D. G. Wilkinson, Whole mount in situ hybridisation of vertebrate embryos, pp.75-83, 1992.

M. Zeini, C. T. Hang, J. Lehrer-graiwer, T. Dao, B. Zhou et al., Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling, Development, vol.136, issue.19, pp.3335-3345, 2009.
DOI : 10.1242/dev.037903

O. Aisagbonhi, Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Mod and Mec, pp.469-483, 2011.
DOI : 10.1242/dmm.006510

URL : http://dmm.biologists.org/content/dmm/4/4/469.full.pdf

D. Bilbija, Retinoic Acid Signalling Is Activated in the Postischemic Heart and May Influence Remodelling, PLoS ONE, vol.7, issue.9, pp.1-9, 2012.
DOI : 10.1371/journal.pone.0044740.s006

T. Brade, Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2, Development, vol.138, issue.1, pp.139-148, 2011.
DOI : 10.1242/dev.054239

P. Dollé, Fate of retinoic acid-activated embryonic cell lineages, Developmental Dynamics, vol.116, issue.12, pp.3260-3274, 2010.
DOI : 10.1002/dvdy.22479

X. Fan, Targeted Disruption of Aldh1a1 (Raldh1) Provides Evidence for a Complex Mechanism of Retinoic Acid Synthesis in the Developing Retina, Molecular and Cellular Biology, vol.23, issue.13, pp.4637-4648, 2003.
DOI : 10.1128/MCB.23.13.4637-4648.2003

J. Xavier-neto, Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1849, issue.2, 2015.
DOI : 10.1016/j.bbagrm.2014.08.003

S. Zaffran, N. Robrini, and N. Bertrand, Retinoids and Cardiac Development, Journal of Developmental Biology, vol.126, issue.1, pp.50-71, 2014.
DOI : 10.1371/journal.pone.0044740

URL : https://doi.org/10.3390/jdb2010050

S. Zhu, Loss of myocardial retinoic acid receptor ?? induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice, Journal of Molecular and Cellular Cardiology, vol.99, pp.100-112, 2016.
DOI : 10.1016/j.yjmcc.2016.08.009

Z. Zhu, All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis, PLOS ONE, vol.5, issue.7, pp.1-15, 2015.
DOI : 10.1371/journal.pone.0133414.s003

URL : https://doi.org/10.1371/journal.pone.0133414

R. Genes, The answer to this question may lead to the development of novel treatments for cardiovascular diseases based on synergistic atRA + ACE inhibition strategies. surgically induced MI In addition, by deleting the 3 RA-producing enzymes (Raldh1, Raldh2, and Raldh3) I have shown that RA-signaling appears to play an anti-apoptotic role during late gestation and acute phases of myocardial repair. Through RNA seq analysis I determined that RA repression of Angiotensin converting enzyme (Ace1) may partially explain the anti-apoptotic effects of RA-signaling post MI

S. Abu-abed, The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures, Genes & Development, vol.15, issue.2, pp.226-240, 2001.
DOI : 10.1101/gad.855001

A. Acharya, The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors, Development, vol.139, issue.12, pp.2139-2149, 2012.
DOI : 10.1242/dev.079970

O. Aisagbonhi, Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Mod and Mec, pp.469-483, 2011.
DOI : 10.1242/dmm.006510

URL : http://dmm.biologists.org/content/dmm/4/4/469.full.pdf

A. Alam and D. , Contrasting expression of canonical wnt signaling reporters TOPGAL, BATGAL and Axin2 LacZ during murine lung development and repair, PLoS ONE, vol.6, 2011.

P. Angelini, Coronary artery anomalies: An entity in search of an identity, Circulation Research, vol.115, pp.1296-1305, 2007.

E. M. Antman, E. E. Braunwald, E. Fauci, K. J. Braunwald, J. D. Isselbacher et al., Acute myocardial infarction In Harrison's Principles of internal medicine, pp.1386-1399, 2001.

M. Aoki, M. Mieda, T. Ikeda, Y. Hamada, H. Nakamura et al., R-spondin3 is required for mouse placental development, Developmental Biology, vol.301, issue.1, pp.218-226, 2007.
DOI : 10.1016/j.ydbio.2006.08.018

Y. Arima, Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling, Nature Communications, vol.125, p.1267, 2012.
DOI : 10.1002/(SICI)1097-0185(19990601)255:2<212::AID-AR11>3.0.CO;2-X

Y. Arita, Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart, Nature Communications, vol.189, pp.1-14, 2014.
DOI : 10.1083/jcb.200904114

B. Assmus, Clinical Outcome 2 Years After Intracoronary Administration of Bone Marrow-Derived Progenitor Cells in Acute Myocardial Infarction, Circulation: Heart Failure, vol.3, issue.1, pp.89-96, 2010.
DOI : 10.1161/CIRCHEARTFAILURE.108.843243

N. L. Baenziger, G. N. Brodie, and P. W. Majerus, A Thrombin-Sensitive Protein of Human Platelet Membranes, Proceedings of the National Academy of Sciences, vol.68, issue.1, pp.240-243, 1971.
DOI : 10.1073/pnas.68.1.240

L. Barandon, Involvement of FrzA/sFRP-1 and the Wnt/Frizzled Pathway in Ischemic Preconditioning, Circulation Research, vol.96, issue.12, pp.1299-1306, 2005.
DOI : 10.1161/01.RES.0000171895.06914.2c

L. Barandon, Reduction of Infarct Size and Prevention of Cardiac Rupture in Transgenic Mice Overexpressing FrzA, Circulation, vol.108, issue.18, pp.2282-2289, 2003.
DOI : 10.1161/01.CIR.0000093186.22847.4C

N. Barker, S. Tan, and H. Clevers, Lgr proteins in epithelial stem cell biology, Development, vol.140, issue.12, pp.2484-94, 2013.
DOI : 10.1242/dev.083113

S. M. Bell, C. M. Schreiner, S. E. Wert, M. L. Mucenski, W. J. Scott et al., R-spondin 2 is required for normal laryngeal-tracheal, lung and limb morphogenesis, Development, vol.135, issue.6, pp.1049-1058, 2008.
DOI : 10.1242/dev.013359

URL : http://dev.biologists.org/content/develop/135/6/1049.full.pdf

H. Bennett, The development of the blood supply to the heart in the embryo pig, American Journal of Anatomy, vol.9, issue.1, pp.27-53, 1936.
DOI : 10.1002/aja.1000600103

. Bergmann, Evidence for Cardiomyocyte Renewal in Humans, Science, vol.54, issue.5923, p.98, 2009.
DOI : 10.1056/NEJM200106073442303

URL : https://hal.archives-ouvertes.fr/hal-00374382

K. Bersell, S. Arab, B. Haring, and B. Kuhn, Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury, Cell, vol.138, issue.2, 2009.
DOI : 10.1016/j.cell.2009.04.060

M. Bettencourt-dias, S. Mittnacht, and J. P. Brockes, Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes, Journal of Cell Science, vol.116, issue.19, p.4001, 2003.
DOI : 10.1242/jcs.00698

K. A. Bicknell, C. H. Coxon, and G. Brooks, Forced expression of the cyclin B1???CDC2 complex induces proliferation in adult rat cardiomyocytes, Biochemical Journal, vol.382, issue.2, p.411, 2004.
DOI : 10.1042/BJ20031481

D. Bilbija, Retinoic Acid Signalling Is Activated in the Postischemic Heart and May Influence Remodelling, PLoS ONE, vol.7, issue.9, pp.1-9, 2012.
DOI : 10.1371/journal.pone.0044740.s006

D. C. Blaydon, The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia, Nature Genetics, vol.7, issue.11, pp.1245-1247, 2006.
DOI : 10.1016/j.devcel.2004.07.019

