?. Valeur-est-la-valeur-discrète-du-zeitgeber and ?. Heures-est-le-nombre-d-'heures-que-va-passer-le-zeitgeberàzeitgeberà-la-valeur-donnée, Par exemple, si nous voulons avoir une condition d'´ equinoxe, la formule décrivant le comportement du zeitgeber sera [[[12 1] 12 heuresàheuresà la valeur 1, puis 12 heuresàheuresà la valeur 0. Cette alternance est répétée 3 fois. De la même façon, si nous voulons 4 cycles d'obscurité, puis 4 cycles d'´ equinoxe, la formule décrivant le comportement du zeitgeber sera

A. D. Ackers, M. A. Johnson, and . Shea, alors que dans la figure de droite, elle est allongée (8h de nuit et 16h de jour) Les trajectoires sont très similaires dans ces deux conditions. Notons cependant que lesétatslesétats initiaux utilisés dans les deux conditions diffèrent : les initialisations correspondentàcorrespondentà l'´ etat Quantitative model for gene regulation by lambda phage repressor, Proceedings of the National Academy of Sciences, pp.1129-1133, 1982.

J. Ahmad, G. Bernot, J. Comet, D. Lime, and O. Roux, Hybrid Modelling and Dynamical Analysis of Gene Regulatory Networks with Delays, Complexus, vol.40, issue.4, pp.231-251, 2006.
DOI : 10.1159/000110010

URL : https://hal.archives-ouvertes.fr/hal-00415810

J. Ahmad, O. Roux, G. Bernot, J. Comet, and A. Richard, Analysing formal models of genetic regulatory networks with delays, International Journal of Bioinformatics Research and Applications, vol.4, issue.3, pp.240-262, 2008.
DOI : 10.1504/IJBRA.2008.019573

URL : https://hal.archives-ouvertes.fr/hal-00415808

R. Alur, C. Belta, F. Ivan?i´ivan?i´c, V. Kumar, M. Mintz et al., Hybrid Modeling and Simulation of Biomolecular Networks, Hybrid Systems : Computation and Control, pp.19-32, 2001.
DOI : 10.1007/3-540-45351-2_6

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho et al., The algorithmic analysis of hybrid systems, Theoretical Computer Science, vol.138, issue.1, pp.3-34, 1995.
DOI : 10.1016/0304-3975(94)00202-T

A. Arkin, J. Ross, and H. H. Mcadams, Stochastic kinetic analysis of developmental pathway bifurcation in phage ?-infected escherichia coli cells, Genetics, vol.149, issue.4, pp.1633-1648, 1998.

S. L. Bailey and M. M. Heitkemper, CIRCADIAN RHYTHMICITY OF CORTISOL AND BODY TEMPERATURE: MORNINGNESS-EVENINGNESS EFFECTS, Chronobiology International, vol.13, issue.3, pp.249-261, 2001.
DOI : 10.1177/074873098129000048

S. Becker-weimann, J. Wolf, H. Herzel, and A. Kramer, Modeling Feedback Loops of the Mammalian Circadian Oscillator, Biophysical Journal, vol.87, issue.5, pp.3023-3034, 2004.
DOI : 10.1529/biophysj.104.040824

J. Behaegel, J. Comet, and M. Folschette, A hybrid hoare logic for gene network models, 2016.

J. Behaegel, J. Comet, G. Bernot, E. Cornillon, and F. Delaunay, A hybrid model of cell cycle in mammals, 6th International Conference on Computational 160 BIBLIOGRAPHIE Systems-Biology and Bioinformatics (CSBio'2015), 2015.
DOI : 10.1007/978-3-642-03845-7_10

URL : https://hal.archives-ouvertes.fr/hal-01255242

J. Behaegel, J. Comet, G. Bernot, E. Cornillon, and F. Delaunay, A hybrid model of cell cycle in mammals, Journal of Bioinformatics and Computational Biology, vol.14, issue.01, p.1640001, 2016.
DOI : 10.1007/978-3-642-03845-7_10

