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ABSTRACT

We prove a deviation bound for the supremum of a normalized process derived from a real-valued
random process (Yt)t∈S . Assuming the increments Yt − Ys satisfy Bernstein deviation bounds with
random fluctuation terms makes it possible to use a stochastic normalization term. This improves on
classical versions where the control of the fluctuation is deterministic.

Keywords Talagrand’s inequality · supremum of a random process · martingales · peeling argument · chaining
argument

1 Introduction
Consider the following result, proved by Baraud in [1]. Let (Xt)t∈S be a family of centered real-valued random
variables indexed by a countable set S embedded in a vector space E of dimension D that satisfies the following
Bernstein bound: there exists two (deterministic) distances d and δ on E and a nonnegative constant c such that for all
s, t ∈ S, for all λ ∈

[
0, (cδ(s, t))−1

)
,

E

[
exp

(
λ(Xt −Xs)−

λ2d2(s, t)

2(1− λcδ(s, t))

)]
⩽ 1.

If moreover, d and δ are norms bounded on S respectively by v > 0 and b/c for some finite v, b, then for any t0 ∈ S
and x ⩾ 0,

P

(
sup
t∈S

(Xt −Xt0) ⩾ 18
(√

v2(x+D) + b(x+D)
))

⩽ e−x. (1)

From the two equations above, we can deduce an upper bound on the renormalized process, of the form: for any t0 ∈ S
and σ, x > 0, letting Ψ(σ, x) = 18(σ

√
x+D + b(x+D)),

P

(
sup
t∈S

Xt −Xt0

d(t, t0)2 + σ2
⩾ 4σ−2Ψ(σ, x)

)
⩽ 2(log(v/σ) ∨ 0 + 1)e−x. (2)

(2) improves on (1) since σ can be chosen much smaller than the upper bound v on S. In particular, it allows to
control the fluctuation of Xt −Xt0 jointly for all t ∈ S by a term comparable to the variance of Xt −Xt0 , namely
d2(t, t0).

Inequalities such as (2) are key to obtain oracle inequalities in model selection and empirical risk minimization (see
e.g., [1] , [2] and [3]), where d is the error on the parameter and Xt is the difference between the empirical risk and the
true risk for the parameter t. In the existing literature, this distance d is deterministic. However, it is sometimes possible
to control the fluctuations of Xt −Xs with smaller, albeit random, distances d and δ. Being able to obtain results such
as (2) with these random terms could therefore provide significant improvements.

To our knowledge, there exists no similar result when the distances d(s, t) and δ(s, t) are replaced with random
quantities R2(s, t) and R∞(s, t). Working with random fluctuation bounds is a natural idea that arises in many
situations (e.g., [4, Theorem 3]). For instance, [5] and [6] study the process Yt(λ) = exp(λAt − λ2B2

t /2), for random
variables Bt > 0 and At, to develop inequalities for the moments of At/Bt or supt⩾0 At/(Bt(log logBt)

1/2) when



Exponential inequalities for suprema of processes with stochastic normalization

E[Yt(λ)] ⩽ 1 and to obtain deviation inequalities for self-normalized martingales (see [7] for a comprehensive review).
[8] improve the constants in (1) for processes of the form {sTX, s ∈ T} where X is a random vector in Rn with
independent components satisfying a Bernstein type condition.

The goal of this note is to obtain a result similar to (2) but for random quantities instead of the deterministic distances d
and δ.

2 Main result
We say that a nonnegative function R : S × S → R+ satisfies the triangle inequality if for all (s, t, u) ∈ S3, R(s, u) ⩽
R(s, t) +R(t, u). A semi-norm over a vector space E is a function N : E → R+ such that N(x+ y) ⩽ N(x) +N(y)
for all x, y ∈ E and N(λx) = |λ|N(x) for all x ∈ E and λ ∈ R. For any two real numbers x, y, we write x ∧ y the
minimum of x and y, and x ∨ y their maximum.

The typical setting for applying our result is when a Bernstein type inequality with control of the fluctuations is available,
as in the following proposition.

