it is very difficult to accurately obtain other factors. In this thesis, we also

consider the system-level factor where we focus on the network QoS and the application

QoS features.

Fundamentally, there are two types of methods for gauging video QoE, 1) subjective,

and 2) objective methods [54], [55], [56]. The subjective methods involve a set of real

users who explicitly rate the QoE as good/bad or give a rating on a continuous scale,

usually ranging from 1–5, where 1 is the lowest while 5 is highest perceived QoE [57]; the

average of all the individual ratings represents the Mean Opinion Score (MOS), a QoE

metric standardized by the ITU-T P.910 recommendation. The main drawbacks of the

subjective approach are: it is costly, time consuming and lacks repeatability [58]. These

limitations have motivated the development of objective methods that do not involve

real users, rather they rely on using objective video metrics to estimate the QoE.

The QoE metrics for modern HTTP adaptive video streaming are summarized in Fig-

ure 2.1, which can be objective or subjective. The objective metrics include 1) the initial

startup delay (join time), 2) the number and duration of stalls (rebuffering), 3) the qual-

ity of playout (usually quantified in terms of the spatial resolution of the video), and 4)

the quality (resolution or bitrate) switches. The subjective metric is the Mean Opinion

Score (MOS) that is the average of the ratings (usually on a scale of 1 – 5) given by a

set of real users.

Owing to their ease of measurement, objective QoE metrics are commonly used in video

QoE modeling studies [5], [59], since these metrics accurately reflect the subjective QoE

of real users. We discuss the individual metrics in detail below.
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Figure 2.1: QoE metrics for modern Internet video streaming

2.2.1 Startup delay

The startup delay is the time taken by the client (measured from the instant the user

requests for the playout) to start playing out the video. Normally, when the user re-

quests the video playback, the client starts downloading the video chunks and begins

playout when a sufficient number of chunks have been downloaded. Startup delay is

an important metric for QoE and subjective studies have shown it to have an impact

on user engagement as large startup delays can cause users to abandon video playout.

According to a subjective study based on a dataset of 23 million views in [39], users

start abandoning after 2 seconds with the abandonment rate going up to 80% after 60

seconds. This means that the startup delay has to be minimal to ensure good QoE.

2.2.2 Stalling events

Stalling events occur when the playout buffer gets empty. The impact of stalls on video

QoE has been extensively studied in literature and is shown to depend on the number, the

duration and the position of the stalling events in the playout. Authors in [60] find that

a larger stalling duration leads to a degraded QoE. Furthermore, the authors also find

that users prefer one long stalling event over frequent short ones. In [61], it is observed

that the position of the stalling event also has an impact on QoE where stalls occurring

at the beginning of playout have a lesser impact than stalls occurring later in the playout.

Furthermore, in [62], authors show that stalls occurring at irregular intervals are worse

than stalls occurring periodically. The authors of [4] find an exponential relationship

between the stalling events and the MOS. Additionally, they find that users can tolerate

at most one stall per video session as long as its duration is in the order of a few

seconds, any additional stalls degrade the QoE severely. Overall, these studies show
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that whenever possible, the videos should be played out smoothly without any stalls to

ensure good QoE.

2.2.3 Video quality

Video quality is a characteristic of a video passed through a transmission system (the

Internet) or a processing system (video codec) that measures the perceived degradation

in the video content, generally, w.r.t the original raw video. The visual quality evaluation

is performed using Visual Quality Assessment (VQA) [7] methods.

2.2.3.1 Visual Quality Assessment (VQA)

VQA methods can be subjective if real users rate the quality of the video, or objective

if automatic algorithms rate the quality of the video instead of real users. The objective

VQA methods can be categorized as Full Reference (FR), Reduced Reference (RR) and

No Reference (NR) [7]. FR based metrics have both the original and the distorted video

available, which are compared with each other to estimate how similar the two videos are

frame by frame. Examples of such metrics include Peak Signal to Noise Ratio (PSNR)

[63], Structural Similarity (SSIM) [64], Video Quality Metric (VQM) [63] and Video

Multimethod Assessment Fusion (VMAF) [65]. In RR, only partial information of the

original video is used to rate the distorted video [66], while NR methods do not have

the original video and the quality assessment is done directly on the distorted video by

relying on algorithms that identify different visual artifacts such as blurring, contrast

variations or blockiness [67].

VQA has its relevance in evaluating the quality of a received video in real time video

streaming solutions. Such streaming solutions are prone to visual distortions (the video

frames getting distorted or dropped) in the playout due to packet losses as the solutions

are based on UDP. However, today’s Internet video is mostly based on HAS (runs on

top of TCP/QUIC) and does not have any visual distortions during playout. Therefore,

most QoE studies on HAS rely on using much simpler metrics for evaluating video

quality. These metrics are the encoding bitrate and the spatial resolution of playout

(the number of pixels used to represent the video frames). The encoding bitrate is the

data required to play one second of video; it increases with the spatial resolution, which

in turn generally increases video quality. Since these metrics have a direct impact on the

video quality [68], these can be used to gauge the quality for HAS [7] without relying

on a complex analysis of the video content. In our work, we consider the spatial video

resolution as the metric of video quality.
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2.2.4 Quality switches/adaptation

In adaptive video streaming, the quality of the video (spatial resolution) can change

depending upon the network conditions; the client can decrease the quality in case

of low network throughput and increase it when the network throughput improves.

However, too many quality changes can also have a detrimental impact on QoE [69]. The

amplitude of the quality switch is also important as authors in [70] find that a stepwise

decrease in quality is better than one single big decrease in quality. Furthermore, in

[71], it is shown that the QoE of a video played at constant low quality is better than

the QoE of a video played at a higher quality with frequent quality changes. Overall,

playing with constant quality is always better, however, if a quality downgrade is needed,

it should be done gradually rather than abruptly.

2.2.5 MOS prediction models

Many subjective studies have shown a direct relationship between the application QoS

features and the MOS. This led to the development of MOS prediction models that esti-

mate the MOS using the application QoS. Such models suggest an exponential, logarith-

mic or a linear relationship between the QoS and the QoE. In [72], a general logarithmic

relationship between QoS and QoE is proposed, whereas, in [73], the authors present

an exponential relationship between the QoS and the QoE and refer to it as the IQX

hypothesis. According to this hypothesis, the change in the QoE depends on the current

level of the QoE, that is if the QoE is already very high, then even a small disturbance

in QoS can significantly affect the QoE; however, if the QoE is low, further disturbances

will not be perceived. This hypothesis demonstrated better approximation to the MOS

compared to the earlier logarithmic relationship. A similar exponential relationship is

also observed in [4] where the MOS follows an exponential relationship with the number

and duration of stalls in YouTube video streaming. In another work [50], the authors

propose a composite metric to gauge video QoE that is composed of a weighted linear

combination of different QoE metrics including the quality, the stalls, and the quality

switches.

Given the importance of video QoE estimation for network operators, the International

Telecommunications Union (ITU) has developed a MOS prediction model, namely the

ITU-T P.1203 model [1] for adaptive video streaming. This model estimates the MOS

considering the application QoS features only and is developed based on subjective QoE

ratings obtained from experiments with real users. We discuss this model in the next

section.
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Figure 2.2: Building blocks of ITU-T P.1203 model. The figure is taken from [1].

Figure 2.3: Modes of operation of ITU-T P.1203 model. The figure is taken from [1].

2.2.5.1 The ITU-T P.1203 model

The ITU-T P.1203 model is a parametric model for audiovisual quality assessment of

adaptive video streaming. It has three main building blocks that include the audio qual-

ity estimation module (Pa), the video quality estimation module (Pv) and the quality

integration module (Pq) as shown in Figure 2.2. The quality integration module is fur-

ther composed of modules for audio/video temporal integration and for estimating the

impact due to stalling.

The model has four modes of operation depending upon the complexity of the input

features as shown in Figure 2.3. As can be seen, mode 0 only requires the metadata

on the chunk level, while for other modes, additional information on the frame level is

required.

The model takes as input the following information:

1. I.GEN: Display resolution and device type (PC/TV or mobile)

2. I.11: Audio coding information.

3. I.13: Video coding information.
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4. I.14: Video startup delay and stalling event information (timestamp and duration

of each stall).

The I.11 and the I.13 can be on the chunk level or the frame level. Information for I.13

includes the bitrate, the frame rate, the chunk duration, the encoding resolution and

the codec type for each video chunk.

The model outputs are as follows:

1. O.21: Audio coding quality per sampling interval.

2. O.22: Video coding quality per sampling interval.

3. O.23: Perceptual stall indication.

4. O.34: Audiovisual chunk coding quality per sampling interval

5. O.35: Final audiovisual coding quality score.

6. O.46: Final media session quality score. This score (ranging from 1 – 5) is the

final subjective MOS for the given video session.

Model outputs O.21, O.22 and O.34 are used when frame level information of the video

is provided to the model while the rest of the outputs require only the chunk level

information.

We consider the ITU-T P.1203 model as the subjective MOS in our work in Chapter 5

where we try to estimate the ITU MOS (O.46) using the inband network QoS features.

We use mode 0 of the model since we rely on the encrypted traffic for inferring the ITU

MOS. Furthermore, the metadata needed to get the ITU MOS is obtained from the

Google Chrome browser using the YouTube API [74] and the Chrome Webrequest API

[75].

In the next section, we discuss the methodologies used in literature for modeling QoE

of video streaming.

2.3 Methodologies for modeling video QoE

The QoE of video streaming is dependent on the application QoS metrics, which in turn

are dependent on the network QoS metrics. QoE modeling studies aim at understanding

and building the relationships between the application or the network QoS to the video

QoE. These studies are mostly data-driven and the data required by the models is either

collected in the wild or built by controlled experimentation.
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2.3.1 QoE modeling using data collected in the wild

Here, the QoS-QoE models are based on data that is generated by real users using their

end devices or by the collection of the measurement data observed within the networks

of the service providers. A YouTube QoE model is developed in [4] that is based on data

obtained through crowdsourcing. Specifically, the data is collected from 1,349 users who

rate the QoE of 4,047 video streaming sessions in a Google Chrome browser using the

Microworkers [76] crowdsourcing platform; the QoE metrics such as the stalling events

are collected in the Chrome browser using JavaScript. The main finding of this work is

that the MOS follows an exponential relationship with the number of stalls in the video

playout.

In [77], an android mobile application called YoMoApp is developed to passively monitor

the relevant objective metrics (i.e., player state/events, buffer, and video quality level)

for YouTube QoE from end user smartphones. A field study of the dataset collected

by this application is provided in [78] where the relevant application and network QoS

metrics are used to characterize the performance of YouTube video streaming. Simi-

larly, in [79], the authors develop a tool that actively crawls the YouTube website and

downloads videos while collecting additional information about the network and the

CDN characteristics. This tool allows the measurement of YouTube QoE from end user

devices.

In another work [80], a real time QoE Detection method is presented for encrypted

YouTube video streaming traffic. The dataset they build consists of 60 diverse YouTube

video clips streamed over WiFi networks from three operators. Machine Learning (ML)

is then used to predict objective QoE metrics such as buffer warning (low buffer, high

buffer), video state (buffer increase, buffer decay, steady, stall), and video resolution

from the inband network QoS features

Additional works such as [81] and [82] present large scale video QoE modeling studies

from data that is collected using client-side instrumentation. The datasets considered

are composed of 200 and 300 million video sessions respectively and are used to identify

the reasons affecting QoE and user engagement. These works consider the objective QoE

metrics including join time, stalling events, rebuffering ratio (total stalling time divided

by the video session time), average video bitrate, rendering quality and video playback

failure rate. The main findings of these works are related to the identification of issues

that affect QoE and user engagement. Mainly three issues are identified as reasons for

poor QoE, which are network throughput variations, CDN performance issues, and ISP

overloading. Furthermore, the rebuffering ratio is found to have the greatest impact on

user engagement.
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2.3.2 QoE modeling by controlled experimentation

In controlled experimentation, the target video application is run in a controlled envi-

ronment. Given the fact that large scale datasets collected in the wild are generally

not made public, researchers working in the domain of QoE modeling have to rely on

building their own datasets by controlled experimentation. Here the QoS metrics are

accurately controlled to build the relationship between the QoS and the QoE. These

studies can be subjective if real users rate the QoE in terms of the MOS or objective if

only the application QoS metrics are used to gauge the QoE.

Authors in [6] create an experimental platform for HTTP streaming videos where the

QoS metrics are artificially varied in the video playouts to study their effect on the

corresponding MOS. The dataset used consists of experiments conducted with a set of

10 users and the QoS metrics used for experiments are predefined by uniform sampling

of the experimental space.

In another work [83], 141 volunteers are asked to rate the QoE of adaptive video stream-

ing sessions based on DASH under trace-driven network emulations. The result of their

study is in line with previous studies, which states that the QoE of adaptive streaming is

affected by factors such as fluency, bitrate distribution, startup bitrate level and bitrate

switching frequency in the playout.

In [84], a QoS to QoE causality analysis is done with a set of sixteen test users who rate

their perceived quality of YouTube videos under different emulated network conditions.

In [85], the effect of different transport protocols (TCP and UDP) on the QoE of

YouTube video streaming on a bottleneck link is presented. The authors derive mapping

functions that accurately describe the relationship between network-level QoS features

and the QoE for both the protocols.

In another work [23], a real time QoE monitoring model is developed for estimating

objective QoE metrics from encrypted video traffic of YouTube that is based on both the

TCP and the QUIC transport protocols. The authors perform controlled experiments

and build a dataset of 5488 and 5375 video sessions for QUIC and TCP respectively.

They use Linux traffic control to emulate the network conditions with random sampling

of the experimental space and use ML to predict the startup delay, the stalling events and

the video resolution from inband network QoS measurements such as packet interarrival

times, packet sizes and throughput.
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2.3.3 QoE prediction from network QoS

The video QoE depends on the network QoS. This inherent relationship allows the

development of QoE models using ML to predict video QoE using only the network

QoS. Using network QoS for QoE estimation is useful as it allows estimation of video

QoE from encrypted traffic as well; most of today’s video traffic is encrypted and network

operators do not have any visibility into the application level QoS metrics. Hence, the

only possible option of network operators to estimate end user QoE is to rely on network-

level measurements. These measurements can be made from end user devices or from

within the networks. We refer to such measurements as outband and inband respectively

(a comparison between the inband and the outband measurements is already given in

Figure 1.2). We discuss each of the prediction scenarios for the respective type of QoS

next.

2.3.3.1 From end user devices

Here, the network measurements consist of active packet probes sent by the client to-

wards dedicated servers and are made outside the data plane (hence the name outband)

of the video application. This approach is introduced in [16] for forecasting the QoE

of Skype. Inline of this work, a mobile application called ACQUA [17] is also devel-

oped that allows prediction of QoE of apps such as Skype and YouTube (the model

for YouTube is developed in this thesis) using the outband network measurements of

throughput, delay, packet loss, etc. Other than ACQUA, another android application

that uses outband QoS to forecast QoE is called Meteor [18]. This application uses the

network QoS measurements such as TCP throughput and delay to predict the QoE for

applications such as Facebook, Netflix, etc.

The QoE models presented in [6] and [86] are also based on network measurements

that are outband i.e., these models are based on measurements of throughput, delay

and packet loss, which can be obtained by network monitoring applications including

ACQUA, Meteor, Ookla SpeedTest, RTR-NetTest, and MobiPerf.

2.3.3.2 From within the network

The conventional approach of predicting QoE from network QoS relies on using inband

QoS measurements collected directly from the video traffic on network middleboxes.

This approach allows network operators to monitor the QoE of their end users. In this

approach, the network QoS consists of features such as throughput, packet interarrival

times and packet sizes, which are extracted from the encrypted traces to estimate the
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Ref. Method Sampling Method Type of QoS NW QoS QoE metrics

[6], [86] CE Uniform NW Outband Startup delay, num-
ber and duration of
stalls, MOS

[83] CE Trace based App NA Number and dura-
tion of stalls, video
bitrate, MOS

[87] CE Trace based NW Inband Rebuffering ratio,
video bitrate

[85] CE Uniform NW and App Outband Number and dura-
tion of stalls, video
bitrate, MOS

[23] CE Uniform NW Inband Startup delay, num-
ber of stalls, video
resolution

[24] CE Uniform NW Inband Startup delay, num-
ber of stalls, video
resolution, quality
switches

[80] W NA NW Inband buffer state, video
state, and video res-
olution

[81], [82] W NA App NA Startup delay,
stalling frequency,
rebuffering ratio,
video bitrate/quality
and video abandon-
ment rate

[77], [79] W NA NW and App Inband Buffer state, num-
ber and duration of
stalls, buffer dura-
tion, MOS

Table 2.1: Summary of methodologies used in literature for QoE modeling of video
streaming. CE: Controlled Experimentation. W: Data collected in the Wild. NW:

Network. App: Application level. NA: Not Applicable.

video QoE. In [5], ML models based on random forests are trained to classify a video

playout into three categories considering the stalling events (”no stall”, ”0-1 stalls”,

or ”2 or more stalls”) and video resolution (low definition, standard definition, high

definition). The data is collected from a web proxy of a mobile operator and consists

of 390k video playouts in the wild. A similar approach is taken in [24] for building

the models for QoE monitoring with three objective QoE classes (”low”, ”medium” or

”high”). These approaches predict the QoE for the video session in its entirety. Other

works such as [23] target real-time QoE monitoring. The authors present ML models

that use the network and the transport level features of the encrypted YouTube video

traffic (both TCP and QUIC based) to infer the stalls and the resolution of playout in



22 State of the Art on QoE Modeling for Internet Video Streaming

windows of 10 second duration; the approach is similar to the preceding works, the only

difference is the shorter prediction window (10 seconds instead of the entire playout).

Apart from ML, in [87], the authors devise a heuristic that analyses the network and

transport level features of the encrypted video traffic to infer the video bitrate and the

rebuffering ratio based on a study of around 2k video playouts from two video service

providers.

Overall, a summary of the QoE modeling methodologies is given in Table 2.1 where we

highlight the methodology used, the measurement source, the type of network features

and the QoE metrics.

In this thesis, we devise methodologies and models using controlled experimentation and

ML for forecasting and monitoring QoE of video streaming using the outband and the

inband network QoS features respectively. For QoE modeling with outband QoS, we use

active learning to sample the experimental space to reduce the training cost, while we

use trace based sampling for the QoE models based on inband QoS. Furthermore, we

consider a large set of videos in our QoE modeling scenarios where we build a catalog of

1 million YouTube videos (by crawling the YouTube website offline using the YouTube

Data API) that is then used to build the YouScore in Chapter 4 and the QoE monitoring

models in Chapter 5.

