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On the convergence of the MLE as an estimator of the learning rate in the Exp3
algorithm

Julien Aubert' Luc Lehéricy' Patricia Reynaud-Bouret '

Abstract

When fitting the learning data of an individual to
algorithm-like learning models, the observations
are so dependent and non-stationary that one may
wonder what the classical Maximum Likelihood
Estimator (MLE) could do, even if it is the usual
tool applied to experimental cognition. Our objec-
tive in this work is to show that the estimation of
the learning rate cannot be efficient if the learning
rate is constant in the classical Exp3 (Exponential
weights for Exploration and Exploitation) algo-
rithm. Secondly, we show that if the learning
rate decreases polynomially with the sample size,
then the prediction error and in some cases the
estimation error of the MLE satisfy bounds in
probability that decrease at a polynomial rate.

1. Introduction
1.1. Context

Imagine that you observe a rat in a maze, learning progres-
sively to find food. How would you guess the learning
process (or the algorithm) it actually uses ? This question
is of paramount importance in cognitive science where the
problem is not to find the fastest or best learning algorithm to
learn a specific task but to discover the most realistic learn-
ing model (always formulated as an algorithm) (Botvinick
et al., 2009).

Many learning algorithms, and in particular all those associ-
ated with reinforcement learning, are often used to model
real human or animal behavior (Sutton, 1988; Schultz et al.,
1997). Realistic models may take into account attentional
effects (Gluck & Bower, 1988), differences in reasoning
(Mezzadri et al., 2022), or granularity of actions (Botvinick,
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2008). Because all these realistic ingredients vary from
one individual to another, it is clear that the fitting of a par-
ticular model should be done individual by individual and
experience by experience (Estes, 1956).

The problem of proving that a certain model (or algorithm)
is better suited to model reality than others is so crucial in
cognitive science that the methodology for fitting any kind
of learning algorithm to real learning data has been well
established and emphasized (Wilson & Collins, 2019). Any
scientist wishing to develop their own new learning model
can follow the same numerical experiments to test whether
their model is realistic or not.

The first step of the methodology is performing MLE on
the data for parameters estimation of a model (Daw, 2011;
Wilson & Collins, 2019). Recall that we are observing an
individual learning a specific task. Therefore, not only the
training data (¢.e. the observations) strongly depend on each
other, but they are also often non stationary (otherwise the
individual could not have learned). These data make the
study of the MLE very complex from a theoretical point of
view.

This is also why extensive simulations are required by (Wil-
son & Collins, 2019): depending on the set of chosen pa-
rameters, not only can a model learn or not learn, but there
is also often a set of parameters for which the estimator
behaves poorly. For instance in (Mezzadri, 2020)’s PhD
thesis, large learning rates imply a too fast learning (if the
model learns at all), which in turn prevents the MLE from
performing well. Unfortunately, there is a lack of theoretical
guarantees on whether it is possible to estimate the param-
eters of these models consistently. Our goal is to prove
rigorously what can be said about the properties of the MLE
when fitting a learning algorithm to real data.

1.2. Why bandits algorithms ?

This study strongly depends on the algorithm and the exper-
iment. One typical example is the Skinner box experiment,
introduced in the 30’s, whose goal was to study rodents
ability to undergo operant conditioning. Once inside the
box, the rat could pull one or more levers and get a reward
or a punishment for it. This simplified framework allowed
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scientists to work in a fully controlled environment. The
Skinner box paradigm is still being discussed nowadays
(Kang et al., 2021).

Instead of studying a particular cognitive model and in order
to work within an established general theoretical frame-
work, we focus on the adversarial multi armed bandit prob-
lem. The algorithm we specifically study (Exp3: Exponen-
tial weights for Exploration and Exploitation) is probably
the simplest algorithm for adversarial bandits (Lattimore
& Szepesvari, 2020). Even though it is not used in the
cognition literature, it describes well the learning phenom-
ena that occur in the Skinner box, and more generally all
stimulus-action associations tasks (e.g. maze T-shaped, see
introduction in (Lattimore & Szepesvari, 2020)). It also
shares many features with famous cognitive algorithms such
as component cue (Gluck & Bower, 1988): credit or loss
updating, softmax transformation, etc. Finally, Exp3 has
given rise to many variants with a variety of applications
(e.g. Exp3-IX, Exp4 in (Lattimore & Szepesvari, 2020)) in
more complex settings.