Proposition 1. Let A be an event, Z be a random variable and R2, R∞ be nonnegative random variables such that

∀λ ⩾ 0 E

exp
λZ − (λR2)

2

2

∑
k⩾0

(λR∞)k

1A

 ⩽ 1. (3)

Then, for all σ, σ′, x ⩾ 0,

P
({

Z ⩾ σ
√
2x+ σ′x, R2 ⩽ σ and R∞ ⩽ σ′

}
∩A

)
⩽ e−x. (4)

Proof. By (3), for all σ, σ′, λ ⩾ 0,

E

exp
λZ − (λR2)

2

2

∑
k⩾0

(λR∞)k

1R2⩽σ1R∞⩽σ′1A

 ⩽ 1,

and therefore for all λ ∈ [0, (σ′)−1),

E[exp(λZ)1R2⩽σ1R∞⩽σ′1A] ⩽ exp

(
λ2σ2

2(1− λσ′)

)
,

after which the usual proof of Bernstein’s inequality using the Chernoff bound produces the desired result.

For martingales, (3) can be checked as follows, as a direct consequence of [9, Lemma 3.3], in which case R2
2 is an

upper bound of their quadratic variation.

Proposition 2. Let (Mn)n⩾0 be a (Fn)n⩾0-martingale with M0 = 0. Let n ⩾ 1 and assume that there exists
nonnegative random variables R2 and R∞ such that for all ℓ ⩾ 2,

n∑
i=1

E

[
(Mi −Mi−1)

ℓ

∣∣∣∣Fi−1

]
⩽

ℓ!

2
R2

2R
ℓ−2
∞ .

Then (3) holds for Z = Mn and any event A.

A more classical way of expressing the latter for martingales (see [7], [9]) is the following corollary.

Corollary 3. Let n ⩾ 1. Let (Mi)0⩽i⩽n be a (Fi)0⩽i⩽n-martingale with M0 = 0, and let (⟨M⟩i)0⩽i⩽n be its
predictable quadratic variation. For all i ∈ {0, . . . , n − 1}, let Bi be a Fi-measurable random variable, and let
A = {∀i ∈ {0, . . . , n− 1}, |Mi+1 −Mi| ⩽ Bi}.

Then (3) holds for Z = Mn, R2 = ⟨M⟩n, R∞ = max0⩽i⩽n−1 Bi, and this event A.

Proof of Proposition 2. Let Cℓ
0 = 0 and Cℓ

i =
∑n

i=1 E[(Mi −Mi−1)
ℓ | Fi−1] for all n ⩾ i ⩾ 1 and ℓ ⩾ 2. Lemma

3.3 of [9] gives that for all λ > 0, the sequence (Ei)i⩾0 defined by

Ei = exp

λMi −
∑
ℓ⩾2

λℓ

ℓ!
Cℓ

i


is a supermartingale. In particular, E(En) ⩽ E(E0) = 1. The result follows immediately.
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Exponential inequalities for suprema of processes with stochastic normalization

Example 4. Let n ⩾ 1. Let X1, . . . , Xn be centered independent real-valued random variables defined on a probability
space (Ω,F ,P). Assume that there exists m > 0 such that for all j ∈ {1, . . . , n}, for all ℓ ⩾ 2, E[Xℓ

j ] ⩽ ℓ!mℓ. For
instance, this is satisfied as soon as |Xj | is stochastically dominated by an exponential random variable with parameter
1/m.

Let h1 = 1, for all i ∈ {2, . . . , n}, let hi : x ∈ Ri−1 7→ hi(x) ∈ R be a Borel measurable function, and let
h = (hi)1⩽i⩽n. Consider the process (Mi(h))0⩽i⩽n defined by M0(h) = 0 and for all i ∈ {1, . . . , n},

Mi(h) =

i∑
j=1

hj(X1, . . . , Xj−1)Xj . (5)

For any i ∈ {1, . . . , n}, let Fi be the sigma algebra generated by {X1, . . . , Xi}, and let F0 = {∅,Ω}. Then
(Mi(h))0⩽i⩽n is an (Fi)0⩽i⩽n-martingale. Moreover, Proposition 2 holds for Mn(h) with

R∞ = m sup
1⩽i⩽n

|hi(X1, . . . , Xi−1)| and R2 = m

(
2

n∑
i=1

hi(X1, . . . , Xi−1)
2

)1/2

.