G. Blin, A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1139, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

A. G. Borycki, C. P. Emerson, and . Jr, Study of Skeletal Myogenesis in Cultures of Unsegmented Paraxial Mesoderm, Methods Mol Biol, vol.137, pp.351-357, 2000.
DOI : 10.1385/1-59259-066-7:351

T. Brade, Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2, Development, vol.138, issue.1, pp.139-148, 2011.
DOI : 10.1242/dev.054239

T. Brade, Embryonic heart progenitors and cardiogenesis. Cold Spring Harbor perspectives in medicine 3, pp.1-18, 2013.
DOI : 10.1101/cshperspect.a013847

URL : http://perspectivesinmedicine.cshlp.org/content/3/10/a013847.full.pdf

C. M. Braitsch, M. D. Combs, S. E. Quaggin, and K. E. Yutzey, Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart, Developmental Biology, vol.368, issue.2, pp.345-57, 2012.
DOI : 10.1016/j.ydbio.2012.06.002

B. Bruneau, The developmental genetics of congenital heart disease, Nature, vol.43, issue.7181, pp.943-948, 2008.
DOI : 10.1161/01.RES.87.10.888

T. Bryan, K. Macdonald, X. Tamai, and . He, NIH Public Access, Developmental biology, vol.17, pp.9-26, 2010.

J. Buikema, Wnt/??-Catenin Signaling during Cardiac Development and Repair, Journal of Cardiovascular Development and Disease, vol.107, issue.1, pp.98-110, 2014.
DOI : 10.1371/journal.pone.0075010

URL : https://doi.org/10.3390/jcdd1010098

J. W. Buikema, Wnt/??-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes, Development, vol.140, issue.20, pp.4165-4176, 2013.
DOI : 10.1242/dev.099325

J. W. Buikema, P. P. Zwetsloot, P. A. Doevendans, J. P. Sluijter, and I. J. Domian, Expanding Mouse Ventricular Cardiomyocytes Through GSK-3 Inhibition, Curr. Protoc. Cell Biol, vol.453, p.61, 2013.
DOI : 10.1038/nature06968

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934298/pdf

E. Cadieu, Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes, Science, vol.29, issue.9, pp.150-153, 2009.
DOI : 10.1016/j.tibs.2004.07.004

URL : https://hal.archives-ouvertes.fr/inserm-00412221

C. L. Cai, X. Liang, Y. Shi, P. H. Chu, S. L. Pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

L. Cambier, Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3, Development, vol.141, issue.15, pp.2959-2971, 2014.
DOI : 10.1242/dev.103416

E. Cano, R. Carmona, A. Ruiz-villalba, A. Rojas, Y. Chau et al., Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arteriovenous connections, Proceedings of the National Academy of Sciences of the United States of America, pp.656-61, 2016.
DOI : 10.1073/pnas.1509834113

URL : http://www.pnas.org/content/113/3/656.full.pdf

K. S. Carmon, X. Gong, Q. Lin, A. Thomas, and Q. Liu, R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/??-catenin signaling, Proceedings of the National Academy of Sciences, vol.18, issue.21, pp.11452-11457, 2011.
DOI : 10.1093/emboj/18.21.5931

H. W. Chaudhry, Cyclin A2 Mediates Cardiomyocyte Mitosis in the Postmitotic Myocardium, Journal of Biological Chemistry, vol.129, issue.34, p.35858, 2004.
DOI : 10.1101/gad.7.8.1559

H. I. Chen, A. Poduri, H. Numi, R. Kivel¨a, and P. Saharinen, VEGF-C and aortic cardiomyocytes guide coronary artery stem development, Journal of Clinical Investigation, vol.124, issue.11, pp.4899-914, 2014.
DOI : 10.1172/JCI77483DS1

URL : http://www.jci.org/articles/view/77483/files/pdf

J. Chen, S. W. Kubalak, and K. R. Chien, Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis, Development, vol.125, 1943.

J. Z. Chen, S. Wang, R. Tang, Q. S. Yang, E. Zhao et al., Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR, Molecular Biology Reports, vol.29, issue.3, pp.287-292, 2002.
DOI : 10.1023/A:1020479301379

Q. Chen, H. Zhang, Y. Liu, S. Adams, and H. Eilken, Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells, Nature Communications, vol.128, p.12422, 2016.
DOI : 10.1038/nn.2467

H. I. Chen, The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis, Development, vol.141, issue.23, pp.4500-4512, 2014.
DOI : 10.1242/dev.113639

H. I. Chen, VEGF-C and aortic cardiomyocytes guide coronary artery stem development, Journal of Clinical Investigation, vol.124, issue.11, pp.4899-4914, 2014.
DOI : 10.1172/JCI77483DS1

URL : http://www.jci.org/articles/view/77483/files/pdf

P. Chen, X. Chen, Z. Lin, D. Fang, and X. He, The structural basis of R-spondin recognition by LGR5 and RNF43, Genes & Development, vol.27, issue.12, pp.1345-1350, 2013.
DOI : 10.1101/gad.219915.113

S. Ching and E. Vilain, Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia, genesis, vol.372, issue.9, pp.628-637, 2009.
DOI : 10.1016/S0304-4165(02)00490-7

R. Clark, Anatomy and Physiology: Understanding the Human Body, pp.288-297, 2005.

H. Clevers and R. Nusse, Wnt/??-Catenin Signaling and Disease, Cell, vol.149, issue.6, pp.1192-1205
DOI : 10.1016/j.cell.2012.05.012

E. D. Cohen, Y. Tian, and E. E. Morrisey, Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal, Development, vol.135, issue.5, pp.789-798, 2008.
DOI : 10.1242/dev.016865

E. D. Cohen, Z. Wang, J. J. Lepore, M. M. Lu, M. M. Taketo et al., Wnt/??-catenin signaling promotes expansion of Isl-1???positive cardiac progenitor cells through regulation of FGF signaling, Journal of Clinical Investigation, vol.117, issue.7, pp.1794-1804, 2007.
DOI : 10.1172/JCI31731DS1

E. D. Cohen, M. F. Miller, Z. Wang, R. T. Moon, and E. E. Morrisey, Wnt5a and Wnt11 are essential for second heart field progenitor development, Development, vol.139, issue.11, 1931.
DOI : 10.1242/dev.069377

G. Cossu and U. &borello, Wnt signaling and the activation of myogenesis in mammals, The EMBO Journal, vol.18, issue.24, pp.6867-6872, 1999.
DOI : 10.1093/emboj/18.24.6867

T. J. Cunningham and G. Duester, Mechanisms of retinoic acid signalling and its roles in organ and limb development, Nature Reviews Molecular Cell Biology, vol.271, issue.2, pp.110-123, 2015.
DOI : 10.1074/jbc.271.8.4355

R. Dasgupta and E. Fuchs, Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation, Development, vol.126, pp.4557-4568, 1999.