Our purpose here is not to prove any new performance result
of Exp3 by minimizing the cumulative loss or regret. In-
stead, we observe an individual performing a learning task.
We assume that it is following the Exp3 algorithm, and ask
whether it is possible to infer the parameter of this specific
Exp3 instance (that is, its learning rate) from the choices
made by the individual. To our knowledge, the present work
is the first to tackle this problem. It is why we cannot com-
pare our results to the classical Reinforcement Learning
literature: in ML, the classical purpose is to develop effec-
tive algorithms, whereas we propose to address the question:
“how to estimate parameters of a ML algorithm based on
the output of an individual using this algorithm?”

1.3. Contributions

In Section 3, we prove in a particular case that trying to
estimate constant learning rates leads to poor estimation
whatever the estimation procedure: the estimation error
decreases more slowly than logarithmically with the number
of observations.

In Section 4, in the setting where the learning rate decreases
polynomially with the number of observations, we show a
polynomial decrease of the prediction error and in a particu-
lar case (Section 5) on the estimation error on a truncated
MLE.

2. Model and notation
2.1. Notation

The model of experiment on which the MLE is going to be
fitted is as follows. For n successive iterations, the sub-

ject has to draw an arm among K possible arms. Let
I? = (It)1<t<n be the sequence of observed arms and
(Fo)i<n = (6({Is, s < t}))ien the corresponding filtra-
tion.

As in classical cognitive experiment, the losses (or penalties)
of the arms denoted by m = (m,...,7mk) are constant
through time. These losses are bounded between 0 and 1
and without loss of generality, we assume that 1 > m; >
mp =2 7g 2 0.

2.2. Learning model: the Exp3 Algorithm

We are going to assume that the subject picks an arm accord-
ing to the following algorithm, which in this sense becomes
a learning model.

Algorithm 1 Exp3 (Exponential weights for Exploration
and Exploitation for losses)

Let 1 be a positive real number, called the learning rate.
Let p be the uniform distribution over 1,. .., K.
Foreacht=1,...,n,

* Draw an arm [; from the probability distribution p;'.

e For each arm ¢ = 1,..., K, compute the estimated loss

[ . .

Tt = Tzl 1,—; and update the estimated cumulative loss
it

Lity1 =Ly + Ty

* Update the probability distribution of picking a given arm

p?+1 = (p’f,tJr17 .. ,p?<7t+1), where foralli € {1,..., K}

eXp(*UL‘,tH)
7 - )
> ket €XP(—nLg11)

ey

n _
Pitr1 =

In the most general case, Exp3 is able to cope with losses
that are depending on time and it has been proved that it
achieves sublinear bounds for the convergence of the pseudo-
regret (Bubeck & Cesa-Bianchi, 2012).

However, for the purpose of the present work, we have
simplified the set-up. Indeed, even if the algorithm is able
to cope with time-varying losses, we observe it in a rigid
framework that is planned by the cognitive experiment itself,
for which the most classic framework correspond to fixed
losses. Indeed, in cognitive science, one often evaluates
very robust and realistic learning processes in toy situations
where most of the variability is cancelled.

The parameter 7 in Exp3 can originally be also chosen has
a time varying parameter. Here we have decided that this
quantity is fixed during this experiment, because this is
the parameter that the MLE is estimating based on the n
observations.

If the pseudo-regret bound obtained in (Bubeck & Cesa-
Bianchi, 2012) is optimal for i) of the order of 1/+/n, there
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are situations where the algorithm can learn even if 7 is
constant (see Section 3) or decreasing at a different rate.
Therefore from a statistical point of view, it is not clear that
the subject uses a constant 7 or a parameter 7 that tends to
0 with n. Let us go even further: the fact that the algorithm
learns or not, should not be an absolute criterion, since we
might have subjects that are unable to learn even after many
iterations and might just give up. This is the main difference
with other works on Exp3. Here we take Exp3 as a realistic
model that can be fitted to data : the range of 7 that matters
to us is the one for which we can guarantee a good quality
of estimation of the learning rate 7.