Overall, to the best of our knowledge, we make the following novel contributions:

1. We are the first to apply active learning in the context of network QoS-QoE mod-

eling by controlled experimentation; prior works either use uniform sampling or

trace based sampling as shown in Table 2.1.

2. The YouScore developed in Chapter 4 takes as input only the network QoS to

predict QoE in terms of a novel indicator that considers the diversity of contents

offered by a content provider such as YouTube. Prior works do not quantify this

variability in QoE due to the difference in contents.

3. We develop an unsupervised ML based method to infer chunk sizes directly from

the encrypted traffic traces and use them as features in the ML models to show

significant improvement in ML modeling accuracy (Chapter 5). Furthermore, we

are the first to build ML models that link the network QoS measurements to the

ITU-T P.1203 MOS.

In the next chapter, we discuss our active sampling methodology for building the QoE

forecasting models for YouTube.



Chapter 3

An Intelligent Sampling

Framework for Controlled

Experimentation and QoE

Modeling

For accurate QoE modeling, the controlled experimentation approach can result in a

large number of experiments to carry out because of the multiplicity of the network

features, their large span (e.g., bandwidth, delay) and the time needed to set up the

experiments themselves. However, most often, the space of network features in which

the experimentations are carried out shows a high degree of similarity in the training

labels of QoE. This similarity, difficult to predict beforehand, amplifies the training cost

with little or no improvement in QoE modeling accuracy. So, in this chapter, we aim to

exploit this similarity and propose a methodology based on active learning, to sample the

experimental space intelligently, so that the training cost of experimentation is reduced.

We validate our approach for the case of YouTube video streaming QoE modeling from

outband network performance measurements and perform a rigorous analysis of our

approach to quantify the gain of active sampling over uniform sampling.

3.1 Introduction

Machine learning (ML) is gathering a huge amount of interest within the networking

community. A typical example of this interest can be found in the domain of Quality of

Experience (QoE) modeling of Internet applications where supervised ML classification

23



24 An Intelligent Sampling Framework for QoE modeling

algorithms are used. QoE modeling refers to building a model that maps the network

or application-level Quality of Service (QoS) measurements of a given application to the

application-specific Quality of Experience (QoE).

Supervised ML classification techniques require the availability of some training data

that is used to infer a model or a function linking the given input features to the

output labels. Usually, ML works in the domain of QoE modeling use large training

datasets that are mostly generated in the wild by a large population of real users. These

datasets usually come from measurement probes within the network of the service/con-

tent providers [59],[88],[5],[89]. Such internal datasets are usually not made public to the

research community, pushing most researchers to rely on building their own datasets.

Building datasets on their own requires experiments to be carried out in a controlled

environment where the input QoS features, e.g., bandwidth, delay, etc., are varied arti-

ficially (using network emulators such as tc 1 or mininet 2) and the target application is

run under the enforced network conditions. The result is a training set whose individual

entries are mappings of the enforced QoS to the output QoE. These training sets are

then used to train the supervised ML algorithms to build QoS-QoE models.

It is to be noted that the space of experimentation can be huge as every QoS feature

corresponds to one dimension with a potentially wide range (e.g., from a few bits per

second to gigabits per second for the bandwidth feature). Also, and more importantly,

the complexity of the experimental space increases by the power of the number of QoS

features. As each experiment requires a non-negligible time to be executed (e.g., the

order of minutes for video streaming), the overall time required to build the models can

then be huge. For example, to obtain a dataset of 10N samples, in a scenario of N QoS

features, with roughly 10 unique values per QoS feature placed on a grid, and if each

experiment requires X minutes to complete, then the total time required to build such

a dataset would equal to X.10N minutes. For N equal to 4 features and X equal to two

minutes, the required experimentation time is 14 days! This is a significant hindrance

as today’s Internet applications are rapidly evolving and their implementations quickly

changing, which urges for the models to be re-built regularly. So, reducing the training

cost becomes an absolute necessity. This reduction is even more needed if one considers

the constant increase in the number of applications and services and the large diversity

of content they provide.

To reduce this training cost, we observe that the space in which the experiments are car-

ried out can show a high degree of similarity in the output labels of QoE. By similarity,

1http://lartc.org/
2http://mininet.org/
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we mean how many samples in a small region of the feature space have the same out-

put labels. Experimenting with this similarity provides little improvement in modeling

accuracy in the case of uniform sampling of the experimental space. We aim to exploit

this similarity to reduce the training cost while building the QoE models. In light of this

observation, in this chapter, we propose a sampling methodology for QoE modeling that

is based on active learning to reduce this training cost without compromising accuracy.

Our methodology intelligently samples the network QoS space by only experimenting

with the most relevant configurations without impacting modeling accuracy, hence re-

ducing the cost of experimentation and considerably improving the time required for

building the QoE models.

Active learning is a semi-supervised ML approach where the learner is intelligent enough

to select which samples it wants to label and learn from this labeling as part of an

iterative process. It is mostly used in scenarios where there is a large pool of unlabeled

data and the cost of labeling them is high [90]. Here, at each iteration, the learner

poses queries on the large pool of unlabeled data and selects the most relevant sample

for labeling in terms of the gain in the accuracy of the model under construction; the

most rewarding instance is considered to be the one for which the model has maximum

uncertainty. This approach is known as pool-based uncertainty sampling in literature

[90].

In this chapter, we apply the approach mentioned above for QoE modeling by controlled

experimentation where we present the first validation for a case of YouTube video stream-

ing with the help of a dataset collected and labeled with uniform sampling, thus forming

our ground truth. In this case, we validate the gain of pool based uncertainty sampling

and show its capacity to reduce the training cost by an order of magnitude. We then

observe that the performance of the ML model built is dependent on the size of the

pool which is required to be predefined before starting the experiments. The size of the

pool can be as large as possible but having pools of the order of millions can increase

the cost of uncertainty computation. Moreover, as active sampling picks samples with

the maximum uncertainty, the learner can stick to some parts of the space showing high

noise in the data, thus causing useless experiments until that part of the pool is ex-

plored. This phenomenon is referred to as hasty generalization in literature [91] where

the learner tends to quickly converge to a final model based on an underlying inaccu-

rate decision boundary. To avoid this problem, we then re-frame the whole framework

of active learning for controlled experimentation. We present a version that can work

online without relying on having any predefined pool. Rather, we directly select a net-

work configuration from a region of high dissimilarity in the given experimental space

and we randomize the selection so that the blockage problem is solved. We perform a
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rigorous analysis of our active learning approach and show that it can be used to build

rich datasets intelligently.

We consider YouTube in our work as it is the most widely used video streaming service

and it provides an API that can be used to capture the video QoE metrics such as

join time, stalls, etc, in a web browser. Apart from YouTube, our approach is general

and can work in any scenario where the input features are controllable, real-valued,

continuous and bounded by a given range. Overall, the goal of this chapter is to present

an intelligent sampling methodology for reducing the training cost of QoS-QoE modeling

in a controlled experimentation scenario. In summary, the contributions of this chapter

are:

1. We present an application of pool-based uncertainty sampling for QoS-QoE mod-

eling by controlled experimentation for a case of YouTube video streaming show-

casing significant gain over uniform sampling.

2. We highlight the blocking issue with pool-based sampling and devise our online

active learning approach that minimizes the computation cost of uncertainty and

implements randomness in the selection to avoid being trapped in noisy parts of

the space.

3. Finally, we analyze our approaches with both real and synthetic feature spaces to

conclude that the gain of active sampling over uniform sampling is dependent on

the complexity of the experimental space considered for a given experimentation

scenario.

The rest of the chapter is organized as follows. In the next section, we give a brief

overview of active learning and explain how it is relevant for QoE modeling using con-

trolled experimentation. We then discuss the methodology, implementation and anal-

ysis for pool-based sampling in Section 3.3 and our online sampling methodology in

Section 3.4. In Section 3.5, we discuss the application of active sampling in real produc-

tion networks and present a validation of our sampling approach on an open dataset of

network measurements. The related work is discussed in Section 3.6 and the chapter is

concluded in Section 3.7.

3.2 Active learning for QoE modeling

Conventional supervised machine learning builds on a training dataset, which consists of

pairs of input features and output labels, to infer a function or a model that is then used
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to predict the label of new input features. Traditionally, the learning algorithms rely on

whatever training data is available to the learner for building the model. Yet, there are

scenarios like ours where there is abundant availability of unlabeled data, and the effort

involved in labeling these data can be complex, time-consuming or simply requires too

many resources. For our case, for example, a label of a network QoS instance is the

QoE associated with this instance, which requires experimentation of video streaming

to be performed. In such scenarios, building training data by labeling each unlabeled

instance can become a tedious task that can consume a significant amount of resources

just to build the labeled training data. At the same time, and more often, the training

data built can contain redundancy in the sense that most of the labels come out to be

similar for big parts of the unlabeled dataset. So, if the learner can become ”intelligent”

enough in choosing which unlabeled instances it wants to label and learn from, the task

of building the training dataset can be greatly improved. This improvement should

come by reducing the size of the training dataset without impacting the accuracy of the

learner. An Active Learning system updates itself as part of a continuing interactive

learning process whereby it develops a line of inquiry on the unlabeled data and draws

conclusions on the data much more efficiently [90].

The literature on active learning suggests three fundamental modes of performing the

inquiry on the available data, which are Query synthesis, Stream-based selective sam-

pling, and Pool-based sampling. In Query synthesis, the queries to label new features

are synthesized ex novo [92], whereas in stream-based and pool-based sampling, the

queries are made based on an informativeness measure (we discuss the informativeness

measure in the upcoming Section 3.2.1). The difference between the latter two is in the

way the unlabeled data is presented to the learner, i.e., as a stream of data (where the

learner either selects or rejects the instance for labeling) or a pool of data (where the

most rewarding sample is selected from a pool of unlabeled data). For many real-world

problems including ours, a large amount of unlabeled data can be collected quickly and

easily, which motivates the use of pool -based sampling, making it the most common

approach for active learning scenarios [90]. The other two modes (query synthesis and

stream-based) are omitted because of their incompatibility with our case study. We

present in the next section our framework that relies on pool-based sampling, where a

pool is a set of network QoS features to experiment with (uniformly sampled in space),

and where the objective is to find the most rewarding QoS instances in terms of the gain

in the accuracy of the QoE model under construction.



28 An Intelligent Sampling Framework for QoE modeling

3.2.1 The informativeness measure

The informativeness measure used for active learning is devised by several strategies in

the literature as the ones based on uncertainty, query by committee, and error/variance

reduction. Among them, the most popular strategy as per literature is uncertainty

sampling, which is fast, easy to implement and usable with any probabilistic model.

Due to its relevance to implementation and its interesting features, we only discuss

uncertainty sampling in this chapter and leave the study of the other strategies for

future research; detail on the rest of the strategies can be found in [90].

To describe uncertainty sampling, we first notice that for any given QoS instance whose

label has to be predicted by any machine learning model, an uncertainty measure is

associated with this prediction. This refers to the certainty or confidence of the model

to predict (or classify) the QoS instance belonging to a certain label (or class). The

higher the uncertainty measure, the less confident the learner is in its prediction. This

uncertainty measure is the informativeness measure that is used in uncertainty sampling.

Generally, the uncertainty of a machine learning model is higher for instances near the

decision boundaries compared to instances away from them. These unlabeled instances

near the current decision boundaries are usually hardly classified by the model, and

therefore if labeled and used for training, would have a greater chance of making the

model converge towards a better learning accuracy as compared to other instances which

are far from the decision boundaries. So, if such instances of high uncertainty are selected

for labeling and training, the model would alter and assume a final shape much more

quickly.

The literature on active learning suggests three main strategies of uncertainty sampling

for picking the most uncertain instances in a given pool. Each strategy has a different

utility measure, but all of them are based on the model’s prediction probabilities. Let x

denote the set of instances in the pool that needs to be labeled. Based on this notation,

a brief description of the various uncertainty sampling strategies is given below:

1. Least Confident. This is a basic strategy to query the instance for which the

model is least confident, i.e., x∗LC = arg minx P (ŷ), where ŷ = arg maxy P (y) is the

most probable label for instance x. This means picking an unlabeled instance from

the pool for which the best model’s prediction probability is the lowest compared

to other instances in the pool.

2. Minimal Margin. In this method, the instance selected is the one for which the

difference (margin) in the probabilities of its first and second most likely predicted

labels is minimal. Here x∗MARGIN = arg minx [P (ŷ1)− P (ŷ2)], where ŷ1 and ŷ2 are
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the first and second most likely predicted labels of an instance x. The lower this

margin is, the more the model is ambiguous in its prediction.

3. Maximum Entropy is the method that relies on calculating the entropy of the

given unlabeled instance, where, x∗ENTROPY = arg maxx−
∑

y P (y) logP (y), with

P (y) being the probability of the instance being labeled y by the given model. The

higher the value of the entropy is, the more the model is uncertain.

So, the best instance for selection becomes the one that has the maximum uncertainty

which can be quantified using one of the strategies mentioned above.

3.3 Pool based sampling for QoE modeling

Given a large pool of unlabeled network QoS instances, we first select an instance from

the pool that has the maximum uncertainty (as previously discussed) and then experi-

ment with this QoS instance to find its QoE label. We then update the QoE model with

the obtained label and recalculate the uncertainty of the remaining instances in the pool

using the newly learned QoE model. Then again we select the most rewarding instance,

and so on. This defines our iterative methodology for sampling the experimental space.

3.3.1 Methodology

Our methodology begins by defining the pool, P and initializing the training set, T
with few labeled instances. A first QoE vs. QoS model is built using a machine learning

algorithm. Decision trees are typical models, but other models are also possible as

Bayesian or Neural Networks. The idea is to refine this model in an iterative way using

the labels of most rewarding instances. At each iteration, we compute the uncertainty of

all instances in the pool w.r.t the given QoE model and select the unlabeled instance with

the highest uncertainty (based on the utility measures). The selected instance is removed

from the pool, instantiated in the experimental platform, labeled with the corresponding

QoE, then added to the training set. The updated training set is then used to train

the model, Θ in the next iteration. The whole process is repeated until an adequate

number of samples are collected, denoted by the experimental budget N available to the

experimenter. Note that experiments can be stopped before this budget if the model

being built converges and stops improving further. In active learning literature, the

criterion to stop further experiments is referred to as the stopping criterion, we will

discuss it later in Section 3.4.1.
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For evaluating our approach, we set the budget equal to the pool size and experiment

until the pool is exhausted. We also define a Validation set, V, over which we validate

the model Θ. The overall algorithmic summary of our methodology is given below:

1: P = Pool of unlabeled instances {x(p)}Pp=1

2: T = Training set of labeled instances {〈x, y〉(t)}Tt=1

3: Θ = QoE Model e.g., a Decision Tree

4: Φ = Utility measure of uncertainty e.g., Max Entropy

5: N = Experimental budget

6: Initialize T
7: for i = 1, 2, ... N do

8: Θ = train(T )

9: select x∗ ∈ P, as per Φ

10: experiment using x∗ to obtain label y∗

11: add 〈x∗, y∗〉 to T
12: remove x∗ from P
13: end for

3.3.2 Implementation

To implement machine learning we use the Python SciKit-Learn library [93]. The

choice of the learner in the context of uncertainty sampling is dependent on the intrinsic

ability of the learner to produce probability estimates for its predictions, which ML

algorithms such as Decision Trees and Gaussian Naive Bayes can provide inherently.

Other popular machine learning algorithms such as Support Vector Machines (SVM) do

not directly provide the probability estimates of their predictions but make it possible

to calculate them using an expensive k-fold cross-validation [94]. With Decision Trees,

the probability estimates can be directly obtained from the distribution of the samples

in the leafs of a Decision Tree making uncertainty calculation convenient. They also

provide an intuitive understanding of the relationship between the QoS features and

the corresponding QoE that learners such as Neural Networks do not provide. So, due

to the aforementioned reasons, we use Decision Trees as our choice of ML algorithm.

Having said that, our active sampling approach is general and can be used with other

ML learners including Neural Networks and SVM as well.

Note here that if the minimum number of samples per leaf of the Decision Tree is set

to 1, leafs will be homogeneous in terms of the labeled instances per leaf, and the QoE

model will remain certain, thus resulting in zero or one probability values which would

not allow any uncertainty measure to be extracted from the model. So, the minimum

samples per leaf in the Decision Tree should be set to a value larger than 1; we set it to



Pool based sampling for QoE modeling 31

10 for binary classification and to 25 for multiclass classification (a QoE on five labels

and a leaf size of 5 times the number of labels), to ensure that the QoE model allows

producing probabilities between 0 and 1. We discuss later our validation of the approach

using the YouTube use case, and the QoE labels used for classification (Section 3.3.5).

3.3.3 Definition of accuracy

The accuracy of the QoE vs. QoS model (or classifier) is calculated over a Validation set

and is defined as the ratio of correct classifications to the total number of classifications.

It is to be noted that this global accuracy is relevant for the case of binary classification.

But for multiclass classification, we also use a measure of the absolute prediction error,

which we call the Mean Deviation, given by E[|ŷ − y|], where y is the true label of

an instance and ŷ is the classifier’s prediction. It is to be noted here that the Mean

Deviation is only calculated over the mis-classified instances, so it caters for not just

only the misclassifications but also for the range of error.

3.3.4 Building the pool and the validation set

To assess the benefit of active learning for QoE experimentation and modeling, our study

is based on a YouTube video streaming dataset. This case study is meant to validate the

interest for active sampling, we perform a greater analysis on YouTube QoE in Chapters

4 and 5. Our overall data collection was based on a sample 2 min YouTube 720p video

(video ID: Ue4PCI0NamI) with a timeout of 5 mins for each experiment. The dataset is

built by playing a video using YouTube API in JavaScript, in a controlled environment, in

which the network QoS features comprising throughput, delay and packet loss rate, were

varied in the download direction using DummyNet [95]. The overall labeling procedure

for each experiment is divided into three main steps:

1. For each QoS instance in the pool, we enforce the QoS configuration (throughput,

delay and packet loss rate) using DummyNet in the downlink direction.