Our main result is a uniform control over the deviation of a renormalization of any process whose increments satisfy
a Bernstein concentration inequality with random fluctuation bounds, as long as these bounds are upper bounded by
deterministic seminorms. It can in particular be applied to any kind of supremum of martingales. The supremum does
not have to be taken in time as is usually the case for martingales, but can possibly be taken in other parameters when
considering families of martingales as shown in Example 7.

Theorem 5. Let (Yt)t∈S be a family of real-valued random variables, indexed by a countable subset S of a linear
space E of finite dimension D. Let R2 and R∞ be two nonnegative random functions on S × S that satisfy the triangle
inequality. Assume that there exists an event A such that for all s, u ∈ S, the increments Ys − Yu satisfy (4). Assume
that there exists two deterministic seminorms N2 and N∞ on E and nonnegative constants v, w, such that on the event
A, for all s, u ∈ S, {

R2(s, u) ⩽ N2(s− u) ⩽ v,

R∞(s, u) ⩽ N∞(s− u) ⩽ w.
(6)

Let c ⩾ 0. Define for all x, σ ⩾ 0,

Ψ(σ, x) = 20

[
(σ ∧ v)

√
x+D log

(
v ∨ (cw)

σ
∨ e

)
+ (

σ

c
∧ w)

(
x+D log

(
v ∨ (cw)

σ
∨ e

))]
,

with the convention σ
0 = +∞. Finally, define for all t, t0 ∈ S, ∆c(t, t0) = R2(t, t0) ∨ (cR∞(t, t0)). Then, for any

t0 ∈ S, x ⩾ 0 and σ > 0,

P

({
sup
t∈S

Yt − Yt0

∆c(t, t0)2 + σ2
⩾ 4σ−2Ψ(σ, x)

}
∩A

)
⩽ 2

(
log

(
v ∨ (cw)

σ

)
∨ 0 + 1

)
e−x. (7)

A typical application of this result is the following corollary:

Corollary 6. Let α be a positive real number. Under the same assumptions and notations as in Theorem 5, for all
x > 0, with probability at least 1− 2(log((v ∨ (cw))/

√
αD) ∨ 0 + 1)e−x,

∀t ∈ S, Yt − Yt0 ⩽ 80(
√
α+ w)

[
α−1∆c(t, t0)

2 + x+D log

(
v ∨ (cw)√

αD
∨ e

)]
.

Proof. The result is obtained by taking σ2 = α
(
x+D log

(
v∨(cw)

σ ∨ e
))

in (7).

Example 7. Take the assumptions and notations of Example 4. Let J be a subset of a linear space E of finite dimension
D. Consider a class of vectors of measurable functions H = {hu : u ∈ J} such that there exists u0 ∈ J satisfying
hu0

= 0 ∈ H and for each u ∈ J , hu = (hu,1, . . . , hu,n) with hu,i : Ri−1 → R. Assume that there exists L > 0 and
M > 0 for some norm ∥ · ∥ on E such that for all u, v ∈ J , sup1⩽i⩽n ∥hu,i − hv,i∥∞ ⩽ L∥u− v∥ ⩽ LM . Replace h
in (5) by the differences hu − hv , and take{

R∞(u, v) = m sup1⩽i⩽n |hu,i(X1, . . . , Xi−1)− hv,i(X1, . . . , Xi−1)| ⩽ m sup1⩽i⩽n ∥hu,i − hv,i∥∞
R2(u,v)√

2
= m

(∑n
i=1(hu,i(X1, . . . , Xi−1)− hv,i(X1, . . . , Xi−1))

2
)1/2

⩽
√
nm sup1⩽i⩽n ∥hu,i − hv,i∥∞.

3
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Since, {
R∞(u, v) ⩽ mL∥u− v∥,
R2(u,v)√

2
⩽
√
nmL∥u− v∥,

take, {
N∞(u− v) = mL∥u− v∥ ⩽ mLM,
N2(u−v)√

2
=

√
nmL∥u− v∥ ⩽

√
nmLM,

and Theorem 5 with c = 0, σ = m
√
2nLM , t0 = u0 leads to, for all x > 0, with probability at least 1− 2e−x,

sup
u∈J

Mn(hu)

R2(u, u0)2 + 2(mLM)2n
⩽ 57(mLM)−1

[√
x+D

n
+

x+D

n

]
.