In the sequel, we denote by P” the probability when the
learning parameter is 7, and E,;[.] is the associated expecta-
tion. Finally, if f is a function, f (©) denotes its i-th iteration,
and f~! denotes its inverse when it exists. Also O,,(1) is
sequence that is bounded when n tends to infinity.

3. Tetration behaviour

In this section, we illustrate the poor performance of the
MLE when 7 is constant. We focus on a particular case
where there are only two arms and m = 0. Studying
K L(P?T, | |P‘5{l ), the Kullback-Leibler (KL) divergence be-
tween P?IL and P(;F (the distributions of the vector of pulled
arms 7" with the learning rates 1 and ¢ respectively), we
show that some parameters do not separate well whatever
the statistical procedure we use.

3.1. A particular setup

It is sufficient with only two arms to look only at the time
steps at which the worst arm (arm 1) is pulled, thatis Ty = 0
and foralli > 0,T;; =inf{t >T; + 1,1, = 1}.

Indeed, only at that times, is the probability changing: with
q = % and for all 7 > 0,

_ n
q;?e m™n/q;

—a) + e T

n =
q’L-‘rl (1

Note that pY , is simply p} , = Z @A p1<e<Tiys -

i>0
We show in Lemma A.1 from the Appendix that the ¢;"’s are
decreasing and tend to 0, and that the increments T;41 — T
are independent and geometrically distributed with parame-
ter g.'.

Therefore when 7 increases, the distance between the T
increases, making it more and more difficult to observe an
error (the arm 2 is pulled). This is what we quantify in the
next paragraph.

3.2. Behavior of ¢
Define I(n) and J(n,n) as follows.

{ 5((7771) n)

Note that when 7 is constant, so is (7).

:=max{i € N, ¢/ > nm}
=max{i e N,q] >1}

The following proposition shows how fast ¢ decreases for
i > 1(n).

Proposition 3.1. Let f be the function defined as f(x) =
e3. Then, forall k > 0,

n < 1

D) +k+1 > R (2)
with the convention f©) = Id. In particular, J(n,n) <
I(n) 4+ log"(n) + 1, where

log™ (n) (f~H®(n) > 2}

=max{k €N,
Proof. See section A.1.2 of the Appendix. O

This result shows that, as soon as i > I(7), q? decreases
extremely rapidly down to 0, as fast as a tetration (that is an
iterated exponentiation) (see (Knoebel, 1981)). This means
reciprocally that the number of indices necessary to pass
from I(n) to J(n,n) is in essence bounded. For instance,
with n = 10%, log*(n) < 6: even with an unrealistic
number of observations, it means that after / ( ) + 7 errors,
which is a constant and quite small number, ¢; becomes as
small as 10723, This essentially means that this probability
becomes null, up to a reasonable computer precision.

Said differently (still with n = 10%3), the statistical problem
is almost equivalent (up to computer precision) to the one
consisting in observing a fixed number m of independent
geometric variables (with m < I(n) + 7).

3.3. Bounded Kullback-Leibler divergence

Let 7(n) = max{k € N, T, < n}. Then,

5 T(n)—1 1— qn
KL(P},|IP}n) =E { Z Tip1 — iil)logl,qs
=0 1

q 1 - T(n)

+ log =% ) +Ey|(n—Triny )logi(S

qz 1 qT(n)
2

The previous proposition leads to the following result.

Theorem 3.2 (Existence of parameters that are hard to dis-
tinguish). Let R such that 0 < Rmy < 1 and let B > 0.
There exists an integer ng depending on R, 71 and 3, a
constant A > 0 depending on m and 3 and a constant
¢ > 0 depending on m, such that for all n > ny, there exists
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* § € [0, R] such that 6 > ]

0g*(n)’
e n € [0, R] such that —5+;
15T (log ()14
such that
n (|pd
KL(P}.[[P};) < A. 3)
Proof. See Section A.1.3 of the Appendix. O

This theorem becomes really interesting in the light of The-
orem 2.2. of (Tsybakov, 2009) that tells us that if one finds
two distributions such that K L(P?f’ \ |P5{L) < A, then any
statistical procedure able to distinguish 7 from ¢ is doomed
to make an error in probability of at least 1/4 exp(—A).