2. Then we experiment with the enforced network conditions, i.e., we run the

YouTube video and we collect from within the browser the application-level metrics

of initial join time, number of stalling events and the duration of stalls;

3. Finally, we use an objective mapping function for mapping these application-level

measurements to the final objective QoE score (to be explained later, but for now

we use 0 or 1 for binary and 1 to 5 for multiclass mapping).
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We define two experimental spaces, one for the instances pool, P, and the other for

the validation set, V. The experimental space for P ranges from 0 to 10 Mbps for

throughput, 0 to 5000 ms for Round-Trip Time (set to two-way delay) and 0 to 25%

for packet loss rate. For the validation set, V, we use a range from 0 to 10 Mbps for

throughput, 0 to 1000 ms for RTT and 0 to 10% for packet loss rate. This reduction is

meant to lower the number of instances that can be easily classified while concentrating

validation on challenged instances around the borders between classes.

Within the experimental space P, we first generate a uniformly distributed pool of

around 10,000 unlabeled network QoS instances. We obtain the corresponding labels

using the above-mentioned procedure of controlled experimentation. A similar proce-

dure is adopted to generate 800 samples within the experimental space of V to obtain

independent validation sets for each classification scenario (binary/multiclass), equally

distributed among the classes.

While performing the experiments, we make sure that the impairments in the network

QoS are only due to the configured parameters on DummyNet. We confirm this by

verifying before every experiment that the path to YouTube servers has zero loss, low

RTT (less than 10 ms) and an available bandwidth larger than the configured one on

DummyNet.

3.3.5 Mapping function

We label our datasets using controlled experiments for both the binary and the multiclass

classification scenarios. For the former case, QoE of YouTube is classified into two labels;

Good, if there are no interruptions and Bad if there are interruptions of the playout.

This mapping relationship is used to translate the application level measurements in the

pool to binary QoE labels. Owing to the large sample space for the pool, the resulting

dataset was highly unbalanced with less than 1% of Good samples.

For the multiclass scenario, we rely on integer labels ranging from 1 to 5, based on the

ITU-T Recommendation P.911 [96]. The QoE labels quantifying the user experience are

directly related to the application level metrics of overall stalling duration and the initial

join time [4]. The larger these durations, the worse the QoE. Based on this information,

we define the multiclass QoE label as a function of the total buffering time calculated as

the sum of the initial join time and the overall stalling time. Prior work on subjective

YouTube QoE has suggested an exponential relationship between buffering time and

QoE [4]. Hence we define QoEmulti = αe−βt + 1, where t is the total buffering time (in

seconds) for each experiment. The values of the factors α and β are calculated based

on some assumptions of the best and worst scenarios for QoE. For example, for the best
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(a) Binary classification

(b) Multiclass classification

(c) Binary QoE labels

(d) Multiclass QoE labels

Figure 3.1: Visual representation of the datasets

scenario, the QoE is a maximum of 5 for zero buffering time which leads to α = 4. And

for the worst scenario, we consider a threshold for the total buffering time, beyond which

the QoE label would be less than 1.5. We define this threshold to be 60 seconds which

is equal to half of the total duration of the video used in our case. The value of this

threshold is based on the results of a user engagement study (based on 23 million views)

[39] which illustrates the video abandonment rate going up to more than 80% for a join

time of 60 seconds. With this threshold, we get β = 0.0347. We would like to emphasize

here that this mapping function or its given parameter values do not represent the final

model for YouTube, rather these values are used as an example to get multiple output

classes, yet well capturing the dependency between QoS and QoE, over which we can test

active learning. Of course, with different mapping relationships, the models built will

also be different, however, the underlying active sampling methodology would remain

the same.

The visual representation in Figure 3.1 shows a projection of the experimental space

over the two features Round-Trip Time (RTT) and packet loss. For both the binary and

the multiclass datasets, the relationship of the QoE labels with network QoS is evident

– we can visualize a decision boundary over this projection. Here, samples having higher
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(a) Binary classification

(b) Multiclass classification

Figure 3.2: CDF of the samples in the pool

QoE are clustered in the lower regions of the RTT and packet loss space, with apparent

monotonicity in the variation of the QoE labels, in particular for the multiclass set.

Figure 3.2 shows the CDF of the features in the pool, P, where the relationship of

the QoE w.r.t the individual network QoS features is highlighted. It can be seen that

the effect of RTT and packet loss on the QoE is more pronounced as compared to

throughput. In fact, for the case of throughput, the CDF is linear for all classes and

shows a threshold effect in case of binary classification, i.e., for all videos that do not

stall (Good samples in binary classification), the network has a throughput higher than

around 1.6 Mbps which can be understood as the bitrate of the given YouTube 720p

video. For such visualizations, if we look at the other two QoS features, we can see that

the RTT is always lower than 1 second and packet loss remains below 10% for 90% of

the Good cases. This gives a brief idea of how the network should be provisioned for the

given YouTube 720p video to play out without any buffering event.

3.3.6 Performance analysis

We compare the performance of the active learning algorithms with uniform sampling

where the selection of the instances from the pool P is random. For all scenarios,

the same initial training set is used, which comprises of just two instances from different

classes. Along the algorithm execution, each iteration corresponds to picking an instance

from the pool and adding it to the training set. After each iteration, the size of the

training set increases by one, so the number of iterations also corresponds to the size

of the built training set, T . The entire algorithm is run for all the samples in the pool
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(a) Learner accuracy (b) Cumulative ratio of Good samples

Figure 3.3: Binary classification results

and the performance results shown are the average of 20 independent runs. For ease of

understanding, the naming convention for the sampling scenarios is mentioned below:

1. UNIFORM: sampling is random.

2. LC: sampling is done based on the utility measure of least confidence.

3. MARGIN: sampling is done based on the utility measure of minimal margin.

4. EYNTROPY: sampling is done based on the utility measure of maximum entropy.

The overall accuracy of the Decision Tree QoE model using the different sampling tech-

niques applied to the binary classification case is shown in Figure 3.3a. It can be seen

that all the uncertainty sampling techniques have a close performance and they all out-

perform uniform sampling by achieving a higher accuracy with a much lower number

of samples in the training phase. This ratifies our earlier description of active learning,

that training with samples closer to the decision boundaries is much more beneficial as

compared to samples away from them. The accuracy starts from its initial value of 0.5

(learner predicts initially everything as Bad) and then quickly achieves the optimum

accuracy of around 75%, whereas the accuracy using uniform sampling becomes compa-

rable much later on. The performance gain of our methodology can be gauged by the

fact that we are now able to build a QoE model much faster and by using almost one

order of magnitude fewer experiments compared to randomly choosing the network QoS

configurations for experimentation (uniform sampling). The reduction in the number of

experiments means that we gain in the overall cost involved in building the model.

It has to be noted that this observed value of model prediction accuracy is dependent

on the used pool and the validation sets in our experimentation. For different validation

sets, the learner accuracy might be slightly different. But still, one can question why the

accuracy of the learner is only up to 75% and does not reach higher values as in prior

works in [97], [5] and [24] where similar ML models have accuracy ranging from 84% to

93%. The reason for this difference lies in the type of features used. The prior works rely

on features obtained directly from traffic traces (inband features), whereas the model
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(a) Learner accuracy (b) Mean deviation

Figure 3.4: Multiclass classification results

presented here considers features that are out-of-band w.r.t the traffic itself. As a result,

the obtained accuracy for such models is higher. This will also be verified in Chapter 5,

where we will show that inband features indeed give better accuracy compared with

outband network features for a variety of video streaming QoE metrics.

From Figure 3.1a, we can see that the underlying distribution of the binary labels in the

pool is highly unbalanced with all samples from the minority class (i.e., Good class in

our case) located in a single small region in the corner of the experimental space. Due

to this reason, it can be expected that the active learner tends to focus on this region

in picking its points for labeling which would result in picking the instances from the

minority class much faster as compared to uniform sampling. To verify this, we plot

the cumulative ratio of the selected instances from the minority class (Good class in our

case) in Figure 3.3b, where we can indeed see that the minor points are picked much

faster by active sampling as compared to uniform sampling. This results in having an

adequate number of samples from each class to get a better accuracy.

The results for the multiclass classification case are shown in Figure 3.4a for 25% of the

pool size to focus on the initial part, where the gain of active sampling over uniform

sampling is more visible. A noticeable observation is that the accuracy of the model is

much lower than in the binary classification case. The reason being that the number of

borders between the multiclass labels is larger as compared to binary classification, so the

number of ambiguous regions (the challenged regions where the validation is performed)

is also larger, thus the accuracy of the multiclass QoE model is decreased. Having said

that, the converged value of the Mean Deviation shown in Figure 3.4b is close to 1,

which means that most of the misclassifications are only to the adjacent classes. As

for the active learner’s convergence rate, we can see that it again performs better than

uniform sampling as it achieves a lower mean deviation with fewer training samples.

Finally, the difference between the selected instances using active learning (ENTROPY)

and uniform sampling is visualized in Figure 3.5, at 5% of the pool size. It is evident that

in the case of uniform sampling, the training set comprises of points scattered throughout
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(a) Binary classification

(b) Multiclass classification

Figure 3.5: Training set samples at 5% of the pool size

the sample space whereas, for active learning, points are mostly selected from a region

near the decision boundaries. More importantly, unrealistic extreme points of very high

RTT/loss rate are seldom sampled by the active learner compared to uniform sampling.

Therefore, active learning allows experimentation to be carried out with more relevant

network configurations compared to the uniform sampling of the space. Hence, we can

build accurate models quickly, without the need to know any prior information on what

a relevant experimental space should be for the given target application.

3.3.7 The effect of pool size on model accuracy

In our validation of pool-based sampling, we used an arbitrary pool size of 10k samples.

A question arises on the appropriate pool size to be used for a given experimentation

scenario without having any a priori knowledge of the feature space. Ideally, the pool

used should be as large as possible. However, as we will show subsequently, uncertainty

sampling with very large pools can cause the learner to block for a long time in uncertain

regions of space resulting in an inaccurate ML model. To verify this problem, we perform

an analysis of pool-based sampling on a synthetic dataset with different pool sizes (1k,

10k and 100k samples). We consider a binary classification scenario with two input

features and use our pool-based uncertainty sampling methodology (Section 3.3.1) to

build the training set. The ground truth (the labeler) is represented by a function

whose decision boundary has a non-linear shape with a monotonic transition in label

classes, similar to what we observe in the training sets of Figure 3.1. The function we

use to represent such a boundary is given by y = 0.1 + (1− x)20 (Figure 3.6a) assuming

that the features take values of 0 or 1. Furthermore, to mimic real systems, we add
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(a) Ground Truth (b) Accuracy

Figure 3.6: Comparison of accuracy with different pool sizes

random noise in the region near the decision boundary; the noise is added within 0.1

units from the decision boundary.

Using our methodology, we obtain the performance curves shown in Figure 3.6b, which

shows the accuracy of the ML model (a Decision Tree model with 20 samples per leaf)

obtained for 20 independent runs using the utility measure of ENTROPY. We observe

that the performance of the model is indeed dependent on the size of the pool. For a pool

of 1k instances, the performance is poor due to the limited number of instances. If we

increase the pool to a reasonably large value of 10k samples, we observe a significant gain

over uniform sampling. However, if we further increase the pool size to 100k samples, the

performance deteriorates, instead of improving further. This is because of the blocking

issue as mentioned before. Thus, for any controlled experimentation environment, the

experimenter either has to first define a pool of a given size and then apply active learning

on it. A very large pool may result in the blocking issue resulting in lower modeling

accuracy while a small pool may also lead to low accuracy. The issue here is that we

cannot ascertain the right pool size a priori without performing the experiments. So in

order to avoid this problem of choosing the right pool size, we re-formulate our active

learning approach in the next section, where instead of defining any pool, we sample

the space directly by cutting the space into regions and use a probabilistic approach of

choosing the experimentation scenarios to avoid the learner to get blocked in the noisy

parts of the feature space.

3.4 Relaxing the pool assumption and solving the blocking

issue: an online sampling approach

Our approach to overcome the problem mentioned above regarding the pool size selection

and sampler blocking can be summarized in Figure 3.7. Instead of selecting samples from

a pool of scenarios, the experimental space itself is directly sampled to obtain a point 3

3A sampled point refers to a specific experimentation scenario.
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Figure 3.7: Active sampling

from the regions of high uncertainty in the QoS feature space. And as already stated

before, the regions of high uncertainty in the feature space are those where the ML

model under construction has low confidence in its prediction (or classification).

Some ML algorithms such as K-means and Decision Trees have this intrinsic capability

of cutting the space into regions and assigning confidence levels to each region. Other

ML algorithms can be complemented by an auxiliary solution to cut the space into such

regions. For ease of presentation and without losing generality, we consider Decision

Trees (DT) here. A DT learner splits the space using a set of internal nodes and edge

leafs arranged in a tree structure and learned from the studied trace. Each node in the

tree is assigned a feature threshold and the arcs generated from each node downwards

indicate the value of the feature meeting the criterion at the node. The last node in this

tree structure, called a leaf, represents a unique region in the feature space. Each leaf

has a certain number of samples from each class and is labeled with the class having the

maximum number of samples in it. Labeled leafs come with some uncertainty, which

can be quantified by the measure of Entropy. So, in a given DT model with L leafs,

each leaf i can have an entropy ei given by

ei = −
M∑
m=1

p
(m)
i log p

(m)
i , (3.1)

where p
(m)
i is the classification probability of class m in leaf i, i.e., equal to the number

of samples of class m divided by the total number of labeled samples in the leaf, with

M being the total number of output classes.

At each iteration, we propose to select a leaf for experimentation from the set of leafs

of the DT learner. As the model has the same certainty about all points in a leaf, the

experimentation scenario (e.g., a tuple of the round-trip time, loss rate and bandwidth)

is then picked randomly from the region covered by the selected leaf. The criterion for

selecting the best leaf for experimentation could be based on the same criterion of pool-

based uncertainty sampling which is to select the leaf for which the entropy of the model

is the highest. However, as already stated, if the regions of each of the QoE classes, e.g.,

Good or Bad, are not highly separable in space, i.e., if there is noise in the given regions,
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then experimenting with network scenarios in the regions of highest uncertainty may

cause the learner to get stuck in these regions. To avoid this situation, we modify this

criterion such that instead of choosing the region with the highest entropy, we propose

to select the regions for labeling with a probability that follows the distribution of the

entropies of the leafs in the given experimental space. As a consequence, regions in

space with high uncertainty are more likely to be used for experimentation compared

to regions with low uncertainty. We call our approach HYBRID where an ith leaf is

selected for experimentation from a set of leafs with a probability given by ei/
∑

j ej , ei

is given in (3.1).

The overall summary of our new methodology is given below:

1: Θ = Decision Tree ML Model

2: L = Leafs of a Decision Tree {l(i)}Li=1

3: T = Training set of labeled instances {〈x, y〉(i)}Ti=1

4: Φ = Utility measure based on Entropy

5: for each experiment do

6: select l∗ ∈ L, as per Φ

7: randomly select x∗ ∈ l∗

8: experiment using x∗ to obtain label y∗

9: add 〈x∗, y∗〉 to T
10: Θ = train(T )

11: end for

3.4.1 Stopping criterion

In active learning, we can stop the experimentations when the model stops improving

while new samples are getting labeled. The convergence of the model under construction

can be gauged by several measures including model accuracy, uncertainty and model

confidence [98]. For the accuracy measure, in general, a separate validation set that is

needed to represent the ground truth and over which the model can be tested at every

iteration of active learning. However, when the training set is built on the fly as in

our case, we do not have any information on the ground truth beforehand. So, in this

case, we cannot use an independent accuracy measure to observe the change in model

performance over time. Instead, we can demonstrate model convergence by observing the

change in the uncertainty (Equation 3.1) and the confidence measures (Section 3.4.2)

over the course of the iterations. As we will show in Section 3.4.5, the uncertainty

of the model decreases while the confidence increases with the increasing number of

experiments, eventually attaining a plateau indicating model convergence after which



Relaxing the pool assumption 41

no major subsequent change in the model occurs even with more experiments. Thus, at

this stage, further experiments can be stopped.

3.4.2 Gauging model quality using model confidence

Here, we explain how the confidence measure, which reflects the quality of the model

under construction, can be calculated for Decision Trees. For leaf i, let’s define the

confidence of the model in the label it assigns to the leaf as ci = max
〈
p
(1)
i , . . . p

(M)
i

〉
,

where p
(m)
i is the classification probability per class m in the given leaf i. With this

definition, we can define a set C = {ci}Li=1 that denotes the confidence measures for each

leaf i in the entire feature space, L being the number of leafs. To have a unified measure

for the entire space, we can simply use the average of C as a single measure representing

the global confidence of the model over the entire feature space. But simple averaging

means that we give equal weight to all leafs. A better approach is to have different

weights associated with different leafs based on the volume of the regions they occupy

in the feature space, thus bigger leafs can be assigned bigger weighting factors and vice

versa. The weighting factor wi can be computed as

wi =
1

X1X2...XN

∫
· · ·
∫ x

HIGHi
n

x
LOWi
n

dx1 . . . dxN , (3.2)

where xLOWi
n and xHIGHi

n are the threshold values for feature xn of leaf i. These thresh-

olds define the limits of the region represented by each leaf in the feature space. We

normalize with respect to the total volume of the feature space X1X2...XN to get weights

between 0 and 1.

With wi computed, we can then define our unified Weighted Confidence Measure as∑L
i=1 ciwi. By defining it this way, the confidence measure models the confidence, or

certainty, of the constructed model in classifying a random sample picked with a uniform

probability in the feature space into a QoE label. This measure should be the highest

possible.

3.4.3 Evaluation

We implement our HYBRID sampling methodology shown in Figure 3.7, in a con-

trolled experimentation framework for modeling YouTube video QoE based on the same

methodology of Section 3.3.4. The framework consists of a client node that performs the

experiments, and a controller node that implements active learning using Python Scikit.

At each experiment, the client node 1) obtains from the controller, a QoS feature tuple
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which it enforces on its network interface using Linux traffic control tc, 2) runs a sample

YouTube 720p video video ID: oFkulzWMotY and obtains its corresponding QoE, 3)

sends back the labeled tuple of the enforced QoS and the output QoE to the controller,

which then updates the DT model locally. For the QoE, we consider the binary case to

ease the illustration of results, i.e., Bad if the video suffers from stalling or has a join

time of more than 30 seconds, and Good if the video starts within 30 seconds and plays

out smoothly without any stalls. In the subsequent analysis, the green color refers to

the Good class and the red color refers to the Bad class.