3 Proof
The first step is to control the deviation of the supremum of the process over the (random) balls of R2 and R∞ using a
similar technique to [1, Theorems 2.1 and 5.1], before using a peeling argument similar to [2, Lemma 4.23] in a second
phase.

In all that follows, we omit the intersection with the event A in order to lighten the notations. Every event considered
should be understood as its intersection with A.

Proposition 8. Let (Yt)t∈S be a family of real-valued random variables, indexed by a countable subset S of a linear
space E of finite dimension D. Let R2 and R∞ be two nonnegative random functions on S × S that almost surely
satisfy the triangle inequality. Assume that, for all s, u ∈ S, the increments Ys − Yu satisfy (4) with respect to R2

and R∞. Assume that there exists two deterministic seminorms N2 and N∞ on E and nonnegative constants v, w
satisfying (6). Fix t0 ∈ S. For σ, σ′ ⩾ 0, let

B(σ, σ′) = {s ∈ S : R2(s, t0) ⩽ σ and R∞(s, t0) ⩽ σ′} .

Then, there exists a numerical constant κ > 0 (for instance κ = 20) such that for all x ⩾ 0 and σ, σ′ > 0,

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ κ

[
(σ ∧ v)

√
x+D log

( v
σ
∨ w

σ′ ∨ e
)
+ (σ′ ∧ w)

(
x+D log

( v
σ
∨ w

σ′ ∨ e
))])

⩽ e−x.

Comments. • Proposition 8 itself is not enough to conclude. Taking σ ⩾ 0 and σ′ = σ/c with c > 0 will result
in a bound on the supremum of (Yt − Yt0)t∈B(σ,σ′), but not on the renormalized process on all the set S.

• Taking σ = v and σ′ = w recovers the original result of [1, Theoreom 2.1], but it is again insufficient to link it
to ∆c(t, t0).

• To conclude, a peeling argument is necessary, hence, this is why Proposition (8) is proved for any ball B(σ, σ′).
By controlling locally the variations of the supremum, Lemma 11 allows to derive global maximal inequalities
for the renormalized process of interest.

Proof of Proposition 8. The proof follows exactly the steps of the proof of [1] for Theorem 2.1 and Theorem 5.1, only
differing in the family of partitions we consider. First, note that it is sufficient to show the result for a finite set S.
Indeed, for any sequence (Sn)n∈N of finite sets such that S = ∪nSn and such that for all n ∈ N, Sn ⊂ Sn+1, one has
for all u ⩾ 0,{

sup
t∈B(σ,σ′)

(Yt − Yt0) ⩾ u

}
=

⋃
t∈B(σ,σ′)∩S

{Yt − Yt0 ⩾ u} =
⋃
n∈N

⋃
t∈B(σ,σ′)∩Sn

{Yt − Yt0 ⩾ u} .

Since the sequence of sets
(⋃

t∈B(σ,σ′)∩Sn
{Yt − Yt0 ⩾ u}

)
n∈N

is non-decreasing, by upward monotone convergence,

for all u ⩾ 0,

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ u

)
= lim

n→+∞
P

(
sup

t∈B(σ,σ′)∩Sn

(Yt − Yt0) ⩾ u

)
.

Thus, if the result hold for any finite subset of S, it holds also for S. From now on, let us assume that S is finite.

Note that B(σ, σ′) = B(σ ∧ v, σ′ ∧ w) by (6), so, in what follows, we assume σ ⩽ v and σ′ ⩽ w.

4



Exponential inequalities for suprema of processes with stochastic normalization

Lemma 9. There exists a sequence of finite partitions (Ak)k∈N of S satisfying A0 = {S} and
∀k ∈ N, Ak+1 ⊂ Ak in the sense that: ∀B ∈ Ak+1,∃C ∈ Ak s.t. B ⊂ C,

∀k ⩾ 1, ∀B ∈ Ak, ∀s, u ∈ B, N2(s− u) ⩽ 2−kσ and N∞(s− u) ⩽ 2−kσ′,

∀k ⩾ 1, |Ak| ⩽
(
1 + 8 v

σ

)D (
1 + 8 w

σ′

)D · 52(k−1)D.