R. David, MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling, Nature Cell Biology, vol.127, issue.3, pp.338-345, 2008.
DOI : 10.1073/pnas.2434235100

W. Lau, Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling, Nature, vol.26, issue.7360, pp.293-297, 2011.
DOI : 10.1038/nbt.1511

H. Dersch and M. H. Zile, Induction of Normal Cardiovascular Development in the Vitamin A-Deprived Quail Embryo by Natural Retinoids, Developmental Biology, vol.160, issue.2, pp.424-433, 1993.
DOI : 10.1006/dbio.1993.1318

D. Stefano, V. Giacca, M. Capogrossi, M. C. Crescenzi, M. Martelli et al., Knockdown of Cyclin-dependent Kinase Inhibitors Induces Cardiomyocyte Re-entry in the Cell Cycle, Journal of Biological Chemistry, vol.10, issue.10, p.8644, 2011.
DOI : 10.1002/emmm.200900023

P. Dollé, Developmental expression of retinoic acid receptors (RARs), Nuclear Receptor Signaling, vol.4, pp.1-13, 2009.
DOI : 10.1621/nrs.07006

P. Dollé, Fate of retinoic acid-activated embryonic cell lineages, Developmental Dynamics, vol.116, issue.12, pp.3260-3274, 2010.
DOI : 10.1002/dvdy.22479

T. A. Drysdale, K. D. Patterson, M. Saha, and P. A. Krieg, Retinoic Acid Can Block Differentiation of the Myocardium after Heart Specification, Developmental Biology, vol.188, issue.2, pp.205-215, 1997.
DOI : 10.1006/dbio.1997.8623

J. Duan, Wnt1/??catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair, The EMBO Journal, vol.454, issue.2, pp.429-471, 2012.
DOI : 10.1038/nature07060

V. Dupe, A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment, Proc. Natl Acad. Sci. USA, pp.14036-14041, 2003.
DOI : 10.1006/mgme.1999.2915

F. B. Engel, p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes, Genes & Development, vol.19, issue.10, p.1175, 2005.
DOI : 10.1101/gad.1306705

K. A. Engleka, A. D. Gitler, M. Zhang, D. D. Zhou, F. A. High et al., Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives, Developmental Biology, vol.280, issue.2, pp.396-406, 2005.
DOI : 10.1016/j.ydbio.2005.02.002

G. M. Ellison, Adult c-kitpos Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair, Cell, vol.154, issue.4, pp.827-842, 2013.
DOI : 10.1016/j.cell.2013.07.039

X. Fan, Targeted Disruption of Aldh1a1 (Raldh1) Provides Evidence for a Complex Mechanism of Retinoic Acid Synthesis in the Developing Retina, Molecular and Cellular Biology, vol.23, issue.13, pp.4637-4648, 2003.
DOI : 10.1128/MCB.23.13.4637-4648.2003

N. G. Frangogiannis, The inflammatory response in myocardial injury, repair, and remodelling, Nature Reviews Cardiology, vol.147, issue.5, pp.255-265, 2014.
DOI : 10.1016/j.trsl.2012.01.023

J. C. Garbern and R. T. Lee, Cardiac Stem Cell Therapy and the Promise of Heart Regeneration, Cell Stem Cell, vol.12, issue.6, pp.689-698, 2013.
DOI : 10.1016/j.stem.2013.05.008

S. Gessert and M. Kuhl, The Multiple Phases and Faces of Wnt Signaling During Cardiac Differentiation and Development, Circulation Research, vol.107, issue.2, pp.186-199, 2010.
DOI : 10.1161/CIRCRESAHA.110.221531

A. Glinka, C. Dolde, N. Kirsch, Y. L. Huang, O. Kazanskaya et al., LGR4 and LGR5 are R-spondin receptors mediating Wnt/??-catenin and Wnt/PCP signalling, EMBO reports, vol.326, issue.10, pp.1055-1061, 2011.
DOI : 10.1073/pnas.0805159106

URL : http://embor.embopress.org/content/embor/12/10/1055.full.pdf

J. Goldsmith and H. Butler, The development of the cardiac-coronary circulatory system, American Journal of Anatomy, vol.11, issue.2, pp.185-201, 1937.
DOI : 10.1002/aja.1000600202

J. A. Guadix, Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2, Development, vol.138, issue.6, pp.1093-1097, 2011.
DOI : 10.1242/dev.044594

R. S. Guleria, Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: Role of the renin-angiotensin system, Journal of Cellular Physiology, vol.92, issue.5, pp.1292-1307, 2011.
DOI : 10.1073/pnas.92.16.7391

H. Haegel, L. Larue, M. Ohsugi, L. Fedorov, K. Herrenknecht et al., Lack of beta-catenin affects mouse development at gastrulation, Development, vol.121, pp.3529-3537, 1995.

J. Hahn, ??-Catenin Overexpression Reduces Myocardial Infarct Size through Differential Effects on Cardiomyocytes and Cardiac Fibroblasts, Journal of Biological Chemistry, vol.19, issue.41, pp.30979-30989, 2006.
DOI : 10.1161/01.CIR.0000074225.62168.68

URL : http://www.jbc.org/content/281/41/30979.full.pdf

S. Haq, Stabilization of ??-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth, Proceedings of the National Academy of Sciences, vol.398, issue.6726, pp.4610-4615, 2003.
DOI : 10.1038/18884

J. M. Hare, Comparison of Allogeneic vs Autologous Bone Marrow???Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy, JAMA, vol.308, issue.22, pp.2369-2379, 2012.
DOI : 10.1001/jama.2012.25321

S. Hayashi and A. P. Mcmahon, Efficient Recombination in Diverse Tissues by a Tamoxifen-Inducible Form of Cre: A Tool for Temporally Regulated Gene Activation/Inactivation in the Mouse, Developmental Biology, vol.244, issue.2, pp.305-318, 2002.
DOI : 10.1006/dbio.2002.0597

X. He, M. Semenov, K. Tamai, and X. Zeng, LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way, Development, vol.13, pp.1663-1677, 2004.

W. He, Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction, Proceedings of the National Academy of Sciences, pp.21110-21115, 2010.
DOI : 10.1074/jbc.273.42.27511

M. Heikkila, Wnt-4 Deficiency Alters Mouse Adrenal Cortex Function, Reducing Aldosterone Production, Endocrinology, vol.143, issue.11, pp.4358-4365, 2002.
DOI : 10.1210/en.2002-220275

U. I. Heine, A. B. Roberts, E. F. Munoz, N. S. Roche, and M. B. Sporn, Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo, Virchows Archiv B Cell Pathology Including Molecular Pathology, vol.42, issue.1, pp.135-152, 1985.
DOI : 10.1159/000429384

K. Hofmann, A superfamily of membrane-bound O -acyltransferases with implications for Wnt signaling, Trends in Biochemical Sciences, vol.25, issue.3, pp.111-112, 2000.
DOI : 10.1016/S0968-0004(99)01539-X

P. C. Hsieh, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nature Medicine, vol.116, issue.8, p.970, 2007.
DOI : 10.1038/nm1618

G. N. Huang, C/EBP Transcription Factors Mediate Epicardial Activation During Heart Development and Injury, Science, vol.485, issue.7400, pp.1599-1603, 2012.
DOI : 10.1038/nature11139

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/pdf

M. Hutson and M. Kirby, Model systems for the study of heart development and disease, Seminars in Cell & Developmental Biology, vol.18, issue.1, pp.101-110, 2007.
DOI : 10.1016/j.semcdb.2006.12.004

M. Ieda, J. D. Fu, P. Delgado-olguin, V. Vedantham, Y. Hayashi et al., Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors, Cell, vol.142, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.cell.2010.07.002

Y. Ishii, M. Wajid, H. Bazzi, K. A. Fantauzzo, A. G. Barber et al., Mutations in R-Spondin 4 (RSPO4) Underlie Inherited Anonychia, Journal of Investigative Dermatology, vol.128, issue.4, pp.867-870, 2008.
DOI : 10.1038/sj.jid.5701078

S. Ivins, J. Chappell, B. Vernay, J. Suntharalingham, and A. Martineau, The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development, Developmental Cell, vol.33, issue.4, pp.455-68, 2015.
DOI : 10.1016/j.devcel.2015.03.026

S. J. Jenkins, D. R. Hutson, and S. W. Kubalak, Analysis of the proepicardium-epicardium transition during the malformation of theRXR?????/??? epicardium, Developmental Dynamics, vol.121, issue.3, pp.1091-1101, 2005.
DOI : 10.1165/ajrcmb/8.5.538

X. Jiang, D. H. Rowitch, P. Soriano, A. P. Mcmahon, and H. M. Sucov, Fate of themammalian cardiac neural crest, Development, vol.127, pp.1607-1616, 2000.

