D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, vol.12, pp.252-264, 2012.

J. Larkin, Combined nivolumab and ipilimumab or monotherapy in untreated melanoma, N. Engl. J. Med, vol.373, pp.23-34, 2015.

C. Robert, Pembrolizumab versus ipilimumab in advanced melanoma, N. Engl. J. Med, vol.372, pp.2521-2532, 2015.

J. D. Wolchok, Overall survival with combined nivolumab and ipilimumab in advanced melanoma, N. Engl. J. Med, vol.377, pp.1345-1356, 2017.

M. K. Callahan, Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase i doseescalation study, J. Clin. Oncol, vol.36, pp.391-398, 2018.

I. Melero, Evolving synergistic combinations of targeted immunotherapies to combat cancer, Nat. Rev. Cancer, vol.15, pp.457-472, 2015.

B. Ogretmen, Sphingolipid metabolism in cancer signalling and therapy, Nat. Rev. Cancer, vol.18, pp.33-50, 2018.

V. Albinet, Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells, Oncogene, vol.33, pp.3364-3373, 2014.

M. Mrad, Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma, Oncotarget, vol.7, pp.71873-71886, 2016.

N. J. Pyne, J. Ohotski, R. Bittman, and S. Pyne, The role of sphingosine 1-phosphate in inflammation and cancer, Adv. Biol. Regul, vol.54, pp.121-129, 2014.

N. J. Pyne and S. Pyne, Sphingosine 1-phosphate and cancer, Nat. Rev. Cancer, vol.10, pp.489-503, 2010.

C. S. Garris, V. A. Blaho, T. Hla, and M. H. Han, Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond, Immunology, vol.142, pp.347-353, 2014.

S. Spiegel and S. Milstien, The outs and the ins of sphingosine-1-phosphate in immunity, Nat. Rev. Immunol, vol.11, pp.403-415, 2011.

W. H. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat. Rev. Cancer, vol.12, pp.298-306, 2012.

W. H. Fridman, L. Zitvogel, C. Sautes-fridman, and G. Kroemer, The immune contexture in cancer prognosis and treatment, Nat. Rev. Clin. Oncol, vol.14, pp.717-734, 2017.

H. Nishikawa and S. Sakaguchi, Regulatory T cells in cancer immunotherapy, Curr. Opin. Immunol, vol.27, pp.1-7, 2014.

L. Robert, Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes, Oncoimmunology, vol.3, p.29244, 2014.

K. Meeth, J. X. Wang, G. Micevic, W. Damsky, and M. W. Bosenberg, The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations, Pigment Cell Melanoma Res, vol.29, pp.590-597, 2016.

N. Pencheva, C. G. Buss, J. Posada, T. Merghoub, and S. F. Tavazoie, Broadspectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation, Cell, vol.156, pp.986-1001, 2014.

H. Moreno and B. , Response to programmed cell death-1 blockade in a murine melanoma syngeneic model requires costimulation, CD4, and CD8 T cells, Cancer Immunol. Res, vol.4, pp.845-857, 2016.

M. Ahmadzadeh, Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired, Blood, vol.114, pp.1537-1544, 2009.

A. Gros, PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors, J. Clin. Invest, vol.124, pp.2246-2259, 2014.

T. J. Curiel, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med, vol.10, pp.942-949, 2004.

T. Ishida and R. Ueda, CCR4 as a novel molecular target for immunotherapy of cancer, Cancer Sci, vol.97, pp.1139-1146, 2006.

R. J. Johnston, The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function, Cancer Cell, vol.26, pp.923-937, 2014.

C. J. Chan, The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions, Nat. Immunol, vol.15, pp.431-438, 2014.

D. Wang and R. N. Dubois, Eicosanoids and cancer, Nat. Rev. Cancer, vol.10, pp.181-193, 2010.

B. Samuelsson, R. Morgenstern, and P. J. Jakobsson, Membrane prostaglandin E synthase-1: a novel therapeutic target, Pharm. Rev, vol.59, pp.207-224, 2007.

, Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell, vol.161, pp.1681-1696, 2015.

K. R. Johnson, Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue, J. Histochem. Cytochem, vol.53, pp.1159-1166, 2005.