Proof of Lemma 9. Let us recall a result from [10, Lemma 4.5] also used by [1]. This result is originally formulated for
norms, but extends naturally to seminorms by applying it to the quotient of E by the kernel of the seminorm.

Lemma 10. Let N be an arbitrary seminorm on S and BN (0, 1) its corresponding unit ball. For all δ ∈ (0, 1], the
minimum number of balls of radius δ which is necessary to cover BN (0, 1) is at most (1 + 2δ−1)D.

In the following proof, we build separately for each seminorm Nj a sequence of partitions (Aj,k)k∈N with j ∈ {2,+∞}.
The sequence of partitions of Lemma 9 is then obtained by choosing, for k ⩾ 0, the partition Ak defined by

Ak = {A2 ∩A∞, A2 ∈ A2,k, A∞ ∈ A∞,k} .

For the seminorm N2: let A2,0 = S. By (6), S ⊂ BN2(0, v). Applying Lemma 10 to the norm v−1N2 and δ = 4−1v−1σ
means that the minimum number of balls of radius 4−1σ which are necessary to cover BN2

(0, v) is upper bounded by(
1 + 8vσ−1

)D
. Let (B1, . . . , Bp) be such a minimal covering. Let C1 = B1 and for j ∈ {2, . . . , p}, define the set Cj

as
Cj = Bj\

⋃
i<j

Bi.

The sequence A2,1 = (Cj)j∈{1,...,p} forms a partition of S, each set of which has a diameter at most 2−1σ.

For k ⩾ 1, proceed by induction using Lemma 10. Assume that there exists a partition A2,k such that |A2,k| ⩽
(1 + 8vσ−1)D · 5(k−1)D and such that each element of A2,k is a subset of a ball of radius 2−(k+1)σ for the norm N2.
By applying Lemma 10 to 2k+1σ−1N2 and δ = 2−1, each element of A2,k can be covered by at most 5D balls of
radius 2−(k+2)σ, and therefore be partitioned into at most 5D sets of diameter 2−(k+1)σ, each contained in a ball of
radius 2−(k+2)σ. A2,k+1 is therefore a partition containing at most (1 + 8vσ−1)D · 5kD elements.

For the seminorm N∞: the reasoning is the same and produces a partition A∞,k+1 containing at most (1+8w(σ′)−1)D ·
5kD element for all k ⩾ 0.

Final partition: By construction, for all k ∈ N, Ak+1 ⊂ Ak. Moreover, for all k ⩾ 1, A ∈ Ak and s, u ∈ A,
N2(s− u) ⩽ 2−kσ and N∞(s− u) ⩽ 2−kσ′, and finally,

|Ak| ⩽ |A2,k| · |A∞,k| ⩽ (1 + 8vσ−1)D(1 + 8w(σ′)−1)D · 52(k−1)D.

Let (Ak)k⩾0 be a sequence of partitions as in Lemma 9. For all k ∈ N∗ and all A ∈ Ak, pick a (deterministic) element
tk(A) ∈ A. For any t ∈ S and k ⩾ 1, there exists a unique A ∈ Ak such that t ∈ A. Let πk(t) = tk(A). Let also
π0(t) = t0. Since S is finite, the following decomposition holds and contains a finite number of non-zero terms:

Yt − Yt0 =
∑
k⩾0

(
Yπk+1(t) − Yπk(t)

)
.

For k ⩾ 0, let Ek = {(πk(t), πk+1(t)), t ∈ S} and for k ⩾ 1, letz0 =
3

2
σ
√
2(x+ log(2|E0|)) +

3

2
σ′(x+ log(2|E0|)),

zk = 2−k
(
σ
√
2(x+ log(2k+1|Ek|)) + σ′(x+ log(2k+1|Ek|))

)
.

Let

H =
3

2
σ
√
2 log(2|E0|) +

3

2
σ′ log(2|E0|) +

∑
k⩾1

2−k

(
σ
√
2 log(2k+1|Ek|) + σ′ log(2k+1|Ek|)

)

=
1

2
σ
√
2 log(2|E0|) +

1

2
σ′ log(2|E0|) +

∑
k⩾0

2−k

(
σ
√
2 log(2k+1|Ek|) + σ′ log(2k+1|Ek|)

)
.