X. Jiang, B. Choudhary, E. Merki, K. R. Chien, R. E. Maxson et al., Normal fate and altered function of the cardiac neural crest cell lineage in retinoic acid receptor mutant embryos, Mechanisms of Development, vol.117, issue.1-2, pp.115-122, 2002.
DOI : 10.1016/S0925-4773(02)00206-X

Y. Jiang, T. A. Drysdale, and T. Evans, A Role for GATA-4/5/6 in the Regulation of Nkx2.5 Expression with Implications for Patterning of the Precardiac Field, Developmental Biology, vol.216, issue.1, pp.57-71, 1999.
DOI : 10.1006/dbio.1999.9469

C. Jopling, Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, Nature, vol.313, issue.7288, p.606, 2010.
DOI : 10.1038/nature08899

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846535/pdf

S. Kaga, L. Zhan, E. Altaf, and N. Maulik, Glycogen synthase kinase-3??/??-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium, Journal of Molecular and Cellular Cardiology, vol.40, issue.1, pp.138-147, 2006.
DOI : 10.1016/j.yjmcc.2005.09.009

T. Kamata, K. Katsube, M. Michikawa, M. Yamada, S. Takada et al., R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1676, issue.1, pp.51-62, 2004.
DOI : 10.1016/j.bbaexp.2003.10.009

E. Kang, M. Yousefi, and S. Gruenheid, R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice, PLOS ONE, vol.4, issue.4, pp.1-13, 2016.
DOI : 10.1371/journal.pone.0152859.s001

S. Katharina, . Volz, H. Andrew, . Jacobs, I. Heidi et al., Pericytes are progenitors for coronary artery smooth muscle. eLife, pp.1-22, 2015.

T. C. Katz, Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells, Developmental Cell, vol.22, issue.3, pp.639-650, 2012.
DOI : 10.1016/j.devcel.2012.01.012

O. Kazanskaya, A. Glinka, I. Del-barco-barrantes, P. Stannek, C. Niehrs et al., R-Spondin2 Is a Secreted Activator of Wnt/??-Catenin Signaling and Is Required for Xenopus Myogenesis, Developmental Cell, vol.7, issue.4, pp.525-534, 2004.
DOI : 10.1016/j.devcel.2004.07.019

O. Kazanskaya, B. Ohkawara, M. Heroult, W. Wu, N. Maltry et al., The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development, Development, vol.135, issue.22, pp.3655-3664, 2008.
DOI : 10.1242/dev.027284

B. R. Keegan, J. L. Feldman, G. Begemann, P. W. Ingham, and D. Yelon, Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool, Science, vol.307, issue.5707, pp.247-249, 2005.
DOI : 10.1126/science.1101573

R. G. Kelly, The Second Heart Field, Current Topics in Developmental Biology, vol.100, pp.33-65, 2012.
DOI : 10.1016/B978-0-12-387786-4.00002-6

URL : https://hal.archives-ouvertes.fr/hal-00838807

K. A. Kim, M. Wagle, K. Tran, X. Zhan, M. A. Dixon et al., R-Spondin Family Members Regulate the Wnt Pathway by a Common Mechanism, Molecular Biology of the Cell, vol.438, issue.7069, pp.2588-2596, 2008.
DOI : 10.1038/nature04185

K. A. Kim, J. Zhao, S. Andarmani, M. Kakitani, T. Oshima et al., R-Spondin Proteins: A Novel Link to &beta;-catenin Activation, Cell Cycle, vol.5, issue.1, pp.23-26, 2006.
DOI : 10.4161/cc.5.1.2305

D. Kimelman, Mesoderm induction: from caps to chips, Nature Reviews Genetics, vol.246, issue.5, pp.360-372, 2006.
DOI : 10.1006/dbio.2002.0657

B. Kinzel, Functional roles of Lgr4 and Lgr5 in embryonic gut, kidney and skin development in mice, Developmental Biology, vol.390, issue.2, pp.181-190, 2014.
DOI : 10.1016/j.ydbio.2014.03.009

K. Kobayashi, Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction, Nature Cell Biology, vol.266, issue.1, pp.46-55, 2009.
DOI : 10.1038/ncb1811

M. Koizumi, Lgr4 Controls Specialization of Female Gonads in Mice 1, Biology of Reproduction, vol.93, pp.1-11, 2015.

B. Kuhn, Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair, Nature Medicine, vol.292, issue.8, p.962, 2007.
DOI : 10.1177/14703203010020012701

S. Kumar and G. Duester, Retinoic acid controls body axis extension by directly repressing Fgf8 transcription, Development, vol.141, issue.15, pp.2972-2977, 2014.
DOI : 10.1242/dev.112367

URL : http://dev.biologists.org/content/develop/141/15/2972.full.pdf

S. Kumar, &. T. Cunningham, and G. Duester, Nuclear receptor corepressors Ncor1 and Ncor2 ( Smrt ) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis, Developmental Biology, vol.418, issue.1, pp.204-215, 2016.
DOI : 10.1016/j.ydbio.2016.08.005

S. Kuriyama and R. Mayor, Molecular analysis of neural crest migration, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.4, issue.4, pp.1349-1362, 2008.
DOI : 10.1016/j.modgep.2004.01.011

C. Kwon, L. Qian, P. Cheng, V. Nigam, J. Arnold et al., A regulatory pathway involving Notch1/??-catenin/Isl1 determines cardiac progenitor cell fate., Nature Cell Biology, vol.127, issue.8, pp.951-957, 2009.
DOI : 10.1242/dev.01256

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748816/pdf

H. Laeremans, Blocking of Frizzled Signaling With a Homologous Peptide Fragment of Wnt3a/Wnt5a Reduces Infarct Expansion and Prevents the Development of Heart Failure After Myocardial Infarction, Circulation, vol.124, issue.15, pp.1626-1635, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.976969

M. A. Laflamme, Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.1015-1024, 2007.
DOI : 10.1161/01.RES.86.5.541

K. J. Lavine, A. C. White, C. Park, C. S. Smith, and K. Choi, Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development, Genes & Development, vol.20, issue.12, pp.1651-66, 2006.
DOI : 10.1101/gad.1411406

K. J. Lavine, Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation In Vivo, Developmental Cell, vol.8, issue.1, pp.85-95, 2005.
DOI : 10.1016/j.devcel.2004.12.002

K. J. Lavine, Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development, Development, vol.135, issue.18, pp.3161-3171, 2008.
DOI : 10.1242/dev.019919

URL : http://dev.biologists.org/content/develop/135/18/3161.full.pdf

R. Y. Lee, J. Luo, R. M. Evans, V. Giguere, and H. M. Sucov, Compartment-Selective Sensitivity of Cardiovascular Morphogenesis to Combinations of Retinoic Acid Receptor Gene Mutations, Circulation Research, vol.80, issue.6, pp.757-764, 1997.
DOI : 10.1161/01.RES.80.6.757

F. Li, Rapid Transition of Cardiac Myocytes from Hyperplasia to Hypertrophy During Postnatal Development, Journal of Molecular and Cellular Cardiology, vol.28, issue.8, p.1737, 1996.
DOI : 10.1006/jmcc.1996.0163

P. Li, M. Pashmforoush, and H. M. Sucov, Retinoic Acid Regulates Differentiation of the Secondary Heart Field and TGF??-Mediated Outflow Tract Septation, Developmental Cell, vol.18, issue.3, pp.480-485, 2010.
DOI : 10.1016/j.devcel.2009.12.019