To evaluate our methodology, we collect two datasets, DMAXENTROPY and DHY BRID
based on two different sampling approaches, MAXENTROPY and HYBRID. In MAX-

ENTROPY, the region selected for labeling is the one which has maximum entropy

according to the ML model under construction whereas, in HYBRID, the criterion for

selecting a region is based on the entropy-based probabilistic measure. Each dataset

is comprised of 4000 YouTube video playouts in our controlled network environment.

We compare the DT models built by these two datasets and prove how our proposed

methodology HYBRID can build better QoE models compared to MAXENTROPY and

the previously described pool based sampling. We then illustrate how the model built

with DHY BRID changes throughout the iterations showcasing that further experiments

can be stopped once stability is achieved in the model under construction.

The visual representation of the collected datasets is shown in Figures 3.8a and 3.8b.

In these figures, sampled network scenarios are projected over different pairs of QoS

axes. We can see a significant difference between the two approaches in the regional

distribution of the sampled scenarios for both the Good and the Bad classes. For MAX-

ENTROPY, the active learner is stuck in a small region of the experimental space which

results in other useful regions being missed out. The HYBRID approach and thanks to

its intrinsic random behavior, mitigates this problem and results in experiments being

carried out in a larger region with a better capture of the decision boundary. As a result

of this difference in the datasets, the DT models trained with these datasets are also

different. This is highlighted in Figure 3.9a where we show the visual representation

of what is predicted by the DT model over the same pairs of QoS axes. Clearly, the

model built with the HYBRID approach captures better the distribution of QoE labels

over the space. One still needs to validate the accuracy and confidence of the obtained

models overall.
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(a) MAXENTROPY

(b) HYBRID

Figure 3.8: Visual representation of the collected datasets

(a) MAXENTROPY

(b) HYBRID

Figure 3.9: Visual depiction of the DT ML model

3.4.4 Accuracy and confidence

As we are in an online mode, we don’t want to condition our validation by the presence

of a separate dataset forming the ground truth. We want the validation to be carried

out over the dataset itself produced on the fly by active learning. For this, we resort to

the technique of repeated cross validation to gauge the performance of the models. In

k-times repeated cross-validation, the target dataset is split into training and validation

sets k times randomly. The model is then trained with the training set and tested

with the validation set k times to get k accuracy scores. The final accuracy score is

then the average of these k scores. We plot the F1-Score4 based on cross-validation

4The F1-score is a measure to gauge the accuracy of the ML model by taking into account both
the precision and recall. It is given by 2pr/(p + r), where p and r are the precision and recall of the
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(a) MAXENTROPY (b) HYBRID

Figure 3.10: Comparison of the F1-scores per class b/w HYBRID and MAXEN-
TROPY

(k = 3 with a data split ratio of 80:20 for training and validation) that is computed at

each iteration of our experimentation in Figure 3.10, where we can see that HYBRID

achieves a better accuracy for both classes compared to MAXENTROPY5. However, an

important observation here is that as we increase the number of experiments, the cross-

validation F1-Score begins to decrease. For MAXENTROPY, that drop is significantly

more important. The reason for it is that as we keep on experimenting, more and more

scenarios will be picked from the uncertain regions nearby the boundary between classes,

thus making the resulting dataset noisier and difficult to predict.

We further calculate the Weighted Confidence Measure –discussed in Section 3.4.1– to

better gauge the quality of the models. Figure 3.11 shows this comparison for DT models

built with HYBRID and MAXENTROPY. We also add to this figure the result of pool-

based sampling of Section 3.3. For this latter result, the performance of the learner is

limited by the size of the pool used, which explains why it shows less confidence in its

prediction than our two proposed online approaches. The figure shows that HYBRID can

build QoE models having better confidence than the other approaches, which added to

the previous cross-validation result, confirms that the QoE models built with HYBRID

are of better quality compared to those built with MAXENTROPY. Table 3.1 further

highlights this result by showing the same measure of confidence but w.r.t each class

after 3000 experiments were carried out. Not only HYBRID has better confidence on

average, but it is also more confident in its prediction for both classes. Interestingly,

the confidence of the model for the Bad class is very high for all the approaches. As

mentioned above, this is because of the unbalance of the space between the two classes

(see Figure 3.8). In fact, in our case, the performance of the model w.r.t the minor class

(Good) defines how good the model is. And indeed, HYBRID has the best confidence

for the Good class as well among all the other sampling approaches.

ML model respectively. It takes its value between 0 and 1 with larger values corresponding to better
classification accuracy of the model.

5The results shown in Figures 3.10 to 3.13 are based on moving average with a window size of 100
iterations to smooth out the curves for better presentation.
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Figure 3.11: The weighted confidence measure

Strategy Bad Good

HYBRID 99% 93%
MAXENTROPY 99% 87%

MAXENTROPY(POOL) 100% 78%
UNIFORM 99% 71%

Table 3.1: Model confidence per class after 3000 iterations

3.4.5 Model convergence

To study the convergence of the model with the HYBRID approach, we start by showing

the variation in the entropies of the leafs of the DT model in Figure 3.12. We can observe

that the minimum and maximum entropies of the DT leafs remain consistently at the

respective values of 0 and 0.7. An entropy value of zero means that throughout the

experiments, there remain regions in the experimental space which have clear uniformity,

i.e., all samples in those regions belong only to one class thus the model would have 100%

confidence in such regions. A second observation from Figure 3.12 is that the maximum

entropy goes up to 0.7 and remains at this value even if we add further experiments. This

means that in this state, the ML model would have regions where it is still uncertain,

but these regions are small in volume and cannot improve further. Finally, the average

entropy shown in Figure 3.12 is a weighted sum of the entropies of all leafs with each

leaf assigned a weight according to the leaf’s geometric volume. We can see that the

average entropy progressively goes down to a stable low value which is an indication of

the model convergence in its leaf entropy distribution.

Figure 3.12: Variation of entropy

We now study convergence from another perspective. Figure 3.13 shows the model’s

minimum and maximum classification probabilities per class over all the leafs labeled
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Figure 3.13: Classification probabilites (confidence) of the DT leafs per class

Figure 3.14: Comparison of accuracy for synthetic dataset (non-linear function)

with that class. The results here are complementary to the ones in Figure 3.12 as max-

imum (resp. minimum) entropy corresponds to minimum (resp. maximum) confidence.

As said above, the maximum classification probability is 1.0 for both classes, which con-

firms the presence of regions in space where the model is 100% confident. As more and

more leafs are added, and as leafs get smaller and smaller, the minimum probabilities

converge to a value around 0.5, which in our binary case is the maximum uncertain

scenario. This minimum is driven by highly uncertain small leafs.

The convergence of the above metrics is an indication of model stability. Experiments

can then be safely stopped as the model stops evolving. The stopping criterion can be

the point where all these metrics converge, but one can anticipate and stop the exper-

iments when the overall confidence measure stops increasing, as shown in Figure 3.11.

Experiments beyond this point have almost no impact on the model performance.

3.4.6 Quantifying the gain of active sampling with synthetic datasets

We further validate the HYBRID approach over the synthetic non-linear function de-

scribed in Section 3.3.7 to obtain the performance curves of Figure 3.14. This fig-

ure shows the performance comparison of both the Pool based and the HYBRID ap-

proaches for modeling a non-linear decision boundary. It can be seen that HYBRID

and POOL 10K perform similarly while MAXENTROPY performs poorly. Note that

MAXENTROPY is equivalent to pool-based sampling with an infinite pool size, thus

has lower accuracy than POOL 10K.



Relaxing the pool assumption 47

(a) C=0 (b)
C=0.2

(c)
C=0.4

(d)
C=0.6

(e)
C=0.8

Figure 3.15: The synthetic linear functions

C Class 0 Class 1

0 50% 50%
0.2 32% 68%
0.4 18% 82%
0.6 8% 92%
0.8 2% 98%

Table 3.2: Covered area for each class according to a tunable linear function

From Figure 3.14, it is also evident that active sampling techniques clearly outperform

uniform sampling. However, the overall gain of active sampling for any new given

experimental scenario depends on the distribution of the ground truth labels and the

complexity of the decision boundaries in the underlying feature space. To verify this

claim, we analyze the performance of our techniques over different synthetic feature

spaces (the methodology of Section 3.3.7 for synthetic datasets is again used here but

with a linear decision function) to see the difference in the performance gain of active

sampling over uniform sampling. Here, we vary the distribution of the ground truth

labels in the feature space by changing the position of the decision boundary which is

represented by the linear function given by y = 1− x− C. The constant C is varied in

steps of 0.2 from 0 to 1 to obtain five different spaces. The resulting distribution of the

output labels is visualized in Figure 3.15 while the area covered by each class is given

in Table 3.2. Considering such scenarios, and supposing we have a budget of 500 or

1000 experiments, we showcase next the performance gain of active sampling in terms

of modeling accuracy. The results are given in Figure 3.16 where we can see that the

gain increases as the distribution of the labels gets more and more unbalanced in space.

Furthermore, for an increased budget, the performance gain decreases. Note here that

these results are for a simple linear decision boundary; for complex decision boundaries,

the gain would be even more pronounced. From these results it may be concluded

that the actual gain of active sampling over uniform sampling is not fixed, rather it

is dependent on the complexity of the feature space and the available experimentation

budget.
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Figure 3.16: Gain of HYBRID over uniform sampling for different feature spaces

Figure 3.17: Computation complexity in milliseconds of each sampling iteration.
Results obtained on a PC using Intel Core i7-6600U (2.60 GHz) CPU with 15 GB of

RAM and using Python 2.7 on Fedora release 24.

3.4.6.1 Comparing the computational overhead of active sampling

Since active sampling involves computing and ranking the model uncertainties at each

iteration, it is expected that these additional computations will incur a computational

overhead. To evaluate this overhead, we plot the computational time observed at each

iteration in modeling the synthetic linear function (Figure 3.15b) in Figure 3.17. It can

be seen that the overhead due to active sampling is of the order of few milliseconds only.

For pool-based sampling, the computational time increases as we increase the size of the

pool, while for HYBRID, it increases as the number of leafs in the DT model grows.

Considering that experiments in QoE modeling scenarios consume time in the order

of minutes, a computational overhead of a few hundreds of milliseconds is negligible,

especially if compared to the time saved in carrying out the experiments. Also, the

overhead is dependent on the type of ML algorithm used, in our work we use Decision

Trees which are faster to train compared to other learners such as Neural Networks or

SVM.
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3.5 Implementation of active sampling in real production

networks

While our active sampling approach targets controlled experimentation environments,

it can also be used in real-world production networks (e.g., YouTube, Netflix, etc.) as

well. Here, we can use pool based sampling where the pool of unlabeled data can be

the set of network measurements observed for each of the end users’ web/video/audio

streaming sessions. Then, the task of labeling this entire measurement dataset with

its corresponding QoE label can be optimized using active learning by choosing the

samples for labeling (by user feedback) for which the underlying ML model (at the

backend server) is uncertain. Only for such measurements, the server should ask the

end user to feedback the corresponding video session in terms of the MOS observed

(the labeling procedure in active learning). This labeled sample is then added to the

training set at the backend to update and build the model iteratively and efficiently.

This schema is relevant to any service provider, Youtube, Netflix, Whatsapp, Skype,

etc., where end users are solicited for feedback at the right moment for samples for

which the model is uncertain. On one hand active sampling will reduce the number of

solicitations (user feedback), and so will bother less the end users, and on the other hand

it will produce efficiently a model that can be used later by these players to model and

estimate Quality of Experience of their customers, and operate over the content and the

network to optimize Quality of Experience.

3.5.1 Application of pool-based sampling on an open network mea-

surement dataset

To illustrate the performance of active sampling in a scenario with real networks, we

apply pool based sampling on a real network measurement dataset used as our pool

of data. Specifically, we use the dataset provided by FCC [99] which has more than 3

million measurements of downlink bandwidth and latency for broadband video streaming

tests performed with several ISPs in August 2016. The CDF of this dataset is shown

in Figure 3.18 where the median of the downlink throughput occurs at around 5 Mbps

while the distribution for RTT is highly skewed with 95% of samples having RTT values

less than 92 ms.

We use this dataset to build both our pool and the validation set with a data split ratio

of 95:5 resulting in a validation set with over 20k samples and a pool of more than 3

million samples. We then repeat our sampling methodology described in Section 3.3.1

and obtain at each iteration the accuracy of the model being built using active sampling
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compared to uniform sampling of the FCC pool. The labeling is done using the ML

model of Figure 3.9b with loss rate set to zero. The results are shown in Figure 3.19

where we can indeed see that pool based sampling achieves higher accuracy faster than

uniform sampling, ratifying the feasibility of using active sampling techniques on realistic

data pools as well.

Note that the gain in terms of the experiments saved in this case is in the order of

hundreds of experiments which might seem low. This is because, in this particular sce-

nario, the decision boundary is a horizontal or a vertical line (Figure 3.9b for bandwidth

vs. RTT). Learning such boundaries is easier and would require fewer experiments com-

pared to learning more complex boundaries such as the one in Figure 3.9b (loss rate

vs. RTT).

(a) Downlink Throughput (b) RTT

Figure 3.18: CDF of the FCC dataset

Figure 3.19: Application of pool based active sampling over FCC dataset. The
measure of accuracy is the average of the F1-scores per class and the scores at each

iteration correspond to the average of 20 independent runs.

3.6 Related work and discussion

A detailed survey of the active learning techniques can be found in [90]. To the best

of our knowledge, the work presented in this chapter is the first attempt to apply ac-

tive learning techniques in the context of QoE modeling versus network QoS conditions

based on controlled experimentation. Prior work on the application of active learning

in the domain of QoE is discussed under different contexts other than controlled exper-

imentation. For example, the authors in [100] propose the application of active learning
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to tackle the scale of subjective experimentation in addressing the problem of biases

and variability in subjective QoE assessments for video. Other works such as in [101]

use active sampling in choosing the type of subjective experiments for image quality

assessments.

Similar experimental selection problems have also been considered in other contexts

than QoE and ML. For example, authors in [102] propose a technique to maximize the

information gain while minimizing the duration of the benchmarking/experimentation

process. Their technique gives higher importance to placing experiments in regions

where larger changes in the response variable exist. The regions have a fixed volume

in the experimental space. Their method is similar to uncertainty sampling in terms of

targeting uncertain regions of space but differs w.r.t the output variable; in our work, we

consider discrete integral output labels in a supervised ML classification scenario while

in their case they consider a continuous output variable. Also, they consider fixed size

regions while we use variable sized geometric regions of space represented by the leafs

of a DT.

Our online active sampling methodology relies on using a probabilistic variable uncer-

tainty criterion to pick the most suitable region for experimentation. A similar criterion

is used in [103] in a stream-based selective sampling scenario with a variable threshold

of uncertainty to target a problem of dynamic decision boundaries (referred to as con-

cept drift in active learning literature). This problem is different from ours in that we

consider noisy decision boundaries. Also, in our work, we do not receive any unlabeled

data, rather we synthesize the data for labeling.

In [104], authors use active learning to target crowdsourced QoE modeling scenarios

whereas we consider controlled experimentation. They highlight the problem of subjec-

tivity in the QoE scores which leads to degraded performance with active learning. A

similar problem can occur in our controlled experimentation approach where a network

fluctuation can deviate the QoS observed from the enforced QoS, thus creating noise in

the training set which would lower the performance of the model being built. But if

these fluctuations remain minimal, their impact on the performance of our solution will

also be minimal. As a solution to this problem of dynamic network conditions, one can

imagine redoing our work but with as input features not only the mean network QoS

values, but also their variability, and make sure to measure these means and variability

while using the model (training and QoE estimation).

Supervised ML has been used extensively in the literature for QoS-QoE modeling; a

detailed survey of such models is provided in [58]. While we also use supervised ML

in our work, our focus is not on the final QoE models, but on reducing the cost of

building such models by active sampling. Furthermore, the conventional approach of



52 An Intelligent Sampling Framework for QoE modeling

using supervised ML in QoS-QoE modeling is to use the training data that is either

collected in the wild [105], [5] or built by controlled experimentation [106]. For data

collected in the wild, the model suffers from the bias of the underlying data source, while

for the case of controlled experimentation, the similarity in the experimental space is not

fully exploited. The work in this chapter fills these gaps by proposing intelligent sampling

that allows building models quickly in a general way not biased to any particular data

source.

The work in this chapter presents a validation of active sampling for a Video-On-Demand

(VOD) QoE modeling scenario where the same content(s) can be played in multiple

experiments over time. However, For live video streaming, the content of the video

cannot be stored and can change over time. If only the network QoS features are used

to model live video QoE, the underlying decision boundaries are expected to be noisier

with larger regions of uncertainty in the network feature space compared to modeling

for VOD. Active sampling in such a scenario will still be useful but may converge to a

lower accuracy compared to modeling for stored video content.

3.7 Summary

In this chapter, we showcased the benefit of using active learning to speed up the process

of building QoE models using controlled experimentation. Our work validated active

learning over a sample YouTube QoE modeling use case with one video and our results

showed improvement over the conventional uniform sampling of the experimental space.

In the next chapter, we extend our sampling approach in building a QoE model for

YouTube considering a large number of videos where we apply our sampling approach

over a catalog of videos; we use the average video bitrate feature of each video to sample

it from the catalog using the HYBRID active sampling approach.



Chapter 4

YouScore: A QoE indicator for

Performance Benchmarking of

Mobile Networks for Internet

Video Streaming

Modern video streaming systems, e.g. YouTube, have huge catalogs of billions of different

videos that vary significantly in the content type. Owing to this difference, the QoE

of different videos as perceived by end users can vary for the same network Quality of

Service (QoS). In this chapter, we present a methodology for benchmarking performance

of mobile operators w.r.t Internet video that considers this variation in QoE. We take

a data-driven approach to build a predictive model using supervised machine learning

(ML) that takes into account a wide range of videos and network conditions. To that

end, we first build and analyze a large catalog of YouTube videos. We then demonstrate

a framework of controlled experimentation where we apply our active sampling approach

(described in the previous chapter) to build the training data for the targeted ML

model. Using this model, we then devise YouScore, an estimate of the percentage of

YouTube videos that may play out smoothly under a given network condition. Finally,

to demonstrate the benchmarking utility of YouScore, we apply it on an open dataset of

real user mobile network measurements to compare the performance of mobile operators

for video streaming.