T. Kawamori, Sphingosine kinase 1 is up-regulated in colon carcinogenesis, FASEB J, vol.20, pp.386-388, 2006.

W. Li, Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients, Clin. Cancer Res, vol.15, pp.1393-1399, 2009.

S. S. Tan, Sphingosine kinase 1 promotes malignant progression in colon cancer and independently predicts survival of patients with colon cancer by competing risk approach in South asian population, Clin. Transl. Gastroenterol, vol.5, p.51, 2014.

J. Ohotski, Identification of novel functional and spatial associations between sphingosine kinase 1, sphingosine 1-phosphate receptors and other signaling proteins that affect prognostic outcome in estrogen receptor-positive breast cancer, Int J. Cancer, vol.132, pp.605-616, 2013.

J. Ohotski, Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptornegative breast cancer, Br. J. Cancer, vol.106, pp.1453-1459, 2012.

J. R. Van-brocklyn, Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines, J. Neuropathol. Exp. Neurol, vol.64, pp.695-705, 2005.

Y. Zhang, Sphingosine kinase 1 and cancer: a systematic review and meta-analysis, PLoS ONE, vol.9, p.90362, 2014.

G. M. Strub, M. Maceyka, N. C. Hait, S. Milstien, and S. Spiegel, Extracellular and intracellular actions of sphingosine-1-phosphate, Adv. Exp. Med. Biol, vol.688, pp.141-155, 2010.

M. Maceyka, K. B. Harikumar, S. Milstien, and S. Spiegel, Sphingosine-1-phosphate signaling and its role in disease, Trends Cell Biol, vol.22, pp.50-60, 2012.

S. S. Chae, J. H. Paik, M. L. Allende, R. L. Proia, and T. Hla, Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis, Dev. Biol, vol.268, pp.441-447, 2004.

B. Visentin, Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages, Cancer Cell, vol.9, pp.225-238, 2006.

S. J. Priceman, S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3, Cell Rep, vol.6, pp.992-999, 2014.

L. Van-der-weyden, Genome-wide in vivo screen identifies novel host regulators of metastatic colonization, Nature, vol.541, pp.233-236, 2017.

M. Nagahashi, Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network, FASEB J, vol.27, pp.1001-1011, 2013.

H. Furuya, Effect of sphingosine kinase 1 inhibition on blood pressure, FASEB J, vol.27, pp.656-664, 2013.

S. Zelenay, Cyclooxygenase-dependent tumor growth through evasion of immunity, Cell, vol.162, pp.1257-1270, 2015.

M. G. Boswell, W. Zhou, D. C. Newcomb, and R. S. Peebles, PGI2 as a regulator of CD4+ subset differentiation and function, Prostaglandins Other Lipid Mediat, vol.96, pp.21-26, 2011.

M. Joo and R. T. Sadikot, PGD synthase and PGD2 in immune resposne, Mediators Inflamm, p.503128, 2012.

J. Rossaint, Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response, Nat. Commun, vol.7, p.13464, 2016.

D. Talantov, Novel genes associated with malignant melanoma but not benign melanocytic lesions, Clin. Cancer Res, vol.11, pp.7234-7242, 2005.

L. Xu, Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases, Mol. Cancer Res, vol.6, pp.760-769, 2008.

G. Lavieu, Sphingolipids in macroautophagy. Methods Mol. Biol, vol.445, pp.159-173, 2008.

V. Gautier, Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells, Sci. Rep, vol.6, p.34255, 2016.

, the Transcan-2 Research Program, which is a transnational R&D program jointly funded by national funding organizations within the framework of the ERA-NET Transcan-2

C. I. Le-faouder, J. P. Bertrand-;-f, P. B. , P. R. , N. M. et al., ) for the kind gift of NSG mice and Dr. C. Lachaud (CRCM; Marseille, France) for the generation of stable cell line using the CRIPSR/Cas9 technology. We acknowledge the assistance of Drs, LNCC and Fondation pour la Recherche Médicale (FRM). The IBiSA Toulouse Proteomics facility is supported by the following institutions: Région Midi-Pyrénées, Fonds Européens de Développement Régional, Toulouse Métropole, and the French Ministry of Research with the 'Investissement d'Avenir Infrastructures Nationales en Biologie et Santé program' (Proteomics French Infrastructure project