S. Lin, Endogenous retinoic acid regulates cardiac progenitor differentiation, Proceedings of the National Academy of Sciences, vol.193, issue.2, pp.9234-9239, 2010.
DOI : 10.1006/dbio.1997.8801

URL : http://www.pnas.org/content/107/20/9234.full.pdf

A. J. Linzbach, Die Muskelfaserkonstante und das Wachstumsgesetz der menschlichen Herzkammern, Virchows Archiv f???r Pathologische Anatomie und Physiologie und f???r Klinische Medizin, vol.305, issue.23, p.575, 1950.
DOI : 10.1113/jphysiol.1927.sp002355

N. Liu and E. N. Olson, MicroRNA Regulatory Networks in Cardiovascular Development, Developmental Cell, vol.18, issue.4, pp.510-525, 2010.
DOI : 10.1016/j.devcel.2010.03.010

C. Y. Logan and R. Nusse, The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20, pp.781-810, 2004.

B. Lustig, Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors, Molecular and Cellular Biology, vol.22, issue.4, pp.1184-1193, 2002.
DOI : 10.1128/MCB.22.4.1184-1193.2002

I. Lyons, L. M. Parsons, L. Hartley, R. Li, J. E. Andrews et al., Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5., Genes & Development, vol.9, issue.13, pp.1654-1666, 1995.
DOI : 10.1101/gad.9.13.1654

Q. Ma, Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart, J. Clin. Investig, vol.119, pp.1462-76, 2009.

B. T. Macdonald, Wnt/??-Catenin Signaling: Components, Mechanisms, and Diseases, Developmental Cell, vol.17, issue.1, pp.9-26, 2009.
DOI : 10.1016/j.devcel.2009.06.016

D. Macgrogan, M. Nus, J. L. Pompa, and . De-la, Notch Signaling in Cardiac Development and Disease, Current Topics in Developmental Biology, vol.92, pp.333-365, 2010.
DOI : 10.1016/S0070-2153(10)92011-5

K. Malliaras, Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart, EMBO Molecular Medicine, vol.5, issue.2, pp.191-209, 2013.
DOI : 10.1371/journal.pone.0012559

J. Manner, Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium, The Anatomical Record, vol.157, issue.38, pp.212-226, 1999.
DOI : 10.1161/01.RES.82.4.464

J. Manner, J. M. Perez-pomares, D. Macias, and R. Munoz-chapuli, The Origin, Formation and Developmental Significance of the Epicardium: A Review, Cells Tissues Organs, vol.169, issue.2, pp.89-103, 2001.
DOI : 10.1159/000047867

S. Maretto, Mapping Wnt/??-catenin signaling during mouse development and in colorectal tumors, Proceedings of the National Academy of Sciences, vol.19, issue.4, pp.3299-3304, 2003.
DOI : 10.1038/1270

M. Mark, N. B. Ghyselinck, and P. Chambon, Function of retinoic acid receptors during embryonic development, Nuclear Receptor Signaling, vol.4, 2009.
DOI : 10.1621/nrs.07002

URL : https://hal.archives-ouvertes.fr/inserm-00384487

N. Matt, Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells, Development, vol.132, issue.21, pp.4789-4800, 2005.
DOI : 10.1242/dev.02031

URL : https://hal.archives-ouvertes.fr/hal-00187693

S. Mazerbourg, Leucine-Rich Repeat-Containing, G Protein-Coupled Receptor 4 Null Mice Exhibit Intrauterine Growth Retardation Associated with Embryonic and Perinatal Lethality, Molecular Endocrinology, vol.18, issue.9, pp.2241-2254, 2004.
DOI : 10.1210/me.2004-0133

E. Merki, Epicardial retinoid X receptor ?? is required for myocardial growth and coronary artery formation, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.18455-18460, 2005.
DOI : 10.1016/j.devcel.2004.12.002

F. A. Mic, I. O. Sirbu, and G. Duester, Is Required Early for Limb Bud Initiation and Then Later as a Proximodistal Signal during Apical Ectodermal Ridge Formation, Journal of Biological Chemistry, vol.106, issue.25, pp.26698-26706, 2004.
DOI : 10.1101/gad.1044903

M. F. Minicucci, Tissue Vitamin A Insufficiency Results in Adverse Ventricular Remodeling after Experimental Myocardial Infarction, Cellular Physiology and Biochemistry, vol.26, issue.4-5, pp.523-530, 2010.
DOI : 10.1159/000322320

M. Mlodzik, Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation?, Trends in Genetics, vol.18, issue.11, pp.564-571, 2002.
DOI : 10.1016/S0168-9525(02)02770-1

M. Mollova, Cardiomyocyte proliferation contributes to heart growth in young humans, Proceedings of the National Academy of Sciences, vol.8, issue.7, pp.1446-1451, 2013.
DOI : 10.2307/2289282

A. Molotkov, Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3, Proc. Natl Acad. Sci. USA 99, pp.5337-5342, 2002.
DOI : 10.1074/jbc.M105748200

A. Moloktov, Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning, Development, vol.133, 1901.

A. W. Moore, L. Mcinnes, J. Kreidberg, N. D. Hastie, and A. Schedl, Yac complementation shows a requirement for wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis, Development, vol.126, pp.1845-1857, 1999.

A. Moretti, Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol.127, issue.6, pp.1151-1165, 2006.
DOI : 10.1016/j.cell.2006.10.029

URL : https://doi.org/10.1016/j.cell.2006.10.029

D. Mozaffarian, Heart Disease and Stroke Statistics???2015 Update, Circulation, vol.131, issue.4, pp.29-39, 2015.
DOI : 10.1161/CIR.0000000000000152

URL : http://circ.ahajournals.org/content/circulationaha/131/4/e29.full.pdf

D. R. Murdoch and J. J. Mcmurray, ACE inhibitors in acute myocardial infarction, Hospital Medicine, vol.59, pp.111-115, 1998.

M. D. Muzumdar, A global double-fluorescent Cre reporter mouse, genesis, vol.121, issue.9, pp.593-605, 2007.
DOI : 10.1002/dvg.20335

N. Binnerts, M. Abo, and A. , R-Spondin family members regulate the Wnt pathway by a common mechanism, Mol Biol Cell, vol.19, pp.2588-2596, 2008.

J. S. Nam, T. J. Turcotte, and J. K. Yoon, Dynamic expression of R-spondin family genes in mouse development, Gene Expression Patterns, vol.7, issue.3, pp.306-312, 2007.
DOI : 10.1016/j.modgep.2006.08.006

L. Napoli and B. Sciences, Acid Biosynthesis, Nature, vol.10, pp.993-1001, 1996.

N. Naqvi, A Proliferative Burst during Preadolescence Establishes the Final Cardiomyocyte Number, Cell, vol.157, issue.4, pp.795-807, 2014.
DOI : 10.1016/j.cell.2014.03.035

K. Niederreither and P. Dollé, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics, vol.126, issue.7, pp.541-553, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

K. Niederreither, Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse, Development, vol.128, pp.1019-1031, 2001.

K. Niederreither, Embryonic retinoic acid synthesis is essential for heart morphogenesis in themouse, Development, vol.128, pp.1019-1031, 2001.