53
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4.1 Introduction

Today’s content providers typically have billions of videos that vary significantly in

content from fast motion sports videos to static video lectures. Building a model that

represents all such contents is a challenge. Prior works on modeling video QoE either

take a very small subset of videos [107], [108], or use datasets generated inside the core

networks without elaborating on the kind of videos played out [5]. Such works miss out

to highlight the variation in the QoE of videos due to the difference in contents and

the span of network QoS. In this chapter, we propose to quantify this QoE variation

and answer the following questions: for a catalog of given video content provider, how

much would the QoE of videos of a given resolution (manually set by the end user)

differ under the same network conditions? Differently speaking, what percentage of

videos of a certain resolution play out smoothly under a given network QoS? Such

questions are pertinent in today’s 3G/4G mobile networks where capacity or coverage

related issues can lower the bandwidth and inflate the delay and the loss rate of packets.

Hence, it is important for operators to accurately gauge the extent to which the QoE of

video streaming portals, e.g. YouTube, can degrade in congested/bad coverage scenarios

considering the diversity and popularity in the contents offered by today’s Internet.

Internet videos can vary significantly from high motion sports/music videos to static

videos with very little motion. This difference in contents may be quantified by using

some complex image/video processing techniques, however, in our work, we resort to

using a much simpler metric of average video encoding bitrate to quantify the difference.

It is calculated by dividing the total video size (in bytes or bits) by the duration of the

video (in seconds). Since videos are compressed using video codecs such as H.264, which

try to minimize the bitrate while not impacting the visual quality, the type of content

affects the encoded bitrate of the video. For example, a high motion video is supposed to

have a higher bitrate compared to a slow motion video for the same resolution. The video

bitrate, in turn, affects the network QoS required for smooth playout. For example, for

a high bitrate video, more bandwidth is required to ensure acceptable smooth playout

compared to videos of lower bitrate for the same resolution.

Based on this basic relationship between video bitrate, QoS and QoE, we propose a

methodology to devise global QoE indicators for Internet video content provider systems

that would give estimates into the percentage of videos (in the targeted catalog) that

may play out smoothly under a given network QoS. This QoE indicator which we call

YouScore allows gauging network performance considering the intrinsic variability in

the contents of the catalog of the target content provider. We consider YouTube in

our work as it is the most widely used video streaming service of today’s Internet. To

devise YouScore, we first collect a large catalog of YouTube videos that contains video
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bitrate and other meta-data information about the videos. We then build a training

QoS-QoE dataset by playing out a diverse set of YouTube videos (sampled from the

catalog) under a wide range of network conditions; the sampling of the videos and the

selection of the relevant conditions for network emulation is done using active learning,

an efficient sampling methodology that we developed in Chapter 3 for the YouTube

experimentation case with network QoS only; in this chapter, we extend it to sample

the content space (video bitrate) as well. The collected dataset is used to train supervised

ML algorithms to build the predictive model that takes as input the video bitrate and

network QoS to estimate the QoE. Using this ML model, we devise YouScore which

quantifies the variation in video QoE for a case of YouTube. Finally, we demonstrate a

performance analysis for different mobile operators by applying YouScore on a dataset

of real user measurements obtained in the wild. Overall, we present a methodology

for benchmarking mobile networks’ performance w.r.t to Internet video streaming. Our

approach is general and can be used to devise global QoE scores for any video content

provider.

The rest of the chapter is organized as follows: in Section 4.2, we discuss our method-

ology for building the YouTube video catalog and present its statistical analysis. In

Section 4.3, we discuss our framework for building the QoS-QoE dataset. We devise

YouScore in Section 4.4 and apply it on the dataset of real network access measure-

ments and demonstrate a comparative analysis between mobile operators in Section 4.5.

The related work is discussed in Section 4.6 and the chapter is concluded in Section 4.8.

4.2 The video catalog

4.2.1 Methodology

To get a large and representative corpus of YouTube video catalog, we use the YouTube

Data API and search YouTube with specific keywords obtained from Google Top Trends

website. Specifically, we use around 4k keywords extracted from the top charts for

each month from early 2015 to November 2017. We had to increase the number of

keywords as the YouTube API restricts the number of videos returned for each keyword

dynamically in the range of few hundreds. The search criterion was set to fetch short

high definition (HD) videos (less than 4 minutes) for the region of USA. To obtain the

bitrate information, we rely on Google’s get video info API that returns the video meta-

data for each video identifier. Overall and after some processing, we build a dataset

of around 12 million entries for 1.2 Million unique video identifiers. Each entry in this

dataset represents a unique video identified by a video ID and its available resolution
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Figure 4.1: Video count per resolution

(identified by an itag value). Additional fields include the bitrate, codec, duration,

category, and topic for each video.

From our analysis of the dataset, we observe that the YouTube content is available

mostly in two major video types encoded by the H.264 codec and Google’s VP9 codec

[109]. The individual codec type of a given video encoding can be identified by the

MIME (Multipurpose Internet Mail Extensions) type. For H.264 it is ”video/mp4” and

for VP9 it is ”video/webm”. In our dataset, 82% of the videos are encoded in both

types with only 18% videos in only H.264 format. The overall distribution of the videos

w.r.t the supported resolutions and MIME types is given in Figure 4.1. We can see that

a significant portion of the obtained video IDs supports resolutions up to 1080p. We

limit ourselves to this maximum resolution in our study. We make our catalog available

at [30].

4.2.2 Video categories and popularity

Each video is assigned a category and a topic by the YouTube Data API. Based on our

observation, a video can have only one category but it can have several topics. The

distribution of the number of videos for each category along with the cumulative view

count per category is given in Figure 4.2. The trend shows that the ”Entertainment”

category has the highest number of videos whereas the ”Music” category has the highest

number of views. Note that the ”Music” category has fewer videos compared to ”People

& Blogs”, ”Sports” and ”News & Politics” but has a higher view count. This indeed

shows that YouTube is primarily an entertainment portal. A similar trend is observed

for videos per topic (not shown here) where the highest viewed topic is ”Music” while

”Lifestyle” has the highest number of videos.
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(a) Video count (b) Cumulative view counts

Figure 4.2: Distribution of videos per category

(a) mp4 (b) webm

Figure 4.3: Histogram of the bitrate of the YouTube videos

(a) mp4 (b) webm

Figure 4.4: Boxplot of the bitrates of the YouTube videos

4.2.3 Video bitrates

The overall distribution of the video bitrates is shown in Figure 4.3 for the two MIME

types supported by YouTube (mp4 and webm). We can notice how the spread of the

distribution increases for higher resolution, which means that for HD videos, the bi-

trates can significantly vary between videos of the same resolution. This spread is also

highlighted in the boxplot of Figure 4.4. An important observation is that the videos
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encoded in webm format tend to have lower bitrate compared to mp4. The overall arith-

metic mean of the bitrates for each resolution is shown in Table 4.1. We can notice that

webm features on average a lower bitrate than mp4 for all resolutions.

Resolution mp4 webm

240p 0.215 0.154
360p 0.332 0.281
480p 0.648 0.488
720p 1.275 0.996
1080p 2.369 1.801

Table 4.1: Mean video bitrate (Mbps) per resolution

From this spread of the bitrate, we can infer that different contents can have different

video bitrates for the same resolution. For example, fast motion content, intuitively,

will have a higher bitrate compared to a slow motion content. To understand this span

further, we compare the bitrates of the videos for each category as assigned by the

YouTube data API. The spread of the bitrates for each category is shown in Figure 4.5

for both MIME types and for resolution 1080p. Indeed, we can see a variation of bitrates

not only in each category but across all categories. Consider for example Figure 4.5a, the

median bitrate for ”Film & Adaptation” is around 2 Mbps whereas it is around 3.3 Mbps

for ”Pets & Animals”. This clearly indicates the relationship between content type and

video bitrate. For webm, the variation across bitrates is lower but still evident; a median

bitrate of 2.45 Mbps for ”Pets & Animals” and 1.74 Mbps for ”Film & Adaptation” can

be seen.

(a) mp4 (b) webm

Figure 4.5: Boxplot of video bitrates (1080p) per category

4.3 The interplay between content, network QoS and QoE

The span of the bitrate across videos, even those of the same resolution, is an indication

that a different QoE can be expected for the same network conditions based on the
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content that is streamed. In order to study the interplay between the content itself,

the network QoS and the QoE, we follow a data-driven approach supported by con-

trolled experimentation and Machine Learning (ML). This approach consists of playing

out videos of different bitrates under different network conditions to build a QoS-QoE

dataset. This QoS-QoE dataset is then used to train supervised ML algorithms to pro-

duce a predictive QoE model able to capture the QoE of a video knowing its bitrate and

the underlying network QoS. This model is the basis of our QoE indicator, YouScore to

be presented in the next section.

4.3.1 Building the QoS-QoE training set for ML

We build a QoS-QoE dataset for training supervised ML classification algorithms by

playing out different videos that are sampled from our catalog (Section 4.2). Videos are

streamed from YouTube under different network conditions emulated locally using the

Linux traffic control utility (tc) [110]. In this controlled experimentation approach, each

experiment consists of enforcing the network QoS using tc, playing out a selected video

under the enforced QoS and then observing the QoE (e.g. acceptable/unacceptable) of the

playout. The videos are selected according to the video bitrate –to differentiate between

video contents– while the network is controlled by varying the downlink bandwidth and

the Round-Trip Time (RTT) using tc. Thus, the resulting dataset is a mapping of the

tuple of three input features of downlink bandwidth, RTT, and video bitrate, to an output

label consisting of the application-level QoE (acceptable/unacceptable).

4.3.1.1 Choice of network QoS features

The network QoS features of only downlink bandwidth and RTT are used because of

the asymmetric nature of YouTube traffic where the download part is dominant. Other

complex features can be taken into consideration e.g. loss rate, jitter but we limit our

modeling with only two of the most relevant features for YouTube keeping in mind the

unavailability of more complex features in large scale real user network measurement

datasets, e.g. a popular crowd-sourced app SpeedTest provides measurements of only

throughput and latency.

4.3.1.2 QoE definition

The QoE labels are defined as either acceptable if the video loads in less than 10 seconds

and plays out smoothly or unacceptable if the loading time is more than 10 seconds or the

playout suffers from stalls. Although more complex definitions of QoE are possible [1],
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we use a simple definition that can be applied at scale so that the final YouScore obtained

from this QoE definition has an inherent objective meaning; the value of YouScore would

correspond to the percentage YouTube videos in the catalog that play out smoothly for

a given network QoS. Nonetheless, the methodology that we present in this chapter can

be extended to more complex QoE definitions as well.

Note that for any QoE model, the notion of smooth playout means no stalling and

minimal join time. An acceptable join time for any video playout to be considered

smooth can vary among different users, so a specific threshold for a minimal/acceptable

join-time may not apply to every user. However, a user engagement study showed that

users started to abandon videos after 2 seconds with the video abandonment rate going

up to 20% after 10 seconds [39]. In another work based on a dataset of 300 million video

views, almost 95% of the total video views had a join-time of less than 10 seconds [82].

Considering these observations, a threshold on join time of 10 seconds can be considered

a reasonable value to assume a smooth playout for an objective QoE definition. Finally,

we stream videos at fixed resolution by disabling the adaptive mode. Our aim is to

quantify the resolutions that can be supported for a given network QoS.

4.3.2 The experimentation framework

In the experimental framework, we apply our active sampling method (HYBRID method

in Chapter 3) based on Decision Trees (DT) to sample the experimental space intelli-

gently. The experimental space we use in this chapter is as follows: 0 − 10 Mbps for

bandwidth, 0− 1000 ms for RTT and 0− 3 Mbps for the video bitrates taken from the

webm video catalog (Figure 4.3b).

At each experiment, we rely on the DT ML model to select an unlabeled sample from

the uncertain leaves, obtain its label by experimentation, update the training set with

the labeled sample and then finally re-train the model to complete the experiment.

An overall summary of our approach can be visualized in Figure 4.6a. We stop the

experiments when the DT model converges to a stable state. The convergence of the

model can be gauged by the Weighted Confidence measure that quantifies the quality

of the model in terms of its classification probabilities. This measure is computed by

taking a weighted sum of the entropies of all the leaves of a DT. The weights are assigned

to each leaf according to the geometric volume it covers in the feature space. Thus,

bigger regions have greater weights and vice versa. So, at each experiment, we compute

the weighted confidence per class for the DT model and stop experimenting when the

standard deviation of this measure over consecutive experiments is within 1% of the

average for each class (two classes acceptable/unacceptable in our case).
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Figure 4.6: The sampling and experimentation framework

To further speed up our process of building our dataset, we rely on parallel experimen-

tation. We propose a framework where the logic of choosing the features to experiment

with (network QoS and video bitrate) is separated from the client that performs the

experiments. With this functional segregation, we can have multiple clients running in

parallel that ask the central node (mainController) for the network QoS and the video

ID to experiment with. After completion of an experiment, the results obtained by

each client are sent back to the mainController which updates the central database with

the labeled sample and re-trains the active learner. The overall framework is given in

Figure 4.6b. This setup can be realized in terms of separate virtual machines within

the same network or separate physical machines. A benefit of our framework is that

the clients do not need to be at the same physical location, they can be geographi-

cally separated provided that they can communicate with the mainController over the

Internet.

We apply our proposed framework in a network of 11 physical machines in our exper-

imental platform called R2lab [111] where the mainController is hosted on a unique

machine while the experiments are performed in parallel on the rest of the 10 machines.

Our active learning algorithm ended up converging after 2200 experiments. During all

these experiments, we had ensured that a large bandwidth and low RTT (less than 10

ms) was available towards the YouTube cloud such that the network degradation was

mainly caused by tc.

4.3.3 Learner convergence and accuracy

Figure 4.7 shows the DT model’s convergence. As we can see in Figure 4.7a, the model

achieves a stable confidence value of more than 90% for both classes. To validate the

accuracy of the DT-based ML model trained with the QoS-QoE dataset, we rely on

using repeated cross-validation. As already discussed before, in k-times repeated cross-

validation, the target dataset is split into training and validation sets k times randomly.
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(a) The Weighted Confidence (b) Cross Validated F1-Score

Figure 4.7: Model convergence for the DT Model per class

The model is then trained with the training set and tested with the validation set k

times to get k accuracy scores. The final accuracy score is then the average of these k

scores. We plot the F1-Score1 based on cross-validation (k = 3 with a data split ratio of

80:20 for training and validation) and updated at each iteration in Figure 4.7b. Notice

the slight decreasing trend in the cross-validation accuracy compared to the confidence

that remains stable. The reason for it is that as we keep experimenting, more and more

scenarios will be picked from the uncertain regions nearby the boundary between classes,

thus making the resulting dataset noisier and difficult to capture the QoE.

4.3.4 The QoS-QoE dataset

The visualization of the obtained dataset is given in the form of a scatter plot over two

dimensions in Figure 4.8. The respective colors represent the corresponding classes. The

green points represent those experiments where the videos play out smoothly (acceptable

QoE) while the red points correspond to unacceptable QoE. From Figure 4.8a, we can see

a relationship between the video bitrate and the downlink bandwidth. As we increase

the video bitrate, the required bandwidth to ensure smooth playout increases. Similarly,

for latency, as we increase the RTT, more and more videos move from acceptable to

unacceptable (Figure 4.8b). Notice that the distribution of the points is non-uniform as

a consequence of active learning that causes experiments to be carried out with feature

combinations near the decision boundary in the feature space. To better illustrate this

decision boundary, Figure 4.8c is a scatter plot of the data filtered for RTT less than

100 ms from which we can observe a quasi-linear decision boundary between the two

classes. Finally from Figure 4.8d, we can see that all video playouts are smooth for a

bandwidth higher than 4 Mbps and RTT lower than 300 ms. This means that YouTube

videos (having resolutions less than or equal to 1080p according to our catalog) can play

1The F1-score is a measure to gauge the accuracy of the ML model by taking into account both the
precision and recall. It is given by 2pr/(p + r), where p and r are the precision and recall of the ML
model respectively. It takes its value between 0 and 1 with larger values corresponding to the better
classification accuracy of the model.
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out smoothly if these two conditions on network QoS are satisfied. The dataset is made

available at [30].

(a) Video bitrate vs bandwidth (b) Video bitrate vs RTT

(c) Video bitrate vs bandwidth
(RTT <100 ms)

(d) Downlink bandwidth vs RTT

Figure 4.8: Projection of the QoS-QoE dataset. Red color: Unacceptable playout
with stalling or long join time. Green color: Acceptable smooth playout.

4.3.5 Model validation

While we use a DT model in our active learning methodology to build the dataset, the

resulting QoS-QoE dataset can be used to train other supervised ML algorithms as well.

Some ML algorithms such as SVM and neural networks require the standardization of

the data (feature scaling) to perform well. Other classifiers such as Decision Trees and

Random Forests do not require such standardization. However, to have a fair compari-

son, we standardize the dataset and then obtain the cross-validation scores for different

classifiers. The results are given in Table 4.2 for default parameter configurations using

the Python Scikit-learn library. The best three models are neural network (Multi-layer

Perceptron), SVM (RBF kernel) and Random Forests giving accuracy around 80%.
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ML Class Prec Recall F1 Avg F1 Fit Time

Nearest
Neigh-
bors

0 0.79 0.76 0.77
0.75 1 ms

1 0.71 0.73 0.72

Linear SVM
0 0.75 0.76 0.76

0.72 36 ms
1 0.69 0.67 0.68

RBF SVM
0 0.82 0.82 0.82

0.8 89 ms
1 0.78 0.77 0.77

Decision Tree
0 0.76 0.76 0.76

0.73 7 ms
1 0.71 0.70 0.70

Random Forest
0 0.77 0.84 0.81

0.77 51 ms
1 0.78 0.70 0.73

Neural
Net
(MLPC)

0 0.82 0.82 0.82
0.8 1360 ms

1 0.77 0.77 0.77

AdaBoost
0 0.80 0.77 0.78

0.76 166 ms
1 0.72 0.75 0.74

Naive Bayes
0 0.72 0.69 0.70

0.68 1 ms
1 0.63 0.67 0.65

QDA
0 0.78 0.72 0.75

0.74 1 ms
1 0.69 0.76 0.73

Logistic
Regres-
sion

0 0.74 0.76 0.75
0.72 2 ms

1 0.70 0.67 0.68

Table 4.2: Cross-validation scores for common ML algorithms with standardization
(k = 10 with a test set size equal to 20% of training set). Class 0: Unacceptable. Class

1: Acceptable.