It means that whatever the method, one cannot distinguish
these two parameters without an almost fixed probability
of error. This implies that any estimation procedure of n
cannot converge at a faster rate than the distance between 7
and 6, that is a logarithmic rate in O,, (log(n)~(+9).

Note that due to technicalities, § may have to tend to O but
at a slower rate than 1/log™(n), which as said previously is
almost constant. So in practice this corresponds to the case
where the learning parameters are constants.

We think the lower logarithmic bound for | — J| is very pes-
simistic and that in fact it is quite likely that the phenomenon
appear even for | — 3| = O,,((log™(n))~!), maybe to some
power, but we have not been able to prove it. In any case,
this rate is much slower than the polynomial rate we obtain
in the next two sections for a decreasing learning rate and
the truncated MLE. Moreover, simulations (see Section 6) at
least confirm that for a fixed error (say 5%), the estimation
error of the MLE is not decreasing as a function of n for a
constant learning rate.

4. Decreasing learning rate

Let us now turn to the case where the parameter n = 7,
decreases with n, the number of observations. We consider
the general case of K arms introduced in Section 2.1.

Allowing 7, to decrease with n is allowing I(7,,) to grow
with n. Proposition 3.1 intuitively shows that the observa-
tions that matter for the estimation are those obtained for
t < I(ny,). After I(n,,), the probability of pulling the worst
arm is so small that it is negligible from a numerical point
of view and almost uninformative from an estimation point
of view (see Section 3).

Truncating the observations has therefore a twofold interest:
not only are we deleting uninformative data, but we are
also removing the values in the log likelihood which could

explode at the speed of a tetration and lead to numerical
issues (see Section 6 for an illustration).

The question now is where to truncate the observations.
From an estimation point of view, it is not possible to choose
I(ny,) as a truncating value since it depends on the unknown
parameter 7,,. Instead we introduce a parameter £ > 0, and
given the number of observations n, we want to find a stop-
ping term Y,, € N guaranteeing that p‘,i’_’t, the probability
of choosing an arm & at round ¢, remains'greater than ¢ for
all t < T,,, whatever the choice of d,, in the set of possible
parameters.

4.1. The new set-up and the truncated log-likelihood

In the general setting, recall that K is the number of arms

and 7 the sequence of losses. From now on, for some «

o

fixed and known in (0, 1), let ,, = ——. We assume
nemy

that the unknown parameter 79 belongs to © = [r, R] with

0 < r < R two known positive constants.

Let0 <e < % be a fixed known threshold, corresponding
roughly in practice to the numerical precision.

The following result gives an absolute bound Y, that guar-
antees that the pi’jt’s are always larger than the threshold e.

Proposition 4.1. Lert

ned-ol e
Then

Vo €O, V< Y, VIS k<K, plr,>e

0
with 6,, = o
nem
Proof. See Section A.2.1 of the Appendix. O

From now on, we define the truncated log likelihood as
follows

T, K

=33 log(py )=k, (5)

t=1 k=1

V(SO €0, én 5 50

with 6, = f—o and Y, given by (4).
1

4.2. Upperbound on the prediction error

Let 1o € O be the true parameter, meaning Exp3 is used by
. Let

the subject with a learning parameter 7,, =
nemy

Mo = argmaxs, cg fn,e(do)-
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The estimator of the learning rate of Exp3 is therefore 7),, =
o
nem
converges to zero with n.

Theorem 4.2. For anyt > 0, and any 6,9, € O, let

. The following result shows that the prediction error

5 3, = 5
[F2 _pth% = Z |pkrft -

k=1

9

with 6,

6{,)

nomy

(resp. O, =

n — 7,0(.,1.1

Then, for all n > (R/e*)Y* and x > 0, with P, -
probability at least 1 — e~ 7,

Lrn | P 2<% x+1+x+1
T, 2P s\, T, )

where c is given by Lemma 4.3 below (c = 11 works).