K. Niederreither, P. Mccaffery, U. C. Drager, P. Chambon, and P. Dollé, Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development, Mechanisms of Development, vol.62, issue.1, pp.67-78, 1997.
DOI : 10.1016/S0925-4773(96)00653-3

J. Noordermeer, J. Klingensmith, N. Perrimon, and R. Nusse, dishevelled and armadillo act in the Wingless signalling pathway in Drosophila, Nature, vol.367, issue.6458, pp.80-83, 1994.
DOI : 10.1038/367080a0

M. Noseda, T. Peterkin, F. C. Simoes, R. Patient, and M. D. Schneider, Cardiopoietic Factors: Extracellular Signals for Cardiac Lineage Commitment, Circulation Research, vol.108, issue.1, pp.129-152, 2011.
DOI : 10.1161/CIRCRESAHA.110.223792

URL : http://circres.ahajournals.org/content/circresaha/108/1/129.full.pdf

R. Nusse and H. E. Varmus, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome, Cell, vol.31, issue.1, pp.99-109, 1982.
DOI : 10.1016/0092-8674(82)90409-3

M. Oerlemans, Active Wnt signaling in response to cardiac injury, Basic Research in Cardiology, vol.46, issue.5, pp.631-672, 2010.
DOI : 10.1016/S0002-9440(10)64601-9

B. Ohkawara, A. Glinka, and C. Niehrs, Rspo3 Binds Syndecan 4 and Induces Wnt/PCP Signaling via Clathrin-Mediated Endocytosis to Promote Morphogenesis, Developmental Cell, vol.20, issue.3, pp.303-314, 2011.
DOI : 10.1016/j.devcel.2011.01.006

URL : https://doi.org/10.1016/j.devcel.2011.01.006

G. Ozhan and G. Weidinger, Wnt/??-catenin signaling in heart regeneration, Cell Regeneration, vol.4, issue.1, pp.1-12, 2015.
DOI : 10.1186/s13619-015-0017-8

S. Paiva and R. , Retinoic acid supplementation attenuates ventricular remodeling after myocardial infarction in rats, The Journal of nutrition, vol.135, pp.2326-2328, 2005.

A. Palm-leis, Retinoic Acid on the Hypertrophic Growth of Cardiomyocytes, Journal of Biological Chemistry, vol.201, issue.52, pp.54905-54917, 2004.
DOI : 10.1074/jbc.M011000200

D. Pana-kova, H. Sprong, E. Marois, C. Thiele, and S. Eaton, Lipoprotein particles are required for Hedgehog and Wingless signalling, Nature, vol.120, issue.7038, pp.58-65, 2005.
DOI : 10.1016/0925-4773(93)90101-3

P. Parma, O. Radi, V. Vidal, M. C. Chaboissier, E. Dellambra et al., R-spondin1 is essential in sex determination, skin differentiation and malignancy, Nature Genetics, vol.98, issue.11, pp.1304-1309, 2006.
DOI : 10.1073/pnas.141221998

K. B. Pasumarthi, H. Nakajima, H. O. Nakajima, M. H. Soonpaa, and L. J. Field, Targeted Expression of Cyclin D2 Results in Cardiomyocyte DNA Synthesis and Infarct Regression in Transgenic Mice, Circulation Research, vol.96, issue.1, p.110, 2005.
DOI : 10.1161/01.RES.0000152326.91223.4F

F. Pasutto, Mutations in STRA6 Cause a Broad Spectrum of Malformations Including Anophthalmia, Congenital Heart Defects, Diaphragmatic Hernia, Alveolar Capillary Dysplasia, Lung Hypoplasia, and Mental Retardation, The American Journal of Human Genetics, vol.80, issue.3, pp.550-560, 2007.
DOI : 10.1086/512203

J. M. Perez-pomares and J. L. De-la-pompa, Signaling During Epicardium and Coronary Vessel Development, Circulation Research, vol.109, issue.12, pp.1429-1442, 2011.
DOI : 10.1161/CIRCRESAHA.111.245589

URL : http://circres.ahajournals.org/content/circresaha/109/12/1429.full.pdf

G. Picco, C. Petti, A. Centonze, E. Torchiaro, G. Crisafulli et al., Loss of AXIN1 drives acquired resistance to WNT pathway blockade in colorectal cancer cells carrying RSPO3 fusions, EMBO Molecular Medicine, vol.9, issue.3, pp.293-303, 2017.
DOI : 10.15252/emmm.201606773

A. R. Pinto, Revisiting Cardiac Cellular CompositionNovelty and Significance, Circulation Research, vol.118, issue.3, pp.400-409, 2016.
DOI : 10.1161/CIRCRESAHA.115.307778

URL : http://circres.ahajournals.org/content/circresaha/118/3/400.full.pdf

R. E. Poelmann, A. C. Gittenberger-degroot, M. M. Mentink, R. B¨okenkamp, and B. Hogers, Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras, Circulation Research, vol.73, issue.3, pp.559-68, 1993.
DOI : 10.1161/01.RES.73.3.559

E. R. Porrello, Transient Regenerative Potential of the Neonatal Mouse Heart, Science, vol.127, issue.3, 1078.
DOI : 10.1016/j.cell.2006.08.052

T. Prendiville, P. Y. Jay, and W. T. Pu, Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders. Cold Spring Harb, 2014.

L. Qian, In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, vol.100, issue.7400, pp.593-598, 2012.
DOI : 10.1016/j.bpj.2011.03.060

L. Qian, Y. Huang, C. I. Spencer, A. Foley, V. Vedantham et al., In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, vol.100, issue.7400, pp.593-598, 2012.
DOI : 10.1016/j.bpj.2011.03.060

Y. Qyang, The Renewal and Differentiation of Isl1+ Cardiovascular Progenitors Are Controlled by a Wnt/??-Catenin Pathway, Cell Stem Cell, vol.1, issue.2, pp.165-179, 2007.
DOI : 10.1016/j.stem.2007.05.018

A. Raucci, S. Cugusi, A. Antonelli, S. Barabino, L. Monti et al., A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10), The FASEB Journal, vol.22, issue.10, pp.3716-3727, 2008.
DOI : 10.1096/fj.08-109033

K. Red-horse, Coronary arteries form by developmental reprogramming of venous cells, Nature, vol.3, issue.7288, pp.549-553, 2010.
DOI : 10.1161/01.RES.73.3.559

D. E. Reese, T. Mikawa, and D. M. Bader, Development of the Coronary Vessel System, Circulation Research, vol.91, issue.9, pp.761-768, 2002.
DOI : 10.1161/01.RES.0000038961.53759.3C

V. Ribes, Z. Wang, P. Dollé, and K. Niederreither, Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling, Development, vol.133, issue.2, pp.351-361, 2006.
DOI : 10.1242/dev.02204

URL : https://hal.archives-ouvertes.fr/hal-00188117

P. R. Riley and N. Smart, Vascularizing the heart, Cardiovascular Research, vol.91, issue.2, pp.260-268, 2011.
DOI : 10.1093/cvr/cvr035

URL : https://academic.oup.com/cardiovascres/article-pdf/91/2/260/818993/cvr035.pdf

A. S. Rocha, The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation, Cell Reports, vol.13, issue.9, pp.1757-1764, 2015.
DOI : 10.1016/j.celrep.2015.10.049

URL : https://hal.archives-ouvertes.fr/hal-01252908

M. Romeih, Function of RAR? and RAR?2 at the initiation of retinoid signaling is essential for avian embryo survival and for distinct events in cardiac morphogenesis, Developmental Dynamics, vol.223, issue.4, pp.697-708, 2003.
DOI : 10.1002/dvdy.10419

E. Rooij and . Van, Clinical Implications of Basic Research: Cardiac Repair after Myocardial Infarction, New England Journal of Medicine, vol.374, pp.2016-2018, 2016.

J. Rossant, Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis., Genes & Development, vol.5, issue.8, pp.1333-1344, 1991.
DOI : 10.1101/gad.5.8.1333

L. Ryckebusch, Z. Wang, N. Bertrand, S. C. Lin, X. Chi et al., Retinoic acid deficiency alters second heart field formation, Proc. Nat. Acad. Sci. 105, pp.2913-2918, 2008.
DOI : 10.1038/nature03215

URL : http://www.pnas.org/content/105/8/2913.full.pdf

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, pp.3437-3447, 1999.