URL : https://hal.archives-ouvertes.fr/hal-01255242

W. J. Belden, J. J. Loros, and J. C. Dunlap, CLOCK leaves its mark on histones, Trends in Biochemical Sciences, vol.31, issue.11, pp.31610-613, 2006.
DOI : 10.1016/j.tibs.2006.09.009

G. Bernot and J. Comet, On the Use of Temporal Formal Logic to Model Gene Regulatory Networks, In International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, pp.112-138, 2009.
DOI : 10.1007/978-3-642-14571-1_9

G. Bernot, J. Comet, Z. Khalis, A. Richard, and O. Roux, A genetically modified Hoare logic, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282932

G. Bernot, J. Comet, A. Richard, and J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas??? asynchronous logical approach with temporal logic, Journal of Theoretical Biology, vol.229, issue.3, pp.339-347, 2004.
DOI : 10.1016/j.jtbi.2004.04.003

G. Bernot, J. Comet, and O. Roux, A Genetically Modified Hoare Logic that Identifies the Parameters of a Gene Network, Proceedings of the 13th International Conference on Computational Methods in Systems Biology (CMSB), volume 9308 of LNBI, pp.8-12, 2015.
DOI : 10.1007/978-3-319-23401-4_2

URL : https://hal.archives-ouvertes.fr/hal-01282932

G. Bernot, J. Comet, and O. Roux, A Genetically Modified Hoare Logic that Identifies the Parameters of a Gene Network, Proceedings of the 13th Intl. Conf. on Computational Methods in Systems Biology (CMSB), volume 9308 of LNBI, pp.8-12, 2015.
DOI : 10.1007/978-3-319-23401-4_2

URL : https://hal.archives-ouvertes.fr/hal-01282932

K. Bozek, A. Relógio, S. M. Kielbasa, M. Heine, C. Dame et al., Regulation of Clock-Controlled Genes in Mammals, PLoS ONE, vol.371, issue.3, p.4882, 2009.
DOI : 10.1371/journal.pone.0004882.s007

T. Chen, H. L. He, and G. M. Church, MODELING GENE EXPRESSION WITH DIFFERENTIAL EQUATIONS, Biocomputing '99, p.4, 1999.
DOI : 10.1142/9789814447300_0004

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore et al., NuSMV 2: An OpenSource Tool for Symbolic Model Checking, International Conference on Computer Aided Verification, pp.359-364, 2002.
DOI : 10.1007/3-540-45657-0_29

J. Comet, G. Bernot, A. Das, F. Diener, C. Massot et al., Simplified Models for the Mammalian Circadian Clock, Proceedings of the 3rd International Conference on Computational Systems-Biology and Bioinformatics, pp.127-138, 2012.
DOI : 10.1016/j.procs.2012.09.014

URL : https://hal.archives-ouvertes.fr/hal-01282904

J. Comet, J. Fromentin, G. Bernot, and O. Roux, A Formal Model for Gene Regulatory Networks with Time Delays, 1st International Conference on Computational Systems-Biology and Bioinformatics, pp.1-13, 2010.
DOI : 10.3166/tsi.26.73-98

E. Cornillon, J. Comet, G. Bernot, and G. Enée, Modelling Complex Biological Systems in the Context of Genomics, chapter Hybrid Gene Networks : a new Framework and a Software Environment, Proc. of the Thematic Research School on Advances in Systems and Synthetic Biology, pp.57-84, 1971.