Features NN RF SVM

RTT, DL BW, Bitrate 0.795 0.784 0.799
RTT, DL BW 0.667 0.647 0.658

Table 4.3: Performance gain with the video bitrate feature

4.3.6 Gain of using the video bitrate feature

To investigate the gain of using the video bitrate feature in addition to the network QoS

features, we train the aforementioned ML algorithms with and without the video bitrate

feature. The results for the cross-validation accuracy are given in Table 4.3. Modeling

the QoE using only the network QoS features results in a low accuracy of about 65%.

However, if we use bitrate with the network QoS, the classification accuracy improves

to around 80% giving us a gain of around 13% thus validating the importance of using

the video bitrate feature in our QoE modeling scenario.

For our subsequent analysis, we use Random Forests as our predictive QoE model, θ, to

devise our global QoE indicator, YouScore, as they do not require standardization on the

training data which allows us to use them directly on new data for prediction without

any preprocessing. They also show good classification accuracy according to Table 4.2.

We can improve their accuracy further by performing a grid search over parameters of
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min number of samples per leaf and number of estimators; by doing so, we obtain an

accuracy of around 80% with values of 15 and 25 for these parameters respectively. Note

here that θ takes as input the features of RTT, downlink bandwidth and video bitrate

(representing the network QoS and the video content) with as output an estimation of

the binary QoE (acceptable/unacceptable), while the derived YouScore will only take as

input the RTT and downlink bandwidth to give as output an estimate of the ratio of

videos that play out smoothly for a given network QoS.

4.4 YouScore: A QoE indicator for YouTube

Using θ, we define Y ouScore, a global QoE indicator for YouTube that takes into account

the different video contents of our catalog. Theoretically, we aim to give a probability

for YouTube videos of a given resolution to play out smoothly, for a given state of

network QoS quantified by the tuple of downlink bandwidth and latency (RTT). To

obtain such a probability, we test θ over all the videos in the given catalog and use the

model’s predictions to compute the final QoE score ranging from 0 to 1. Such a QoE

score inherently contains meaningful information for network operators to gauge their

performance w.r.t YouTube, where a score of x for a given network QoS and a given

resolution translates into an estimated x% of videos of that resolution that would have

acceptable QoE (start within 10 seconds and play out smoothly). Formally, we define

Y ouScore for a given resolution r and a network QoS as:

Y ouScorer = fθ(bandwidth,RTT ). (4.1)

The function fθ(bandwidth,RTT ) is computed by testing θ with a test set Tr = {<
bandwidth,RTT, bitratei >}Nr

i=1 composed of Nr samples of same bandwidth and RTT

while the values for bitratei are taken from the video catalog (composed of Nr videos)

for resolution r. To elaborate further, let Yr denote the set of predictions of θ for Tr
and Yacceptabler ⊆ Yr denote the set of acceptable predictions in Tr. So the final score is

given below, which is the ratio of the number of videos to play out smoothly to the total

number of videos in the catalog for resolution r:

Y ouScorer =
| Yacceptabler |

Nr
(4.2)

A single score can be computed by taking a weighted sum such that Y ouScorefinal =∑R
r=1wrY ouScorer, where R is the number of resolutions covered in the video catalog

and wr can be chosen to give preference to each of the resolutions.
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(a) 480p (b) 720p (c) 1080p

Figure 4.9: Y ouScorer using θ for different resolutions

Using this methodology, we obtain the Y ouScorer for each resolution r and plot it in

terms of heat maps in Figure 4.9. The plots are a billinear interpolation of the YouScores

obtained at sampled points in the space of RTT and bandwidth: 11 uniformly spaced

points on each axis resulting in a total of 121 points. The colors represent the YouScores

ranging from zero to one. As we can see, the thresholds of bandwidth and RTT, where

the transitions of the score take place clearly show an increasing trend as we move from

the lowest resolution 480p to the highest resolution 1080p. For example, the Y ouScore

begins to attain a value of 1 for bandwidth of around 1 Mbps for 480p, 1.5 Mbps for

720p and 2.5 Mbps for 1080p for RTT less than 200 ms. This threshold also varies on

the RTT axis as well. For 240p (not shown here), high YouScores are observed for an

RTT less than around 500-600 ms. The same threshold reduces to less than 400 ms for

resolution 1080p.

To illustrate the variation in the YouScores across different categories, the model θ is

tested over a sampled video set from each category. The resulting scores are given in

Figure 4.10 for the resolution 1080p. We can see a difference in the scores obtained

between different categories. Consider the ”Science & Technology” category, which

has a greater spread. This category gets higher scores compared to categories such as

”Sports” in the region of low bandwidth and low RTT. From another angle, for low

RTT, ”Science & Technology” videos obtain a Y ouScore1080p of 0.5 at the bandwidth

of around 2 Mbps, while for ”Sports” videos, a higher bandwidth of 3 Mbps is required

to achieve the same score. This means that at a bandwidth of 2 Mbps, 50% of ”Science

& Technology” videos can still play out smoothly whereas no ”Sports” videos can play

out smoothly at the same bandwidth.

In a practical setting where the global YouScores per resolution need to be computed

quickly for a large set of network measurements, we can simply use an interpolation

function on the sampled points of Figure 4.9. To this end, we store these sampled points

in a text file that can be retrieved from [30]. Each line in this file represents a mapping
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(a) Science & Technol-
ogy

(b) People & Blogs (c) Sports

Figure 4.10: Y ouScore
(category)
1080p using θ for different categories

open uuid country location client version
open test uuid download kbit network mcc mnc

time utc upload kbit network name
cat technology ping ms sim mcc mnc
network type lte rsrp nat type

lat lte rsrq asn
long server name ip anonym

loc src test duration ndt download kbit
loc accuracy num threads ndt upload kbit

zip code platform implausible
gkz model signal strength

Table 4.4: Information provided by RTR-NetTest

of the tuples of RTT (in milliseconds) and Bandwidth (in kbps) to the corresponding

Y ouScore for each resolution.

Our proposed YouScore model (Equation 4.1) has the benefit that it requires only two

outband features of bandwidth and delay to estimate the QoE without requiring the

application traffic. Such a model can be easily deployed by a network provider to gauge

its performance w.r.t YouTube given the available network measurements. Also, we

can use as input to the model, the active measurements carried out by crowd-sourced

applications such as SpeedTest to estimate the YouTube QoE; in the next section, we

demonstrate such a use case.

4.5 Application of the YouScore for network performance

benchmarking

In this section, we demonstrate a practical application of YouScore on a dataset of real

user active measurements. We use an open dataset of network measurements performed

by RTR-NetTest [21], an application developed by the Austrian Regulatory Authority
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(a) Scatter Plot (b) Density map

Figure 4.11: Downlink bandwidth vs RTT for RTR-NetTest dataset

for Broadcasting and Telecommunications (RTR). This application informs users about

the current service quality (including upload and download bandwidth, ping and signal

strength) of their Internet connection. The dataset is provided every month; in our

analysis, we use the data for November 2017. The dataset consists of more than 200k

measurements from users mostly in Austria using mobile, wifi, and fixed-line access

technologies. The fields provided in the dataset are shown in Table 4.4; details can

be found in [21]. Importantly for us, the dataset includes measurements for downlink

throughput (estimated bandwidth) and latency, which are required by the function in

Equation 4.1 to obtain the Y ouScorer for resolution r ranging from 240p to 1080p.

Specifically, for Downlink bandwidth, we use the value given by the ratio of download kbit

and test duration, and for RTT, we use ping ms as input to the function in Equation 4.1

to obtain the predicted Y ouScores.

The visualization of the network measurements is given in Figure 4.11a over a limited

scale of up to 10 Mbps for throughput and 1000 ms for RTT. In the dataset, the max-

imum observed throughput (estimated bandwidth) was 200 Mbps while the maximum

RTT went up to 3000 ms. However the bulk of the measurements had smaller values,

so we plot here the results over a smaller axis. Notice here the inverse relationship

between the download throughput and the latency which is an obvious consequence of

queuing in routers and of TCP congestion control. For higher RTT values, throughput

is always low which signifies that high RTT alone can become a significant factor alone

to predict poor QoE for TCP based applications. The same observation can be observed

in Y ouScores (Figure 4.9) as well where for RTT higher than 600 ms, the scores are

zero for all resolutions. To visualize the density of the measurements, we plot a heat

map in Figure 4.11b showing that most measurements have RTT less than 100 ms and

bandwidth varies in the range of 0 to 4 Mbps.

We now use Equation 4.1 to translate these QoS measurements into the corre-

sponding Y ouScores. The resulting scores are analyzed at the global granularity of
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4G 3G 2G LAN WLAN

Y ouScore240p 0.97 0.82 0.05 0.93 0.92
Y ouScore360p 0.95 0.76 0.04 0.89 0.88
Y ouScore480p 0.92 0.65 0.02 0.83 0.83
Y ouScore720p 0.82 0.43 0.01 0.68 0.67
Y ouScore1080p 0.68 0.22 0.01 0.51 0.49

# measurements 28572 6207 723 116617 85879

Table 4.5: Average YouScores w.r.t network technology for the entire dataset

cat technology and network name. As this dataset also provides the network names

for measurements made in mobile networks, we then split the scores w.r.t to different

operators to perform a comparative analysis. The overall performance of each network

technology is shown in Table 4.5 where we can see an obvious declining trend in the

scores as we increase the resolution. The scores for 2G are mostly zero as expected

while we get non-zero values for other technologies. The highest score is obtained in

4G for all resolutions. For measurements with mobile technologies, the network names

are provided which allow us to dig further to compare the performance between opera-

tors. Figure 4.12 shows the average Y ouScores for top 3 network operators (names are

anonymized to ensure unbiasedness). For 240p resolution, the performance is mostly

similar among the three but for higher resolutions, a difference becomes evident. Using

this information, it can be said that a particular operator performs better than the other

in providing better YouTube QoE to its end users.

Figure 4.12: Overall average YouScores for top three network operators for all radio
access technologies

Table 4.6 provides the scores for each radio access technology for the given operators

where we can indeed see a difference in the scores across the different operators and the

different technologies. Notice that the highest score for Y ouScore1080p is 0.77. Our work

is limited to 1080p, for even higher resolutions, the scores would be even less. The analy-

sis in this section can be enhanced further by looking at the geographic locations where

the measurements are performed. This can help operators prioritize troubleshooting

based on the given YouScores. Also, currently, open coverage maps that provide infor-

mation such as signal strength, throughputs, delay, etc are getting common. Such maps

can be enhanced with YouScore, to estimate YouTube QoE as well.
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Operator RAT count Y360p Y480p Y720p Y1080p
A 2G 20 0.02 0.01 0.00 0.00
A 3G 1012 0.76 0.63 0.39 0.19
A 4G 4486 0.95 0.93 0.84 0.71

B 2G 88 0.03 0.01 0.00 0.00
B 3G 789 0.92 0.85 0.63 0.35
B 4G 4097 0.97 0.95 0.88 0.77

C 2G 42 0.03 0.01 0.00 0.00
C 3G 168 0.85 0.76 0.50 0.29
C 4G 2731 0.97 0.93 0.84 0.72

Table 4.6: Split of Y ouScores w.r.t Radio Access Technology (RAT) for top three
operators

Ref. QoE Definition Accuracy # Features Type of Features # Training

[97] Binary 84% ∼ 36 Inband 1464
[5] 3 classes 93% 4 Inband 390,000

[112] Binary 89% 9 Inband 1060
θ Binary 80% (93% conf.) 3 Outband (tc) 2268

Table 4.7: A Performance comparison between QoE models that take network QoS
features as input

4.6 Related work

Regarding YouTube catalog analysis, authors in [113] crawled the YouTube site for an

extended period and performed video popularity and user behavior analysis for a large

number of videos. In our work, we take a similar approach based on crawling YouTube

to get a statistical insight into YouTube video bitrates but additionally, we combine this

information with QoE modeling as well.

A comparison of the accuracy of the QoS-QoE models developed in the prior work with

our binary model θ –which is the basis of YouScore– is given in Table 4.7. The cross-

validation accuracy for θ is comparable but slightly lower because our dataset has more

samples from noisy regions of space due to active sampling. Furthermore, the model we

present here uses only two QoS metrics enforced on tc (outband measurements) along

with the video bitrate as input features whereas the models presented in the literature

mostly use a greater number of QoS features directly obtained from the application

traffic itself (inband measurements). Having more features directly from traffic traces

naturally gives better correlation with the output QoE, thus normally should result in

better models; the same is observed in Chapter 5 where the models that are based on

inband measurements show greater accuracy than outband measurements.

Regarding mobile network performance analysis using crowd-sourced data, authors in
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[114], [115] present cellular network performance studies using data collected from de-

vices located throughout the world. In our work, we propose to use such network QoS

datasets to compare and benchmark the performance of mobile networks for video QoE

using QoS-QoE predictive models.

4.7 Limitations

We considered smooth play video play out to be defined to have a join time of less

than 10 seconds without any stalls. This is by no means a final definition for smooth

play out, rather we only use it as a possible use case for showcasing our methodology

for comparative analysis of the performance of cellular networks w.r.t video streaming.

We can have different and more complex subjective QoE definitions, but overall our

proposed methodology for benchmarking remains the same. Furthermore, the results

obtained in Figure 4.5 for different mobile operators are highly dependent on the model

used and are also not a final representation of the state of today’s mobile networks. In

terms of generalization, there is still room to refine YouScore further by using a much

larger catalog and use all available resolutions (going up to 4K) and new video types

(such as 3D) that are supported by today’s content providers. Also, our work focuses on

one version of Google Chrome on Linux based machines and for webm videos only. The

model can be improved further by considering other browsers and mobile devices as well.

Finally, the work in this chapter is based on YouTube, but our overall methodology is

reusable to define global QoE scores for any video streaming system.

4.8 Summary

In this chapter, we presented an approach for performance benchmarking of mobile

networks for video streaming considering the diversity in the content of the videos in

today’s content provider systems. Overall, we started by first collecting a large video

catalog for a case of YouTube, then used this catalog to build a QoE model to derive

a global QoE Score for the target catalog (YouScore) and finally apply the global QoE

score on a dataset of real user network measurements to get a global visibility into the

performance of mobile networks w.r.t video streaming. Our methodology allows both

the network and the content providers to gauge their performance w.r.t video QoE and

network QoS respectively.

The work in this chapter uses outband network QoS for building the QoS-QoE model.

In the next chapter, we build ML models using inband network QoS to infer video QoE

from encrypted traffic.





Chapter 5

Monitoring QoE from Encrypted

Video Streaming Traffic

In the previous chapter, we presented a QoE prediction model based on outband network

QoS features considering a QoE forecasting and benchmarking scenario. In this chapter,

we consider the QoE monitoring scenario where the QoE is estimated from within the

network using inband network QoS. Monitoring QoE of video from within the network

is a challenge as most of the video traffic of today is encrypted. In this chapter, we

consider this challenge and present an approach based on controlled experimentation

and machine learning to estimate QoE from encrypted video traces using network-level

measurements only. We consider a case of YouTube and play out a wide range of videos

under realistic network conditions to build ML models (classification and regression)

that predict the subjective MOS (Mean Opinion Score) based on the ITU P.1203 model

along with the QoE metrics of startup delay, quality (spatial resolution) of playout and

quality variations. We comprehensively evaluate our approach with different sets of input

network features and output QoE metrics. Overall, our classification models predict the

QoE metrics and the ITU MOS with an accuracy of 63–90% while the regression models

show low error; the ITU MOS (1–5) and the startup delay (in seconds) are predicted

with a root mean square error of 0.33 and 2.66 respectively.

5.1 Introduction

In this chapter, we propose a methodology for building ML based models for QoE

monitoring using controlled experimentation. In our approach, we again play out a wide

range of YouTube videos under emulated network conditions to build a dataset that maps

the enforced network QoS to QoE. Prior works [5], [23] have shown good performance of

73
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machine learning in the inference of application QoS features from encrypted traffic (e.g.,

stalls and startup delay). However, they do not provide any subjective QoE prediction.

To fill this gap, we aim to build models that predict not only the application QoS metrics

but also a subjective MOS (Mean Opinion Score). For the MOS, we rely on a recently

proposed model, the ITU P.1203 [1], that provides a MOS ranging from 1 to 5 taking into

account the application QoS features such as the resolution and bitrate of chunks, and,

the temporal location and duration of stalling events. We build models that attempt

to predict the relevant QoE metrics and the ITU MOS of a video played out. For

building the training data, we propose a sampling methodology for network emulation

that considers real measurement statistics observed in the wild, and we implement our

methodology in a grid computing environment to produce a large dataset mapping the

network QoS features to video QoE. Overall, the contributions of the chapter are:

1. We present an experimental framework to build ML models for inferring video

QoE (the startup delay, the stalling events, the spatial resolution of playout, the

quality switches, and the MOS) from encrypted video traffic traces and apply it

to YouTube. Our framework is general and can be used to build QoE estimation

models for any video content provider. Furthermore, we ensure that our work is

reproducible so we make available the code and the datasets online [31].

2. To the best of our knowledge, this is a first attempt at linking encrypted video

traffic measurements to subjective MOS based on models such as ITU-T P.1203.

Prior works [5, 23, 24] do not consider the subjective MOS, they consider objective

QoE metrics only.

3. We provide a detailed performance comparison for ML modeling (classification and

regression) with different types of network feature sets. Specifically, we compare

three feature sets, 1) outband : the network features are measured outside the traffic

pipe configured on the network emulator and include features such as bandwidth

and RTT, 2) inband : the features are obtained from the traffic traces and include

features such as throughput and packet interarrival time, and 3) the inband feature

set is enriched with the chunk sizes which are inferred directly from the traffic

traces using a clustering algorithm that we develop and validate. Overall, the best

performance is achieved using the third feature set where the ML classification

models predict the QoE metrics and the MOS with accuracies between 63% to

90%. For the ML regression models, we obtain low prediction error; the ITU MOS

(1–5) and the startup delay (in seconds) are predicted with a root mean square

error (RMSE) of 0.33 and 2.66 respectively.
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The rest of the chapter is as follows: the related work is discussed in Section 5.2. In

Section 5.3, we describe our overall experimentation framework. In Section 5.4, we

discuss the features and the subjective QoE model used in the collected dataset followed

by its statistical analysis. The evaluation of the ML models is given in Section 5.5

followed by a discussion about the limitations of our work in Section 5.6. Finally, the

chapter is concluded in Section 5.7.