5
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Finally, let

z = H +
5

2
σ
√
2x+

5

2
σ′x, (8)

so that z ⩾
∑

k⩾0 zk. By definition,

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ z

)
⩽ P

(
∃t ∈ B(σ, σ′),∃k ⩾ 0, Yπk+1(t) − Yπk(t) ⩾ zk

)
⩽ P

(
sup

t∈B(σ,σ′)

(
Yπ1(t) − Yt0

)
⩾ z0

)
+
∑
k⩾1

P

(
sup
t∈S

(
Yπk+1(t) − Yπk(t)

)
⩾ zk

)
.

The first term must be handled carefully, since even if t ∈ B(σ, σ′), there is no guarantee that π1(t) ∈ B(σ, σ′).
However, if t is in B(σ, σ′), since π1(t) and t are in the same element of A1, by the triangle inequality,

R2(π1(t), t0) ⩽ R2(π1(t), t) +R2(t, t0) ⩽
3

2
σ,

and likewise R∞(π1(t), t0) ⩽ 3
2σ

′. Therefore,

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ z

)
⩽ P

(
sup

u s.t. (t0,u)∈E0 and u∈B(3σ/2,3σ′/2)

(Yu − Yt0) ⩾ z0

)
+
∑
k⩾1

P

(
sup

(s,u)∈Ek

(Yu − Ys) ⩾ zk

)

⩽
∑

u s.t. (t0,u)∈E0

P ((Yu − Yt0) ⩾ z0 and u ∈ B(3σ/2, 3σ′/2)) +
∑
k⩾1

P

(
sup

(s,u)∈Ek

(Yu − Ys) ⩾ zk

)

⩽
∑

u s.t. (t0,u)∈E0

P ((Yu − Yt0) ⩾ z0 and u ∈ B(3σ/2, 3σ′/2)) +
∑
k⩾1

∑
(s,u)∈Ek

P (Yu − Ys ⩾ zk) .

For k = 0 Using (4) and the definition of z0,

P (Yu − Yt0 ⩾ z0 and u ∈ B(3σ/2, 3σ′/2)) = P

(
Yu − Yt0 ⩾

3

2
σ
√

2(x+ log(2|E0|)) +
3

2
σ′(x+ log(2|E0|))

and R2(u, t0) ⩽
3

2
σ, R∞(u, t0) ⩽

3

2
σ′

)
⩽

1

2|E0|
e−x.

For k ⩾ 1 Since Ak+1 ⊂ Ak, πk(t) and πk+1(t) belong to the same set in Ak. Therefore, for all (s, u) ∈ Ek,
N2(s− u) ⩽ 2−kσ and N∞(s− u) ⩽ 2−kσ′. By assumption, R2(s, u) ⩽ N2(s− u) and R∞(s, u) ⩽ N∞(s− u).
Thus, for (s, u) ∈ Ek, R2(s, u) ⩽ 2−kσ and R∞(s, u) ⩽ 2−kσ′ almost surely. By definition of zk and (4), for all
(s, u) ∈ Ek,

P(Yu − Ys ⩾ zk) ⩽ 2−(k+1)|Ek|−1e−x.

Summing on all (s, u) ∈ Ek and all k ⩾ 0 leads to

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ z

)
⩽ e−x.

It remains to compute H in (8). By construction of Ak, the choice of πk+1(t) entirely determines the choice of πk(t).
Therefore, |Ek| ⩽ |Ak+1|, that is

2k+1|Ek| ⩽ 2k+1
(
1 + 8

v

σ

)D (
1 + 8

w

σ′

)D
· 52kD ⩽ 2k+192D · 52kD ·

( v
σ

)D (w
σ′

)D
⩽
(
162 · 50k vw

σσ′

)D
,

and thus

H ⩽
1

2
σ

√
2D log(162

vw

σσ′ ) +
1

2
σ′D log(162

vw

σσ′ )︸ ︷︷ ︸
E

+
∑
k⩾0

2−kσ

√
2D log

(
162 · 50k vw

σσ′

)
︸ ︷︷ ︸

F

+
∑
k⩾0

2−kσ′D log
(
162 · 50k vw

σσ′

)
︸ ︷︷ ︸

G

.
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Let us calculate the three terms separately. Firstly,

E ⩽
σ

2

√
2D
(
6 + log(

vw

σσ′ )
)
+

σ′

2
D
(
6 + log(

vw

σσ′ )
)
.