L. L. Sandell, RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development, Genes & Development, vol.21, issue.9, pp.1113-1124, 2007.
DOI : 10.1101/gad.1533407

J. Schlueter and T. Brand, Epicardial Progenitor Cells in Cardiac Development and Regeneration, Journal of Cardiovascular Translational Research, vol.6, issue.5304, pp.641-653, 2012.
DOI : 10.1038/nrcardio.2009.9

D. Schmidt, Prenatally Fabricated Autologous Human Living Heart Valves Based on Amniotic Fluid Derived Progenitor Cells as Single Cell Source, Circulation, vol.116, issue.11_suppl, pp.64-70, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.681494

B. Scholz, Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT, 2+)/NFAT Signaling. Developmental cell 36, pp.79-93, 2016.
DOI : 10.1016/j.devcel.2015.12.015

URL : https://doi.org/10.1016/j.devcel.2015.12.015

S. E. Senyo, R. T. Lee, and B. Kühn, Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation, Stem Cell Research, vol.13, issue.3, pp.532-541, 2014.
DOI : 10.1016/j.scr.2014.09.003

S. E. Senyo, Mammalian heart renewal by pre-existing cardiomyocytes, Nature, vol.331, issue.7432, pp.433-436, 2013.
DOI : 10.1126/science.1200708

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548046/pdf

B. Sharma, A. Chang, and K. Red-horse, Coronary Artery Development: Progenitor Cells and Differentiation Pathways, Annual Review of Physiology, vol.79, issue.1, pp.1-19, 2017.
DOI : 10.1146/annurev-physiol-022516-033953

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513160/pdf

H. Shen, Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion, Cardiovascular Research, vol.105, issue.3, pp.271-278, 2015.
DOI : 10.1093/cvr/cvu269

J. Shi, Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases, Journal of Immunology Research, vol.552, issue.12, 2016.
DOI : 10.1111/jgh.12040

Y. Shiba, Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts, Nature, vol.280, issue.7415, pp.322-325, 2012.
DOI : 10.1083/jcb.153.5.1133

C. Showell, O. Binder, and F. L. Conlon, T-box genes in early embryogenesis, Developmental Dynamics, vol.94, issue.1, pp.201-218, 2004.
DOI : 10.1101/SQB.1997.062.01.040

E. Siegfried, T. B. Chou, and N. Perrimon, wingless signaling acts through zeste-white 3, the drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate, Cell, vol.71, issue.7, pp.1167-1179, 1992.
DOI : 10.1016/S0092-8674(05)80065-0

A. Singh, S. Ramesh, D. M. Cibi, L. S. Yun, and J. Li, Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development, Cell Reports, vol.15, issue.7, pp.1384-93, 2016.
DOI : 10.1016/j.celrep.2016.04.027

N. Smart, De novo cardiomyocytes electrically couple and suppress arrhythmias in injured hearts, Nature, vol.489, pp.322-325, 2011.

C. L. Smith, S. T. Blaek, C. Y. Sung, and M. D. Tallquist, Epicardial-Derived Cell Epithelial-to-Mesenchymal Transition and Fate Specification Require PDGF Receptor Signaling, Circulation Research, vol.108, issue.12, pp.15-26, 2011.
DOI : 10.1161/CIRCRESAHA.110.235531

URL : http://circres.ahajournals.org/content/circresaha/108/12/e15.full.pdf

M. H. Soonpaa and L. J. Field, Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts, American Journal of Physiology-Heart and Circulatory Physiology, vol.272, issue.1, pp.220-226, 1997.
DOI : 10.1152/ajpheart.1997.272.1.H220

P. Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain, Nature Genetics, vol.7, issue.1, pp.70-71, 1999.
DOI : 10.1073/pnas.94.8.3789

D. Spater, A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells, Nature Cell Biology, vol.124, issue.9, pp.1098-1106, 2013.
DOI : 10.1177/15.10.580

S. Stefanovic and S. Zaffran, Mechanisms of retinoic acid signaling during cardiogenesis, Mechanisms of Development, vol.143, pp.9-19, 2017.
DOI : 10.1016/j.mod.2016.12.002

URL : https://hal.archives-ouvertes.fr/inserm-01430833

I. Stuckmann, S. Evans, and A. B. Lassar, Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation, Developmental Biology, vol.255, issue.2, pp.334-349, 2003.
DOI : 10.1016/S0012-1606(02)00078-7

H. M. Sucov, Y. Gu, S. Thomas, P. Li, and M. Pashmforoush, Epicardial Control of Myocardial Proliferation and Morphogenesis, Pediatric Cardiology, vol.454, issue.5, pp.617-625, 2009.
DOI : 10.1161/01.RES.78.3.349

H. M. Sucov, E. Dyson, C. L. Gumeringer, J. Price, K. R. Chien et al., RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis., Genes & Development, vol.8, issue.9, pp.1007-1018, 1994.
DOI : 10.1101/gad.8.9.1007

R. Sugimura and L. Li, Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases, Birth Defects Research Part C: Embryo Today: Reviews, vol.441, issue.Suppl 1, pp.243-256, 2010.
DOI : 10.1128/MCB.19.6.4414

Y. Sun, Intracardiac renin???angiotensin system and myocardial repair/remodeling following infarction, Journal of Molecular and Cellular Cardiology, vol.48, issue.3, pp.483-489, 2010.
DOI : 10.1016/j.yjmcc.2009.08.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823992/pdf

Z. Szondy, Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis, Cell Death and Differentiation, vol.96, issue.10, pp.1827-1829, 2006.
DOI : 10.1111/j.1432-1033.1977.tb11936.x

URL : http://www.nature.com/cdd/journal/v13/n10/pdf/4401889a.pdf

J. Takeuchi and B. Bruneau, Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors, Nature, vol.428, issue.7247, pp.708-711, 2009.
DOI : 10.1038/nature08039

K. Tanaka, Y. Kitagawa, and T. Kadowaki, -Glycosylation of Wingless in the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.71, issue.15, pp.12816-12823, 2002.
DOI : 10.1126/science.286.5446.1882

X. Tian, Peritruncal Coronary Endothelial Cells Contribute to Proximal Coronary Artery Stems and Their Aortic Orifices in the Mouse Heart, PLoS ONE, vol.29, issue.11, pp.1-9, 2013.
DOI : 10.1371/journal.pone.0080857.g005

X. Tian, Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries, Cell Research, vol.62, issue.9, pp.1075-90, 2013.
DOI : 10.1172/JCI38723

X. Tian, W. T. Pu, and B. Zhou, Cellular Origin and Developmental Program of Coronary Angiogenesis, Circulation Research, vol.116, issue.3, pp.515-530, 2015.
DOI : 10.1161/CIRCRESAHA.116.305097

K. Tomizuka, R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling, Human Molecular Genetics, vol.17, issue.9, pp.1278-1291, 2008.
DOI : 10.1093/hmg/ddn036

K. Tomizuka, K. Horikoshi, R. Kitada, Y. Sugawara, Y. Iba et al., R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling, Human Molecular Genetics, vol.17, issue.9, pp.1278-1291, 2008.
DOI : 10.1093/hmg/ddn036

C. M. Tran and H. M. Sucov, The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis, Development, vol.125, pp.1951-1956, 1998.