M. I. Davidich and S. Bornholdt, Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast, PLoS ONE, vol.11, issue.12, p.1672, 2008.
DOI : 10.1371/journal.pone.0001672.t004

H. De-jong, J. Gouzé, C. Hernandez, M. Page, T. Sari et al., Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, vol.66, issue.2, pp.301-340, 2004.
DOI : 10.1016/j.bulm.2003.08.010

URL : https://hal.archives-ouvertes.fr/hal-00173849

J. Demongeot, A. Elena, and S. Sené, Robustness in Regulatory Networks: A Multi-Disciplinary Approach, Acta Biotheoretica, vol.25, issue.3???4, pp.27-49, 2008.
DOI : 10.1093/emboj/18.12.3187

E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Communications of the ACM, vol.18, issue.8, pp.453-457, 1975.
DOI : 10.1145/360933.360975

H. Echols, Bacteriophage ?? development: temporal switches and the choice of lysis or lysogeny, Trends in Genetics, vol.2, issue.0, pp.26-30, 1986.
DOI : 10.1016/0168-9525(86)90165-4

H. Eisen, P. Brachet, L. P. Silva, and F. Jacob, Regulation of repressor expression in ?, Proceedings of the National Academy of Sciences, pp.855-862, 1970.

H. Snoussi and R. Thomas, Logical identification of all steady states: The concept of feedback loop characteristic states, Bulletin of Mathematical Biology, vol.55, issue.5, pp.973-991, 1993.
DOI : 10.1016/S0092-8240(05)80199-5

E. Fanchon and A. Richard, Reduction of boolean networks. Notes personnelles, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01318072

A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry, Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, vol.22, issue.14, pp.22-124, 2006.
DOI : 10.1093/bioinformatics/btl210

D. B. Forger and C. S. Peskin, A detailed predictive model of the mammalian circadian clock, Proceedings of the National Academy of Sciences, vol.16, issue.20, pp.14806-14811, 2003.
DOI : 10.1101/gad.233702

C. Gérard and A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proceedings of the National Academy of Sciences, vol.30, issue.17, pp.21643-21648, 2009.
DOI : 10.1073/pnas.94.17.9147

R. Ghosh and C. Tomlin, Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling, Systems Biology, vol.1, issue.1, pp.170-183, 2004.
DOI : 10.1049/sb:20045019

R. Ghosh and C. J. Tomlin, Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model, International Workshop on Hybrid Systems : Computation and Control, pp.232-246, 2001.
DOI : 10.1007/3-540-45351-2_21

A. Goldbeter, Computational approaches to cellular rhythms, Nature, vol.23, issue.6912, pp.238-245, 2002.
DOI : 10.1038/nature01123

F. Guillaumond, H. Dardente, V. Gigù, and N. Cermakian, Differential Control of Bmal1 Circadian Transcription by REV-ERB and ROR Nuclear Receptors, Journal of Biological Rhythms, vol.9, issue.5, pp.391-403, 2005.
DOI : 10.1073/pnas.0308709101

K. R. Heidtke and S. Schulze-kremer, Design and implementation of a qualitative simulation model of lambda phage infection, Bioinformatics, vol.14, issue.1, pp.81-91, 1998.
DOI : 10.1093/bioinformatics/14.1.81

C. A. Hoare, An axiomatic basis for computer programming, Communications of the ACM, vol.12, issue.10, pp.576-580, 1969.
DOI : 10.1145/363235.363259

F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, Journal of Molecular Biology, vol.3, issue.3, pp.318-356, 1961.
DOI : 10.1016/S0022-2836(61)80072-7

R. F. Johnson, R. Y. Moore, and L. P. Morin, Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract, Brain Research, vol.460, issue.2, pp.297-313, 1988.
DOI : 10.1016/0006-8993(88)90374-5

M. Kaufman, J. Urbain, and R. Thomas, Towards a logical analysis of the immune response, Journal of Theoretical Biology, vol.114, issue.4, pp.527-561, 1985.
DOI : 10.1016/S0022-5193(85)80042-4

Z. Khalis, J. Comet, A. Richard, and G. Bernot, The SMBioNet method for discovering models of gene regulatory networks, Genes, Genomes and Genomics, vol.3, issue.1, pp.15-22, 2009.