5.2 Related work

A comprehensive survey of the QoS-QoE modeling methods is already presented in

Chapter 2. Here we elaborate on how the work presented in this chapter is different

from some of the closely related prior works.

Inferring QoE related metrics from encrypted traffic of video streaming is a topic of

interest in the research community due to the ever growing increase in encrypted video

traffic. Recently, authors in [5], [24] use machine learning to predict QoE metrics of

stalls, quality of playout and its variations using network traffic measurements such as

RTT, bandwidth delay product, throughput and interarrival times. In another similar

work [23] based on data collected in the lab, the authors use transport and network layer

measurements to infer QoE impairments of startup delay, stalls and playback quality

(three levels) in windows of 10 second duration. The prior works do not provide any

estimation of the subjective MOS, rather they provide ML models for estimating the

objective QoE metrics only. On the other hand, our work demonstrates ML models

that not only estimate the QoE metrics but also estimate QoE in terms of subjective

MOS based on the ITU P.1203 recommendation. Also, prior works mostly focus on

supervised ML classification scenarios, whereas we present ML regression models as

well. Also, we present an unsupervised ML based method to infer chunk sizes directly

from the encrypted traffic traces (Section 5.4.1) and use them as features for the ML

models to show significant improvement in ML accuracy. Prior work [5] uses chunk size

as a feature in ML modeling, however, they get its real value from devices they control,

instead of inferring it from encrypted packet traces. A first heuristic is proposed in [5] to

automatically extract chunk size information from encrypted traffic based on identifying

long inactivity periods, but this heuristic is not further developed.

5.3 The experimental setup

In our approach, we play out the YouTube videos under the different network conditions

emulated using Linux traffic control, tc [110] to build datasets that map the network QoS
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to the application QoE. Each experiment consists of enforcing the QoS and observing

the QoE of the video played out. The features we use to vary the network QoS are 1)

the downlink bandwidth, 2) the uplink bandwidth, 3) the RTT (i.e. bidirectional delay),

4) the packet loss rate (uniformly distributed and bidirectional) and 5) the variability

in the delay to model the jitter (standard deviation of the delay following a uniform

distribution on tc). These five features together define our experimental space.

How to vary the network QoS? In Chapter 3, we have shown that active learning gives a

significant gain over uniform sampling in QoS-QoE modeling. However, active sampling

requires a single output QoE definition (classification label) to be predefined before the

experimentation phase, making the resulting dataset biased towards the given classifi-

cation model. If we use active sampling, then to study a variety of classification and

regression scenarios for different application QoS metrics in our case, we would end up

having a different dataset for each classification/regression scenario. To avoid the above-

mentioned situation and to reduce the resource wastage problem of uniform sampling,

we devise a new sampling framework where we vary the network QoS according to how

it is observed in the wild by real users. Our methodology samples the space based on the

distribution of real measurements as observed in public datasets of the two well-known

mobile crowd-sourced applications RTR-NetzTest [21] and MobiPerf [22].

5.3.1 Trace based sampling

In our sampling approach, we divide the network QoS space into equally sized regions

called cells (20 bins per feature). For each cell, we compute the number of real user

measurements observed and use it to derive the probability to experiment in that cell.

Each sample in the dataset of RTR-NetzTest (1.45 million samples from the period of

August 2017 to February 2018) provides measurements of uplink bandwidth, downlink

bandwidth, and RTT. However, the dataset does not have packet loss rate and variability

of delay. To obtain these last two features, we use data from MobiPerf (40k samples

for February 2018). MobiPerf’s ping test provides in a single test the measurements of

RTT, loss rate and the standard deviation of the RTT. We combine the measurement

distributions of the two datasets using the common feature of RTT and end up having

a single probability distribution for the cells in the space of five features. Each cell

is assigned a probability equal to the number of measurements in that cell divided by

the total number of measurements. Then, upon each experiment, we choose a cell

for experimentation based on its assigned probability. From the chosen cell, a random
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Figure 5.1: The experimentation framework

sample, representing the network QoS instance, is selected to be enforced on tc1. During

our experiments, we also verified that the clients had a large bandwidth and low delay

towards the YouTube cloud such that the network degradation was mainly caused by

tc. Note here that by using a trace based sampling approach, we can build a QoS-QoE

dataset that is closer to reality than the one based on uniform space sampling.

5.3.2 Video catalog

Today’s video content providers have huge catalogs of videos that vary in the content

type. To build QoE prediction models for such providers, we take into consideration this

diversity of contents by considering a large number of different videos in our experiments.

We use the catalog that we build in Chapter 4 that consists of around 1 million different

videos supporting HD resolutions (720p and above). This catalog is built by searching

the YouTube website using the YouTube Data API with around 4k keywords from Google

top trends website for the period of January 2015 to November 2017. We sample this

catalog to select a unique video to playout at each experiment.

5.3.3 The overall experimental framework

Our overall framework consists of a mainController with several clients as shown in

Figure 5.1. The mainController stores the video catalog and provides the network

configurations (using the trace based sampling framework) to the clients which perform

the experiments. In each experiment, the client, 1) obtains from the mainController

the network QoS instance and the video ID, 2) enforces the network QoS using tc,

3) plays out the selected video in a Google Chrome Browser, 4) obtains the traffic

features from the encrypted packet traces and the application QoE metrics from the

1We do not consider trace samples which have very large values, we only consider values that are
below a certain limit. These limits are 10 Mbps for downlink/uplink bandwidth, 1000 ms for RTT and
its variation and 50% for loss rate. Note that almost all the samples in our traces have values within
these limits (93% for downlink bandwidth and 98% for the remaining features). We only consider such
samples free from outliers to devise our sampling framework.
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browser, and 5) reports back the results (QoS-QoE tuple) to the mainController which

stores the results in a central database. We implement our methodology in a Grid

computing environment where up to 30 clients are used to perform the experiments

in parallel. We use the Grid5000 [116] and the R2Lab [111] computing platforms for

the clients, while the mainController is hosted on an AWS EC2 instance [117]. Such

segregation allows large scale experimentations to be carried out by clients distributed

geographically. Furthermore, we consider a large number of videos to account for the

diversity of load incurred by YouTube videos on the network caused by the different

content they present. Overall, we collect a dataset of around 100k unique video playouts.

In the next section, we discuss the input features and the output QoE metrics we use

for building QoE prediction models from this dataset.

5.4 The training dataset

5.4.1 Network features

The network features we use to build our models are collected from the encrypted packet

traces in each experiment. These include the statistical metrics of the average, the

maximum, the standard deviation and the 10th to 90th percentiles (in steps of 10)

for the downlink throughput (in bits per second), the uplink and downlink interarrival

times (in seconds) and the downlink packet sizes (in bytes). A single video session (a

video running in a Chrome browser) can correspond to several flows (towards the CDNs

identified by the URLs ending with googlevideo.com) at the network layer. We collect

these features for all such flows that carry the traffic for each video playout. We end up

having a total of 48 features comprising the Finband feature set. With these features, we

believe that we can get a fine grained view of what happens during the video stream.

Chunk information from encrypted traffic. In addition to the above-mentioned features

and to further improve the modeling, we propose a method to infer the chunk sizes from

the encrypted flows of YouTube. In adaptive streaming, the video is delivered to the

client in chunks. For YouTube, we observe that the audio and the video chunks are

requested using separate HTTP requests. Each video chunk is downloaded with a given

resolution/bitrate that may vary according to the network conditions. As videos with

higher resolution naturally have higher bitrates and vice versa, the video chunk sizes

vary with the resolution. Note that the size of the audio chunks is observed to remain

the same across resolutions for the same video playout. The variation of the video chunk

size (obtained from clear text HTTP traces extracted in the Chrome browser using the



The training dataset 79

144p 240p 360p 480p 720p
Resolution

0.0

1.0

2.0

3.0

4.0

Ch
un

k 
Si

ze
 (M

By
te

s)

# Samples: 136406 207983 245390 401548 857033

Figure 5.2: Variation of the video chunk sizes w.r.t resolution (VP9 codec, 30 fps).
Total number of samples: 1848360.
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chrome.webRequest API) [75] w.r.t each resolution is shown in Figure 5.2. The figure

shows that indeed the size of the video chunks tends to increase for higher resolutions.

To infer the chunk sizes from encrypted traffic, we develop the following method. We

assume that for each video flow a large sized uplink packet corresponds to a chunk re-

quest while small packets correspond to acknowledgments in TCP/QUIC based flows.

We look at the size of each uplink packet and use K-means clustering to segregate the

uplink packet sizes into two clusters; the first cluster represents the acknowledgement

packets while the second cluster represents the request packets. Once the uplink re-

quest packets are identified, we sum up the amount of data downloaded between the

request packets, which represents the chunk sizes. Figure 5.3 compares the chunk sizes

extracted from encrypted traffic traces and the chunk sizes observed in the clear text

HTTP traces for the same video sessions. The distribution of the encrypted chunk sizes

extracted using our method is close to the combined distribution of audio and video

chunks observed in the HTTP traces. Furthermore, the video chunks understandably

have larger sizes than audio chunks. As can be noticed, our chunk extraction method

cannot distinguish between audio or video chunks, so it does contain some redundant

audio chunk information, however, the size of the video chunks especially given their

large sizes w.r.t audio chunks is still captured. As we will show later in Section 5.5,

and thanks to this information on chunk sizes, we will manage to make it considerably
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helpful in improving the QoE models of YouTube.

Overall, for each video session, we obtain an array of chunk sizes extracted from the

encrypted traces. We build a feature set composed of the average, the minimum, the

maximum, the standard deviation, the 25th, the 50th and the 75th percentiles of the

chunk size array. This results in the Fchunks feature set composed of 7 statistical features.

We believe that the upper quartiles in this feature set should capture the information

of the video chunks due to their larger size.

In addition to the above-mentioned feature sets, we also consider modeling with the

five features that are configured on tc. We call these features Foutband as they are not

gathered from traffic traces but rather configured out-of-band on tc. They represent the

performance of the underlying network access over which the video is played out.

5.4.2 The subjective MOS

The subjective QoE model we use to define our MOS relies on using the ITU recommen-

dation P.1203 [1]. It describes a set of objective parametric quality assessment modules.

These are the audio quality estimation module (Pa), the video quality estimation module

(Pv), and the quality integration module (Pq). The Pq module is further composed of

the A/V integration (Pav) and buffering impact modules (Pb). The Pv module predicts

mean opinion scores (MOS) on a 5-point scale [57]. The Recommendation further de-

scribes four different quality modules, one for each mode of ITU-T P.1203, i.e., modes 0,

1, 2 and 3. Each mode of operation has different input requirements ranging from only

metadata to frame level information of the video stream. Since our goal in this chapter

is to target encrypted video streams from a network point of view, we use mode 0 of the

model that requires only metadata for each video stream. We consider the video quality

only; the audio quality is not considered in this work. The metadata needed to obtain

the MOS includes the bitrate, the codec, the duration, the frame rate and the resolution

of each chunk. It also considers stalling as well, where for each stall, the media time of

stall and its duration are taken as input. The model also considers the ”memory” effect

where each stalling duration is assigned a weight depending on its location within the

video session. Finally, the model considers the device type (mobile/PC), the display size

and the viewing distance. In our work, we set the device type to be PC, with display

size set to 1280x780 and viewing distance to be 250 cm.

Using the metadata for each stream, the outputs of the model include 1) the final

audiovisual coding quality score (O.35), 2) the perceptual stalling indication (O.23),

and 3) the final media session quality score (O.46). These scores are calculated by

the Pv and the Pb modules. O.35 considers the visual quality that is dependent on
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Figure 5.4: Variation of the ITU MOS w.r.t configured bandwidth and RTT. #
samples: 104504. Unique video count: 94167.

the resolution and bitrate of playout while O.23 considers stalling and startup delay.

Overall the final output of the model is O.46 that considers both O.23 and O.35. We

use O.46 as the final MOS and calculate it using a python implementation provided in

[118], [119]. This python module requires input metadata of the bitrate, the resolution of

each chunk, and the stalling information, if any, for the video played out. We obtain this

information from the clear text HTTP traces in the Chrome browser and the YouTube

API. Specifically, we extract itag, range, mime and clen parameters for each chunk

request to infer the resolution, the codec and the bitrate of each chunk (assuming equal

duration of chunks) while the timestamps and the duration of each stalling event are

obtained from the YouTube API.

It should be noted here that YouTube videos can play out in either H.264 (mp4) or VP9

(webm) codec while the current version of the ITU-T model is standardized for H.264

codec only; standardization for VP9 is in progress [120]. To get MOS values for VP9,

we use the mapping function provided by the authors in [118] to translate the H.264

MOS to a VP9 MOS for videos that play with the VP9 codec.

The visualization of the collected dataset is given in Figure 5.4 that shows the variation

of the two network features of downlink bandwidth and RTT with the corresponding

MOS. An obvious relationship between QoS and MOS is visible here: as the bandwidth

increases (or RTT decreases), the MOS increases. Notice the absence of experiments in

regions where the bandwidth and the RTT both are high. This non-uniformity comes

from our trace based sampling framework (Section 5.3.3) where TCP based measure-

ments achieve high throughput with low RTT and vice versa.

5.4.3 Statistical analysis of the collected dataset

In this section, we present the statistical analysis of our dataset to get insights into

the variation of the network QoS, the observed application QoS metrics (startup delay,

stalls, quality switches and resolution of playout) and the MOS.
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Figure 5.5: The CDF for Foutband enforced on tc
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Figure 5.6: The CDF of the statistical chunk size features (Fchunks)

5.4.3.1 Network features

Figure 5.5 shows the distribution of the network features configured on tc (Foutband) using

our sampling methodology. From these figures, we can see that 80% of the experiments

have the uplink bandwidth of less than 1.7 Mbps while the downlink bandwidth remains

below 5 Mbps. Similarly, the RTT and its variation are mostly concentrated around 100

ms while the loss rate is less than 2.3% for 90% of the total experiments (CDF for loss

rate not shown here).

In Finband, the average downlink throughput per playout gets a mean value of 1.89 Mbps

compared to the mean of the configured downlink bandwidth of 2.72 Mbps (average of

DL BW in Figure 5.5a). Furthermore, the mean values for the average downlink and

uplink packet interarrival times are 13 and 14 ms respectively while the downlink average

packet size gets a mean value of 1485 bytes.

In Figure 5.6, we show the CDF of the statistical features of the chunk sizes (Fchunks).
Note that the minimum chunk size can be very small; for 80% of our experiments, we

observe a chunk size of less than 8.9 KB. On the other hand, the maximum chunk size

can go up to 2.19 MB. The average and the standard deviation of the chunk size have

similar distributions with median values of 400 KB and 493 KB respectively.
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Figure 5.7: The CDF of the startup delay, the stallings and the quality switches

5.4.3.2 Startup delay

In our work, we define a timeout for each experiment to be 30 seconds to prevent

experimenting with unreasonably large startup delays. In real user datasets, the startup

delays are mostly lower than this threshold. For example, in a study based on a dataset

of 300 million video views, around 98% of the total views had a startup delay of less than

30 seconds [82]. In our dataset, 93% videos start to play within 30 seconds while the

remaining 7% timeout. The variation of the startup delays for the videos that started

playing is shown in Figure 5.7a where the distribution is observed to be non-uniform

with 80% of experiments having a startup delay of less than 10 seconds. As seen in

Figure 5.7a, this observation has also been made in prior work [82] based on real user

measurements, with an even more pronounced skewness towards lower startup delays.

5.4.3.3 Stalls

Since YouTube is based on HTTP Adaptive Streaming (HAS), we expect that stalls

should be rare events. Indeed we observe the same in our dataset as only 12% of the

video playouts suffer from stalling. We plot the CDF of the number of stalling events

and the total stalling duration per playout in Figures 5.7b and 5.7c considering videos

that at least had one stall. From the figure, we can see that around 40% of the videos

that stalled had only one stall while 70% of the total stalled videos suffered up to two

stalls only. Overall, 80% of the stalled videos had a total stalling duration of less than

7 seconds (Figure 5.7c).
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Figure 5.8: The CDF of the average resolution score, r and MOS

5.4.3.4 Quality switches

Contrary to stalls, we observe that quality switches are more common in our dataset

due to HAS; 73% of the video playouts have at least one quality switching event. A

quality switch can either be ”positive” i.e. the resolution of playout increases from low

resolution to high, or it can be ”negative” if the resolution decreases. The CDF of these

events is shown in Figure 5.7d where both the positive and the negative switch events

are shown to have similar distributions.

5.4.3.5 The average resolution score

We measure the resolution of each chunk from the HTTP traces and assign a score to the

resolution of each chunk, i.e., 1 for 144p, 2 for 240p, 3 for 360p, 4 for 480p and 5 for 720p

and above. The average resolution score, r, corresponds to the mean of these scores and

ranges from 1 to 5. Figure 5.8a shows that the distribution r is biased towards higher

values. This is due to the measurement datasets used in our sampling methodology

(Section 5.3.1) resulting in more experiments with good network conditions as seems to

be the case with real users.

In our dataset, we observe that the highest resolution mostly goes up to 720p even though

we used videos that propose even higher resolution (up to 1080p). Since the viewport

in the Chrome browser in our experiments had a size of 1280x780, the YouTube player

seems not requesting higher resolution segments. This suggests that YouTube client

considers the viewport in choosing the quality of playout.

5.4.3.6 The ITU P.1203 MOS

Finally, the CDF of the resulting ITU MOS is shown in Figure 5.8b. The maximum

values for O.23 are between 4.5 and 5.0 which is also true for the MOS (O.46). However,

the CDF for O.46 is more similar to O.35 which means that in our dataset, the ITU MOS
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Figure 5.9: Correlogram for network QoS, app QoS and MOS

is affected more by the resolution and bitrate of playout compared to the rebufferings

(startup delay and stalls).