J. H. Traverse, Effect of the Use and Timing of Bone Marrow Mononuclear Cell Delivery on Left Ventricular Function After Acute Myocardial Infarction, JAMA, vol.308, issue.22, pp.2380-2389, 2012.
DOI : 10.1001/jama.2012.28726

M. A. Trembley, L. S. Velasquez, K. L. De-mesy-bentley, and E. M. Small, Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels, Development, vol.142, issue.1, pp.21-30, 2015.
DOI : 10.1242/dev.116418

J. Vermot, Conditional (loxP-flanked) allele for the gene encoding the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2), genesis, vol.186, issue.3, pp.155-158, 2006.
DOI : 10.1016/S0167-4781(00)00108-1

URL : https://hal.archives-ouvertes.fr/hal-00188174

S. D. Vincent and M. E. Buckingham, How to make a heart. The origin and regulation of cardiac progenitor cells, Current Topics in Developmental Biology, vol.90, pp.1-41, 2010.

J. Vinten-johansen, Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury, Cardiovascular Research, vol.61, issue.3, pp.481-497, 2004.
DOI : 10.1016/j.cardiores.2003.10.011

K. S. Volz, Author response, eLife, vol.121, p.10036, 2015.
DOI : 10.7554/eLife.10036.024

I. Webb, P. Sicard, J. Clark, S. Redwood, and M. Marber, Myocardial stress remodelling after regional infarction is independent of glycogen synthase kinase-3 inactivation, Journal of Molecular and Cellular Cardiology, vol.49, issue.5, pp.897-900, 2010.
DOI : 10.1016/j.yjmcc.2010.07.021

A. A. Wills, J. E. Holdway, R. J. Major, and K. D. Poss, Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish, Development, vol.135, issue.1, 2008.
DOI : 10.1242/dev.010363

K. C. Woulfe, Glycogen Synthase Kinase-3?? Regulates Post-Myocardial Infarction Remodeling and Stress-Induced Cardiomyocyte Proliferation In Vivo, Circulation Research, vol.106, issue.10, pp.1635-1645, 2010.
DOI : 10.1161/CIRCRESAHA.109.211482

H. Wu, S. H. Lee, J. Gao, X. Liu, and M. L. Iruela-arispe, Inactivation of erythropoietin leads to defects in cardiac morphogenesis, Development, vol.126, pp.3597-3605, 1999.

B. Wu, Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling, Cell, vol.151, issue.5, pp.1083-1096, 2012.
DOI : 10.1016/j.cell.2012.10.023

J. Xavier-neto, Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1849, issue.2, pp.94-111, 2015.
DOI : 10.1016/j.bbagrm.2014.08.003

J. Xavier-neto, C. M. Neville, M. D. Shapiro, L. Houghton, G. F. Wang et al., A retinoic acid-inducible transgenic marker of sinoatrial development in the mouse heart, Development, vol.126, pp.2677-2687, 1999.

Q. Xiao, A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration, Development, vol.144, issue.4, pp.580-589, 2017.
DOI : 10.1242/dev.147827

J. Yan, L. Zhang, N. Sultana, D. S. Park, A. Shekhar et al., A murine Myh6 MerCreMer knock-in allele specifically mediates temporal genetic deletion in cardiomyocytes after tamoxifen induction, PLoS ONE, vol.10, pp.1-15, 2015.

K. S. Yan, Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal, Nature, vol.40, issue.7653, pp.1-8, 2017.
DOI : 10.1093/nar/gks042

J. T. Yang, H. Rayburn, and R. O. Hynes, Cell adhesion events mediated by a4 integrins are essential in placental and cardiac development, Development, vol.121, pp.549-560, 1995.

K. Yashiro, Regulation of Retinoic Acid Distribution Is Required for Proximodistal Patterning and Outgrowth of the Developing Mouse Limb, Developmental Cell, vol.6, issue.3, pp.411-422, 2004.
DOI : 10.1016/S1534-5807(04)00062-0

Z. Ye, Y. Zhou, H. Cai, and W. Tan, Myocardial regeneration: Roles of stem cells and hydrogels, Advanced Drug Delivery Reviews, vol.63, issue.8, pp.688-697, 2011.
DOI : 10.1016/j.addr.2011.02.007

J. Yu and D. M. Virshup, Updating the Wnt pathways, Bioscience Reports, vol.59, issue.5, pp.593-607, 2014.
DOI : 10.1053/j.gastro.2012.08.031

S. Zaffran, N. Robrini, and N. Bertrand, Retinoids and Cardiac Development, Journal of Developmental Biology, vol.126, issue.1, pp.50-71, 2014.
DOI : 10.1371/journal.pone.0044740

S. Zaidi and M. Brueckner, Genetics and Genomics of Congenital Heart Disease, Circulation Research, vol.120, issue.6, pp.923-940, 2017.
DOI : 10.1161/CIRCRESAHA.116.309140

M. Zamora, J. Männer, and P. Ruiz-lozano, Epicardium-derived progenitor cells require ??-catenin for coronary artery formation, Proceedings of the National Academy of Sciences, vol.211, issue.1, pp.18109-18123, 2007.
DOI : 10.1111/j.1469-7580.2007.00753.x

URL : http://www.pnas.org/content/104/46/18109.full.pdf

M. N. Zaruba, Cardiomyogenic Potential of C-Kit+-Expressing Cells Derived From Neonatal and Adult Mouse Hearts, Circulation, vol.121, issue.18, 1992.
DOI : 10.1161/CIRCULATIONAHA.109.909093

M. Zebisch, Y. Xu, C. Krastev, B. T. Macdonald, M. Chen et al., Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin, Nature Communications, vol.3, p.2787, 2013.
DOI : 10.6026/97320630003119

M. Zeini, C. T. Hang, J. Lehrer-graiwer, T. Dao, B. Zhou et al., Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling, Development, vol.136, issue.19, pp.3335-3339, 2009.
DOI : 10.1242/dev.037903

L. Zelarayán, Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation, Proc. Natl.Acad. Sci. USA 105, pp.19762-19767, 2008.

H. Zhang, Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free WallsNovelty and Significance, Circulation Research, vol.118, issue.12, pp.1880-1893, 2016.
DOI : 10.1161/CIRCRESAHA.116.308749

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu et al., Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells, Circulation Research, vol.104, issue.4, pp.30-41, 2009.
DOI : 10.1161/CIRCRESAHA.108.192237

Z. Zhao, Oxidative stress-elicited myocardial apoptosis during reperfusion, Current Opinion in Pharmacology, vol.4, issue.2, pp.159-165, 2004.
DOI : 10.1016/j.coph.2003.10.010

B. Zhou, A. Von-gise, Q. Ma, J. Rivera-feliciano, and W. T. Pu, Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium, Biochemical and Biophysical Research Communications, vol.375, issue.3, pp.450-453, 2008.
DOI : 10.1016/j.bbrc.2008.08.044

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610421/pdf

B. Zhou, Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.208, issue.7200, pp.109-122, 2008.
DOI : 10.1161/01.RES.82.10.1043

B. Zhou, Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.52, issue.1, pp.43-47, 2012.
DOI : 10.1016/j.yjmcc.2011.08.020

URL : https://doi.org/10.1016/j.yjmcc.2011.08.020

Y. Zhou, T. Zhang, Q. K. Zhang, Y. Jiang, D. G. Xu et al., Unstable expression of transgene is associated with the methylation of CAG promoter in the offspring from the same litter of homozygous transgenic mice, Molecular Biology Reports, vol.4, issue.5, pp.5177-5186, 2014.
DOI : 10.4161/epi.4.7.9883

S. Zhu, Loss of myocardial retinoic acid receptor ?? induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice, Journal of Molecular and Cellular Cardiology, vol.99, pp.100-112, 2016.
DOI : 10.1016/j.yjmcc.2016.08.009

Z. Zhu, All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis, PLOS ONE, vol.5, issue.7, pp.1-15, 2015.
DOI : 10.1371/journal.pone.0133414.s003

URL : https://doi.org/10.1371/journal.pone.0133414