Secondly,

G = σ′D
∑
k⩾0

2−k
(
log(162) + k log(50) + log(

vw

σσ′ )
)

= 2σ′D
(
log(162) + log(50) + log(

vw

σσ′ )
)
⩽ 2σ′D

(
9 + log(

vw

σσ′ )
)
.

Thirdly, by concavity of x 7→
√
x and Jensen’s inequality,

F ⩽ 2σ

√
2
∑
k⩾0

2−(k+1)D log
(
162 · 50k vw

σσ′

)
⩽ 2σ

√
2D
(
9 + log(

vw

σσ′ )
)
.

Thus,

H ⩽
5

2
σ

√
2D
(
9 + log(

vw

σσ′ )
)
+

5

2
σ′D

(
9 + log(

vw

σσ′ )
)
.

Finally, using the concavity of x 7→
√
x again,

z = H +
5

2
σ
√
2x+

5

2
σ′x ⩽

5

2
σ

√
2D
(
9 + log(

vw

σσ′ )
)
+

5

2
σ′D

(
9 + log(

vw

σσ′ )
)
+

5

2
σ
√
2x+

5

2
σ′x

⩽ 5σ

√
x+

(
9 + log(

vw

σσ′ )
)
D + 5σ′

(
x+

(
9 + log(

vw

σσ′ )
)
D
)
.

This concludes the proof of Proposition 3.

Proof of Theorem 5. By Proposition 8, for all σ, σ′ > 0 and x ⩾ 0,

P

(
sup

t∈B(σ,σ′)

(Yt − Yt0) ⩾ 20

[
(σ ∧ v)

√
x+D log

( v
σ
∨ w

σ′ ∨ e
)
+ (σ′ ∧ w)

(
x+D log

( v
σ
∨ w

σ′ ∨ e
))])

⩽ e−x.

(9)

To obtain a concentration inequality on the renormalized process, we use an extension of [2, Lemma 4.23] to allow for
a random function a.

Lemma 11. Let S be a countable set, u ∈ S, and a : S → R+ be a continuous, possibly random, function such that
∥a∥∞ ⩽ M with M > 0, and such that a(u) = inft∈S a(t). Let Z be some process indexed by S. Let

B(σ) = {t ∈ S, a(t) ⩽ σ}.

Let σ∗ ⩾ 0, and Ψ : (x, y) ∈ [σ∗,+∞) × R+ 7→ Ψ(x, y) ∈ R+ a deterministic function such that for all y ⩾ 0,
x 7→ Ψ(x, y)/x is non-increasing on [σ∗,+∞), and assume that for all y ⩾ 0,

∀σ ⩾ σ∗ P

(
sup

t∈B(σ)

[Z(t)− Z(u)] ⩾ Ψ(σ, y)

)
⩽ e−y. (10)

Then, for any α > 0, y ⩾ 0 and x ⩾ σ∗,

P

(
sup
t∈S

Z(t)− Z(u)

a2(t) + x2
⩾ x−2Ψ(x, y)

(
1 +

(1 + α)(2 + α)

2α

))
⩽

(
log
(
M
x

)
∨ 0

log(1 + α)
+ 2

)
e−y.

In particular, picking α =
√
2 leads to, for any y ⩾ 0 and x ⩾ σ∗,

P

(
sup
t∈S

Z(t)− Z(u)

a2(t) + x2
⩾ 4x−2Ψ(x, y)

)
⩽

(
log
(
M
x

)
∨ 0

log(1 +
√
2)

+ 2

)
e−y.
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Let us conclude the proof of Theorem 5 before proving this lemma. Let c ⩾ 0, and take σ′ = σ/c in (9) (or
σ′ = +∞ if c = 0). To apply Lemma 11, let a(t) = (R2 ∨ (cR∞))(t, t0), u = t0 and M = v ∨ (cw). By definition,
a(t0) = inft∈S a(t) = 0, and by (6),

∥a∥∞ ⩽ sup
t∈S

(N2 ∨ (cN∞))(t− t0) ⩽ v ∨ (cw).