5.4.4 Correlation analysis between network QoS and QoE

To understand the relationship between the input network features and the QoE, we

measure the corresponding Pearson correlation coefficients and plot the correlation ma-

trix of the feature sets in Figure 5.9. From the figure, we can see that the startup

delay, the average resolution score, and the MOS have strong correlation with all the

features of Foutband except for the packet loss rate while the stall duration, the stalling

number (total number of stalls in a given playout) and the quality switches show little

correlation with Foutband. For the features in Finband, the downlink throughput and

the inter-arrival times show the strongest correlation with the QoE metrics (except for

stalls and number of switches) while the downlink packet size shows a comparatively

lower correlation. Finally, for Fchunks, the correlation with the QoE metrics is again

strong except for the metrics related to stalls. The number of switches shows a better

correlation here compared to the preceding two features sets with minimum chunk size

showing the strongest correlation. To summarize, all the QoE related metrics have a

good correlation with our network feature sets except for stalling; we will discuss the

potential reason for this in the next section where we evaluate the ML models built from

these features.

5.5 Evaluation of the ML Models

In this section, we discuss the performance of the ML models built using our dataset.

We try to predict application QoS metrics and MOS using network QoS. We aim at

assessing how well the following questions can be answered:
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1. Predict if the video starts to play or not.

2. If the video starts, estimate the startup delay.

3. Predict if the video plays out smoothly or has stalls.

4. Predict if there are any quality switches.

5. Estimate the average resolution of playout.

6. Estimate the final QoE in terms of the ITU MOS.

We consider three sets of features; Foutband, Finband and Finband+chunk to build predictive

ML models. Our work considers both the classification and the regression scenarios as

we have both discrete as well as continuous output labels.

5.5.1 Estimating startup delay

To estimate the startup delay, we need to first classify if the video started to play out.

We classify the video as started if the startup delay is less than 30 seconds and not

started if a timeout occurs. Considering this binary classification problem, we train

a Random Forest (RF) ML model (using python Scikit-Learn library [121] in default

parameter configurations) with our dataset and evaluate its accuracy using repeated

cross-validation. In repeated cross-validation, the dataset is split into training and

validation sets k times randomly. The model is then trained with the training set and

tested with the validation set k times to get k accuracy scores. The final accuracy score

is then the average of these k scores. The metric for classification accuracy we use is the

F1-Score2 with k = 5 and a data split ratio of 80:20 for training and validation. The

ML performance resulting from training RF with each of the three feature sets is given

in Table 5.1. The models obtain over 90% accuracy for the three sets. Furthermore, the

performance improves if Finband is used compared to Foutband. With Finband+chunks, we

get the best average F1-score of over 99%.

We now try to estimate the startup delay using ML regression models trained with

started videos. We compare models based on Linear Regression and Random Forest

(RF) Regression. The evaluation is done based on the well known metric of Root Mean

Squared Error (RMSE) given by

√
E[(̂y − y)2], where y are the true labels and ŷ are

the predictions made by the regression model. The results are shown in Table 5.2 where

we obtain the minimum RMSE of 2.66 seconds using Random Forest (RF) Regression

2The F1-score is a measure to gauge the accuracy of the ML model by taking into account both the
precision and recall. It is given by 2pr/(p + r), where p and r are the precision and recall of the ML
model respectively.
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Feature Set Class Count Prec Recall F1 Avg F1

Foutband
0 7401 85.4 84.5 85.0

92.0
1 104518 98.9 99.0 98.9

Finband
0 7401 95.4 95.1 95.2

97.4
1 104518 99.7 99.7 99.7

Finband+chunks
0 7401 99.8 99.9 99.9

99.9
1 104518 100.0 100.0 100.0

Table 5.1: ML classification accuracy of predicting video start up. Class 0: not
started (startup delay > 30 seconds). Class 1: video started to play.

Feature Set Regression Algo RMSE

Foutband
Linear Regression 4.28

RF Regression 2.95

Finband
Linear Regression 2.99

RF Regression 2.82

Finband+chunks
Linear Regression 2.96

RF Regression 2.66

Table 5.2: RMSE (in seconds) for the predicted startup delay

with Finband+chunks. A noticeable observation is that we can obtain a reasonably low

RMSE of 2.95 seconds if we use RF Regression with Foutband, which can be explained

by the fact that the startup delay is determined by the initial buffering time, which

in turn is determined by network performance. This can justify in practice the use of

out-of-band measurements alone to predict startup delay without relying on accessing

the video traffic i.e. predict startup delay without playing out the videos as is the case

in QoE forecasting.

5.5.2 Predicting quality switches and stalls

In this section, we present the results of the ML models for detecting the quality switches

and the stalls. As YouTube uses HAS, the resolution of the videos played out can

change depending upon the network conditions. To detect these quality changes, we

consider a binary classification scenario where the output label 0 corresponds to a video

being played out with constant quality, while the label is 1 if the video changes its

quality at least once. Using the same methodology of Section 5.5.1, we obtain the

performance results given in Table 5.3. We observe that with feature sets Foutband and

Finband we do not get good accuracy scores suggesting that the conventional network

and traffic features used in prior works are not sufficient to predict quality switches

from encrypted traces. However, if we include the Fchunks feature set for prediction, we

can see a significant improvement with over 90% precision and recall for quality switch
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Feature Set Class Count Prec Recall F1 Avg F1

Foutband
0 28577 44.5 40.6 42.5

61.1
1 75941 78.4 81.0 79.7

Finband
0 28577 55.4 54.1 54.7

68.9
1 75941 82.8 83.6 83.2

Finband+chunks
0 28577 87.9 84.2 86.0

90.4
1 75941 94.1 95.6 94.9

Table 5.3: ML classification accuracy of detecting quality (resolution) switches. Class
0: video plays at constant quality. Class 1: there are quality switches.

Feature Set Class Count Prec Recall F1 Avg F1

Foutband
0 91804 89.5 97.8 93.4

59.2
1 12714 51.0 16.6 25.0

Finband
0 91804 89.7 97.9 93.6

60.8
1 12714 54.8 18.7 27.9

Finband+chunks
0 91804 90.2 98.0 93.9

63.1
1 12714 59.8 22.1 32.2

Table 5.4: ML classification accuracy of detecting stalls. Class 0: video plays
smoothly. Class 1: video has stalls.

detection. This improvement comes from the relationship between chunk sizes and the

corresponding resolutions (Figure 5.2).

For the scenario of detecting stalls, we again consider a binary classification scenario

where the label 0 corresponds to the video playing out smoothly without any stall while

a label of 1 is assigned if there is stalling in the playout. The accuracy of the obtained

ML model is shown in Table 5.4. A surprising observation here is that the model suffers

from low recall for stall detection suggesting that the model fails to detect stalls. This

is contrary to what is seen in the literature where similar statistical features were used.

The reason is that prior works for stall detection used datasets mostly consisting of

videos without HAS; in [97] the videos played out with constant quality, while in [5], the

dataset had 97% videos that did not use HAS. However, in our work, we have HAS for

all the experiments and use a very diverse set of video contents, which explains why the

statistical network features fail to detect stalls. Indeed, the features we consider capture

the network QoS holistically, i.e., for the entire video session without considering the

temporal aspects of playout. As we know that stalling can occur at any time instant

during playout, capturing those temporal degradations is very important to accurately

detect stalls. For example, the video bitrate at the time of stall might be suddenly

high while being low otherwise. In such a scenario, the overall statistical features would

look similar to a normal playout making stall detection difficult. We believe that in the

presence of HAS, stalls become rare events that depend on the temporal properties of

the video playout, and thus, can hardly be detected with session-level QoS features.
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Feature Set Class Count Prec Recall F1 Avg F1

Foutband
LD 27077 74.3 74.0 74.2

61.5SD 29717 42.6 36.1 39.1
HD 47724 68.1 74.8 71.3

Finband
LD 27077 74.3 76.9 75.6

66.3SD 29717 51.4 45.2 48.1
HD 47724 73.2 77.2 75.1

Finband+chunks
LD 27077 78.5 85.5 81.8

77.3SD 29717 65.1 65.6 65.4
HD 47724 87.1 82.3 84.6

Table 5.5: ML classification accuracy of detecting resolution

Feature Set Regression Algo RMSE

Foutband
Linear Regression 0.684

RF Regression 0.474

Finband
Linear Regression 0.454

RF Regression 0.428

Finband+chunks
Linear Regression 0.423

RF Regression 0.331

Table 5.6: RMSE of the predicted MOS

5.5.3 Estimating average resolution of playout

To build a ML model that detects the average resolution of playout, we convert the

average resolution score, r (defined in Section 5.4.3.5) into three resolution levels: 1)

low definition (LD), if 1 ≤ r ≤ 3.5, 2) standard definition (SD), if 3.5 < r ≤ 4.5, and 3)

high definition (HD), if 4.5 < r ≤ 5.

For a classification scenario with three output labels, the model performance using Ran-

dom Forests (RF) is given in Table 5.5. We again see that by using Finband+chunks, we

improve the overall F1-scores of the model because of the positive relationship between

chunk size and resolution. However, the individual F1-scores for SD are lower compared

to LD and HD. This is because SD is an intermediary class and usually the accuracy for

such classes is lower compared to edge classes in cases such as ours where the output

labels and input features form a monotonic relationship. Overall, the best performance

is obtained for class HD where the precision of 87% is achieved.

5.5.4 Estimating the ITU MOS

We consider both regression and classification scenarios for predicting the MOS based

on the ITU P.1203 model. Table 5.6 shows the RMSE with the RF and the linear

regression models. Similar to the observation in Section 5.5.1, the RMSE decreases
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Feature Set QoE Count Prec Recall F1 Avg F1

Foutband

1 5391 68.1 68.8 68.4

60.0
2 12881 58.6 58.4 58.5
3 22363 39.8 24.0 30.0
4 63869 78.2 89.1 83.3

Finband

1 5391 69.0 74.1 71.5

63.7
2 12881 62.0 63.2 62.6
3 22363 44.7 31.0 36.6
4 63869 80.3 88.1 84.0

Finband+chunks

1 5391 71.6 76.1 73.8

73.2
2 12881 65.4 69.8 67.6
3 22363 63.6 59.8 61.6
4 63869 89.7 90.0 89.8

Table 5.7: ML classification accuracy with quantized MOS. Bins: 1) 1.0 – 2.0, 2) 2.0
– 3.0, 3) 3.0 – 4.0, 4) 4.0 – 5.0).

Predicted
Class 1 2 3 4

O
ri

gi
n

al

1 0.76 0.22 0.01 0.00
2 0.11 0.71 0.15 0.03
3 0.01 0.13 0.59 0.27
4 0.00 0.01 0.08 0.90

Table 5.8: MOS confusion matrix using Finband+chunks

with enrichment of the input set with relevant features. The lowest RMSE of 0.33 is

obtained using the Finband+chunks feature set and RF regression. Table 5.7 shows the

MOS prediction results where we quantize the MOS into 4 classes and then train the

RF classifier. As we enrich the feature sets, we see improvement in performance across

all classes. With Finband+chunks, the precision per class ranges from 63% to 90% while

the recall per class ranges from 60% to 90%. Overall, we get an average F1-score of

73%. Note that the accuracy for the intermediary classes 2 and 3 is lower compared to

the edge classes 1 and 4 due to the monotonic relationship between our features and the

MOS. Furthermore, if we look at the confusion matrix in Table 5.8, we can observe that

the misclassifications mostly occur to the adjacent classes.

5.6 Limitations

The dataset presented in this work was collected using Google Chrome browser based

on Linux machines; we do not consider mobile devices or other browsers. The effect

of network QoS on QoE may vary across different platforms and devices which is not

handled by the models in this work.
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Our dataset is based on TCP based video flows for YouTube collected in April 2018. Over

time, we expect that video content providers can change their video delivery mechanisms

which would limit the applicability of our model to be used in the future. So, over a

period of time, the training data would have to be re-collected again to ensure that the

models are updated according to the latest version of the targeted video provider.

The results for the MOS prediction are based on only one set of parameters used for

the ITU P.1203 model. With a different set of parameters e.g. different screen sizes, the

resulting MOS distribution will also change which would change the performance of the

ML models as well.

5.7 Summary

In this chapter, we presented our methodology for building QoS-QoE prediction mod-

els from encrypted Internet video traffic using controlled experimentation and machine

learning. The models presented predict not only the application level QoS features but

also the subjective QoE modeled as MOS according to the ITU-T P.1203 model. Over-

all our experimentation approach is re-usable to construct large datasets in distributed

computing environments for any video content provider.





Chapter 6

Conclusion

6.1 Summary

In this thesis, we presented methodologies for building ML-based QoE prediction models

for Internet video streaming. We first demonstrated the use of active learning in the

scenario of controlled experimentation for building QoE forecasting models for YouTube

in Chapter 3 and showed that active learning allows building models quickly with fewer

experiments compared to uniform sampling. We then apply our active sampling method-

ology for building a QoE indicator called YouScore considering the large diversity of

contents offered by today’s content providers such as YouTube in Chapter 4. We use

our sampling approach to intelligently sample the content space (defined by the video

encoding bitrate feature) and the network QoS space (the downlink bandwidth and the

delay) to build a model and subsequently the YouScore. Finally, in Chapter 5 we con-

sider the problem of inferring QoE from encrypted video traffic where we rely on the

inband network QoS measurements to predict the QoE in terms of the relevant QoE

metrics of startup delay, stalls, video resolution, quality switches, and ITU MOS.

6.2 Future work

6.2.1 Active learning for QoE modeling of any Internet application

The active sampling approach we devise in this thesis is general and can work in any QoS-

QoE modeling scenario for any Internet application, which can include applications such

as VoIP (Skype, Viber, Whatsapp, etc.) and Web Browsing. Each application scenario

would its own QoE definition, which can be subjective (with real users) or objective

labels. Objective labels can be e.g., PESQ for VoIP or Google’s SpeedIndex for Web

93
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QoE. The QoS-QoE modeling setup for data collection may differ but the underlying

active sampling framework would remain the same. This means that our sampling

framework can be used to model QoE of any Internet application.

6.2.2 Application of the QoE models in practice

The YouScore model can easily be deployed by network operators who have end-user

measurement data available in their networks. Future work can consider improving and

updating the YouScore model by considering all the available resolutions of the catalog

going up to 4K and consider 3D videos as well; in our work, we consider the maximum

resolution of 1080p and only use conventional 2D videos only.

Predicting the subjective MOS of video from encrypted traffic is challenging. The models

built in Chapter 5 obtain the MOS prediction F1-score of 73% for the ML classification

scenario (4 labels) and 0.331 RMSE for the ML regression scenario. Further research

work can be carried out to improve the accuracy of the models further with transport

layer (TCP/QUIC) features and additional video content level features such as the vari-

ability of video bitrate as well. Also, in our work, we considered a controlled experimen-

tation scenario where we know the exact time of the start and end of the video playout

as we have separate network traces for each experiment. In practice, a given network

interface of the passive QoE monitoring device (e.g., the PGW in mobile networks) can

carry the video traffic for a large number of users. For the prediction models to work

accurately in such cases, each flow has to be identified first and has to be assigned to a

video session accurately. This can be a challenge since a video session can correspond

to one or more flows, and if for some reason, the transport layer connection resets, a

new flow might be generated in the middle of a playout making it difficult to distinguish

whether this new flow belongs to a new session or the previous session. Further research

can target this problem to make the application of the QoE monitoring models to be

used in practice.

We demonstrated the application of our models for QoE forecasting, QoE monitoring

and network performance benchmarking. Other potential areas where these models can

be used are network dimensioning and management, optimizing video delivery in HAS,

and performance evaluation of emerging technologies such as Blockchains.

Network dimensioning and management. The QoE models developed in this thesis

can also be used by network operators for capacity planning and optimization. The

models explicitly provide the QoS required for a certain level of QoE. This relationship

can be used to dimension networks according to different QoE requirements. Also, the

models can be used to optimize resource allocation as well. Prior works have shown that



Future work 95

Figure 6.1: Average ITU MOS vs downlink bandwidth (outband QoS) for different
display resolutions in the dataset presented in Chapter 5. The error bars represent one

standard deviation.

the end users’ display/screen resolution also affects the perceived video QoE; the ITU

P.1203 model also takes as input the parameter for the display resolution. This means the

QoS required to get a certain level of QoE for different display resolutions will vary. For

example, a user with a small screen requires a lower network bandwidth compared to a

user with a larger screen to attain the same QoE level. This is visible in Figure 6.1 where

we can observe that with a display resolution of 240p, the network throughput required

to achieve an ITU MOS of 4.0 is on average lower than the throughput required by the

720p display. This relationship can be used to optimize the network resource allocation

such that the overall QoE of all users in the network is maximized according to the given

QoS-QoE models.

Designing ABR algorithms for subjective MOS prediction models. Most works

on the design of ABR algorithms, such as [46], [50], [52], try to maximize an objective

QoE function (composed of QoE metrics such as stalls and video bitrate), these works

do not consider the subjective MOS. A new research direction can be to devise ABR

algorithms that maximize subjective MOS based on models such as ITU P.1203. A

potential future work can focus on designing Reinforcement Learning (RL) based ABR

algorithms that maximize the ITU MOS. Here, the ITU MOS has to be used as the

total reward in the reinforcement learning process, which means that the reward at

each time step is not available (the time instants when the actions are taken by the

policy) as the ITU MOS can only be computed for the entire playout. For such a

scenario, algorithms such as A3C [122], which require the reward at each time step,

cannot be used. However, the baseline policy gradient algorithm such as REINFORCE

[123] can work without the rewards per time step, but the learning process may be slow

or suboptimal [124]. So, future research can focus on overcoming this challenge to devise

RL based ABR algorithms that maximize subjective MOS.

Extending the QoS-QoE modeling approach for performance evaluation of

emerging technologies. The QoS-QoE modeling methodology demonstrated in this

thesis can also be used for the performance evaluation of new technologies such as
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Blockchains. A potential work can be to build prediction models using ML and con-

trolled experimentation that predict the performance of Blockchain-as-a-Service (BaaS)

infrastructures1. The network conditions can affect the performance of blockchains as a

higher latency can reduce the transaction throughput, i.e., the rate at which valid trans-

actions are added to the blockchain. Modeling this relationship by controlled experi-

mentation can help providers predict the performance of the blockchain infrastructures,

which can allow better troubleshooting and ensure better visibility into the blockchain

performance both for the providers and the clients.

1In BaaS, an external service provider is responsible for setting up and maintaining the blockchain
technology and infrastructure for a customer [125]. By using the BaaS model, the clients do not have
to worry about the backend issues of the infrastructures, so they can focus only on the core blockchain
application (e.g., smart contracts) itself.
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