R. Khoodeeram, G. Bernot, and J. Trosset, An ockham razor model of energy metabolism, Proc. of the Thematic Research School on Advances in Systems and Synthetic Biology EDP Science pub, pp.81-101, 2017.

B. Kuipers, Qualitative reasoning: Modeling and simulation with incomplete knowledge, Automatica, vol.25, issue.4, pp.571-585, 1989.
DOI : 10.1016/0005-1098(89)90099-X

P. Lavie, Sleep-wake as a biological rhythm Annual review of psychology, pp.277-303, 2001.

J. Leloup and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock, Proceedings of the National Academy of Sciences, vol.197, issue.4300, pp.7051-7056, 2003.
DOI : 10.1126/science.267326

J. Leloup and A. Goldbeter, Modelling the dual role of Per phosphorylation and its effect on the period and phase of the mammalian circadian clock, IET Systems Biology, vol.5, issue.1, pp.44-49, 2011.
DOI : 10.1049/iet-syb.2009.0068

P. Lincoln and A. Tiwari, Symbolic Systems Biology: Hybrid Modeling and Analysis of Biological Networks, International Workshop on Hybrid Systems : Computation and Control, pp.660-672, 2004.
DOI : 10.1007/978-3-540-24743-2_44

L. Mendoza, D. Thieffry, and E. R. Alvarez-buylla, Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis, Bioinformatics, vol.15, issue.7, pp.593-606, 1999.
DOI : 10.1093/bioinformatics/15.7.593

D. Mestivier, P. Boëlle, K. Pakdaman, A. Richard, J. Comet et al., Modeling of ? phage genetic switch. Tutorial pour l'´ ecole thématique " Modelling Complex Biological Systems in the Context of Genomics, 2005.

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, A Reduction of Logical Regulatory Graphs Preserving Essential Dynamical Properties, Computational Methods in Systems Biology, vol.24, issue.16, 2009.
DOI : 10.1093/bioinformatics/btn275

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, Dynamically consistent reduction of logical regulatory graphs, Selected Papers from the 7th International Conference on Computational Methods in Systems Biology 7th International Conference on Computational Methods in Systems Biology, pp.2207-2218, 2011.
DOI : 10.1016/j.tcs.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-01284743

B. Novak and J. J. Tyson, A model for restriction point control of the mammalian cell cycle, Journal of Theoretical Biology, vol.230, issue.4, pp.563-579, 2004.
DOI : 10.1016/j.jtbi.2004.04.039

M. Ptashne, A genetic switch : Gene control and phage lambda

M. Ptashne, A genetic switch, phage lambda and higher organisms, Cell and Blackwell Scientific, 1992.

M. Ptashne and N. Hopkins, The operators controlled by the lambda phage repressor., Proceedings of the National Academy of Sciences, pp.1282-1287, 1968.
DOI : 10.1073/pnas.60.4.1282

A. Rubinstein, V. Gurevich, Z. Kasulin-boneh, L. Pnueli, Y. Kassir et al., Faithful modeling of transient expression and its application to elucidating negative feedback regulation, Proceedings of the National Academy of Sciences, pp.6241-6246, 2007.
DOI : 10.1016/0076-6879(91)94009-2

A. Rubinstein, O. Hazan, B. Chor, R. Y. Pinter, and Y. Kassir, The effective application of a discrete transition model to explore cell-cycle regulation in yeast, BMC Research Notes, vol.6, issue.1, p.311, 2013.
DOI : 10.1016/0092-8674(90)90503-7

H. Siebert and A. Bockmayr, Context Sensitivity in Logical Modeling with Time Delays, International Conference on Computational Methods in Systems Biology, pp.64-79, 2007.
DOI : 10.1007/978-3-540-75140-3_5

H. Siebert and A. Bockmayr, Temporal constraints in the logical analysis of regulatory networks, Theoretical Computer Science, vol.391, issue.3, pp.258-275, 2008.
DOI : 10.1016/j.tcs.2007.11.010