For x, σ ⩾ 0, let

Ψ(σ, x) = 20

[
(σ ∧ v)

√
x+D log

(
v ∨ (cw)

σ
∨ e

)
+ (

σ

c
∧ w)

(
x+D log

(
v ∨ (cw)

σ
∨ e

))]
.

By (9), Equation (10) is satisfied with σ∗ = 0. For all x ⩾ 0, σ 7→ Ψ(σ, x)/σ is non-increasing on R+. Therefore, for
all x ⩾ 0 and σ > 0,

P

(
sup
t∈S

Yt − Yt0

a2(t) + σ2
⩾ 4σ−2Ψ(σ, x)

)
⩽

 log
(

v∨(cw)
σ

)
∨ 0

log(1 +
√
2)

+ 2

 e−x.

Proof of Lemma 11. The proof follows the steps of the proof of [2, Lemma 4.23]. We use the notations of Lemma 11.

Let x > 0, and let D(x) be the first integer j ⩾ 0 such that (1 + α)j+1x > M , so that D(x) ⩽ log(M/x)
log(1+α) ∨ 0. For all

j ∈ {0, . . . , D(x)− 1}, let
Cj =

{
t ∈ S, (1 + α)jx ⩽ a(t) < (1 + α)j+1x

}
.

and let CD(x) = {t ∈ S, (1 + α)D(x)x ⩽ a(t) ⩽ M}. Then,
{
B(x), {Cj}0⩽j⩽D(x)

}
is a partition of S and therefore,

sup
t∈S

[
Z(t)− Z(u)

a2(t) + x2

]
⩽ sup

t∈B(x)

[
(Z(t)− Z(u))+

a2(t) + x2

]
+

D(x)∑
j=0

sup
t∈Cj

[
(Z(t)− Z(u))+

a2(t) + x2

]
. (11)

For t ∈ Cj , since a2(t) + x2 ⩾ (1 + α)2jx2 + x2,

x2 sup
t∈S

[
Z(t)− Z(u)

a2(t) + x2

]
⩽ sup

t∈B(x)

(Z(t)− Z(u))+ +

D(x)∑
j=0

(
1 + (1 + α)2j

)−1
sup

t∈B((1+α)j+1x)

(Z(t)− Z(u))+.

Since a(u) = inft∈S a(t), u ∈ B((1 + α)kx) for every integer k for which B((1 + α)kx) is non empty and therefore,
sup

t∈B((1+α)kx)

(Z(t)− Z(u))+ = sup
t∈B((1+α)kx)

(Z(t)− Z(u)).

Let y ⩾ 0. By assumption,
P

(
sup

t∈B(x)

(Z(t)− Z(u)) ⩾ Ψ(x, y)

)
⩽ e−y

P

(
sup

t∈B((1+α)j+1x)

(Z(t)− Z(u)) ⩾ Ψ((1 + α)j+1x, y)

)
⩽ e−y for all j ∈ {0, . . . , D(x)}.

Recall that z 7→ Ψ(z, y)/z is non-increasing, so that (1 + α)j+1Ψ(x, y) ⩾ Ψ((1 + α)j+1x, y), which leads to

P

(
sup

t∈B((1+α)j+1x)

(Z(t)− Z(u)) ⩾ (1 + α)j+1Ψ(x, y)

)
⩽ e−y for all j ∈ {0, . . . , D(x)}.

Taking the union bound leads to

P

x2 sup
t∈S

[
Z(t)− Z(u)

a2(t) + x2

]
⩾ Ψ(x, y) +

D(x)∑
j=0

(1 + α)j+1

1 + (1 + α)2j
Ψ(x, y)

 ⩽ (D(x) + 2)e−y.

To conclude, note that
D(x)∑
j=0

(1 + α)j+1

1 + (1 + α)2j
⩽ (1 + α)

1

2
+
∑
j⩾1

(1 + α)−j

 ⩽ (1 + α)

(
1

2
+

1

α

)
=

(1 + α) (2 + α)

2α
.
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