R. Singhania, R. M. Sramkoski, J. W. Jacobberger, and J. J. Tyson, A Hybrid Model of Mammalian Cell Cycle Regulation, PLoS Computational Biology, vol.13, issue.2, p.1001077, 2011.
DOI : 10.1371/journal.pcbi.1001077.s004

E. H. Snoussi, Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach, Dynamics and stability of Systems, pp.565-583, 1989.
DOI : 10.1016/S0006-3495(71)86192-1

M. Sudo, K. Sasahara, T. Moriya, M. Akiyama, T. Hamada et al., Constant light housing attenuates circadian rhythms of mPer2 mRNA AND mPER2 protein expression in the suprachiasmatic nucleus of mice, Neuroscience, vol.121, issue.2, pp.493-499, 2003.
DOI : 10.1016/S0306-4522(03)00457-3

J. S. Takahashi, H. Hong, C. H. Ko, and E. L. Mcdearmon, The genetics of mammalian circadian order and disorder: implications for physiology and disease, Nature Reviews Genetics, vol.15, issue.10, pp.764-775, 2008.
DOI : 10.7326/0003-4819-141-11-200412070-00008

D. Thieffry and R. Thomas, Dynamical behaviour of biological regulatory networks?II . immunity control in bacteriophage lambda, Bulletin of Mathematical Biology, vol.57, issue.2, pp.277-297, 1995.

R. Thomas, Regulation of Gene Expression in Bacteriophage Lambda, Current Topics in Microbiology and Immunology/Ergebnisse der Mikrobiologie und Immunitätsforschung, pp.13-42, 1971.
DOI : 10.1007/978-3-642-65241-7_2

R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology, vol.42, issue.3, pp.563-585, 1973.
DOI : 10.1016/0022-5193(73)90247-6

R. Thomas, Logical analysis of systems comprising feedback loops, Journal of Theoretical Biology, vol.73, issue.4, pp.631-656, 1978.
DOI : 10.1016/0022-5193(78)90127-3

R. Thomas, Regulatory networks seen as asynchronous automata: A logical description, Journal of Theoretical Biology, vol.153, issue.1, pp.1-23, 1991.
DOI : 10.1016/S0022-5193(05)80350-9

T. Tian, K. Burrage, P. M. Burrage, and M. Carletti, Stochastic delay differential equations for genetic regulatory networks, Journal of Computational and Applied Mathematics, vol.205, issue.2, pp.696-707, 2007.
DOI : 10.1016/j.cam.2006.02.063

F. W. Turek, C. Joshu, A. Kohsaka, E. Lin, G. Ivanova et al., Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice, Science, vol.308, issue.5724, pp.3081043-1045, 2005.
DOI : 10.1126/science.1108750

J. J. Tyson and B. Novak, Regulation of the Eukaryotic Cell Cycle: Molecular Antagonism, Hysteresis, and Irreversible Transitions, Journal of Theoretical Biology, vol.210, issue.2, pp.249-263, 2001.
DOI : 10.1006/jtbi.2001.2293

J. J. Tyson and B. Novak, Temporal Organization of the Cell Cycle, Current Biology, vol.18, issue.17, pp.759-768, 2008.
DOI : 10.1016/j.cub.2008.07.001

K. Vanselow and A. Kramer, Role of Phosphorylation in the Mammalian Circadian Clock, Cold Spring Harbor symposia on quantitative biology, pp.167-176, 2007.
DOI : 10.1038/ncb1539

S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita et al., Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus, Science, vol.1, issue.5649, pp.3021408-1412, 2003.
DOI : 10.1002/1097-4695(20000615)43:4<379::AID-NEU6>3.0.CO;2-0

R. Zhang, N. F. Lahens, H. I. Ballance, M. E. Hughes, and J. B. Hogenesch, A circadian gene expression atlas in mammals: Implications for biology and medicine, Proceedings of the National Academy of Sciences, pp.11116219-16224, 2014.
DOI : 10.1111/j.1472-8206.2004.00299.x