Proof. See Section A.2.5 of the Appendix for a complete
proof but a sketch of the proof with the main milestones is
given in the next section. O

Note that if we take € = 10~!° the previous bound is rather
pessimistic, but for ¢ = 1072 (and K much smaller than
100), we find almost identical T, from a theoretical point
of view (see Proposition 4.1). Even in practice (See Section
6), one can show that the first time, Y, .., that the pZ"t’s
pass below €, does not vary much between both choices
for €. Since € does not impact the estimation per se (only
through Y,,), one can opt for a rather reasonable choice
of € when using this bound. The fact that passing 1072
or passing 10715 happen at almost the same time ¢ can
be linked heuristically to the tetration phenomenon (see
Proposition 3.1 that applies whatever 1 and in particular

with n = n,).

This bounds also means that if one stays away from ¢, the
behavior of the truncated MLE seems slower than the para-
metric convergence rate (that should be in T,’Ll), where
T,, represents the number of observation used in the trun-
cated log-likelihood. Nevertheless the rate is polynomial in
On(Tn'"?) = 0, (n=/2). We do not know, if this bound
is tight or not, but the simulations (see Section 6) seem to
confirm this rate.

4.3. Sketch of proof

1. By definition of 7jy, we have ¢, (7o) < ¢, <(10). By
concentrating each quantity around its compensator
in the martingale sense, we get a bound on a random
version of a truncated Kullback-Leibler divergence,
which is in turn lower bounded by the prediction error.

2. However, the concentration inequality is not straight-
forward because 7)g is random and depends on the same
sample. Hence we need to control the deviation of a
supremum of martingales.

3. To do so, we turn to the work of (Baraud, 2010),
which provides a bound on supremum of the type
Z = supsecg Y5 as long as Y5 — Y has a specific
Laplace transform that shows a certain regularity w.r.t.
a distance on ©.

4. In particular, to prove this form of regularity of the
Laplace transform, the adequate distance should con-

trol a distance on the py",’s.

Let us describe now briefly how we do these steps, starting
from step 4.
4.3.1. STEP 4: LIPSCHITZ CHARACTER OF p)

Lemma 4.3. Foranyt > 0 and 0y, 6, € ©, let

o Oy o
Ipt™ — py ||°°_1<k<1<‘p“ pk,t|'

There exists a numerical constant c (for instance ¢ = 11)
such that for all 50,66 €0,n>(R/eHYand1 <t <

Tn = (% 5) R’
5, |90 — do|
Inll o < 6
lpe™ — pe" || T R (6)
Proof. See Section A.2.2 of the Appendix. O

4.3.2. STEP 3: REGULARITY OF THE LAPLACE
TRANSFORM

Let §p € © and let

T, K
Xén = n E 60 Z IOg p]g t pZnt
=1 k=1
T, K
= > > log(win) L — w1
=1 k=1

Note that, since the true learning rate parameter is 7,,, the
quantity X, can be seen as a martingale stopped at time
Y,,, whatever the value of §,,.

The following proposition is a requirement to apply the
work by (Baraud, 2010).

Proposition 4.4. Let c be the constant defined in Lemma 4.3.
For each &y, 8} € ©2, let

C
d(8p,00) = §|50 — 8ol
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Then, for all (y,8),) € ©% n > (R/e2)Y/* and |\ <
1

d(d0,05)’

X, (85, 60))Y

£ 1A Xs—X5)) < (Ad (6, )
mle V= e (30N, 00)

Proof. See Section A.2.3 of the Appendix. O

4.3.3. STEP 2: RESULTING CONCENTRATION
INEQUALITY FOR THE SUPREMUM

Next, it is sufficient to apply the work by (Baraud, 2010) to
Yo, = X5, — X,

Theorem 4.5 (Bernstein-type inequality). Let c be the con-

stant from Lemma 4.3. Let Z, = sup (Xs, — X,,, ). Then,
SoEO

foralln > (R/ag)l/a and x > 0,

18¢

Pnn Z >7 \/ ;,J:"‘ +$+1) (7)
Proof. See Section A.2.4 of the Appendix. O

4.3.4. SOME COMMENTS ABOUT STEP 1 AND THE
GENERAL METHODOLOGY

Step 1 is very classic. Moreover, this kind of methodology
to derive non asymptotic results for Maximum Likelihood
Estimators has been already used in much more general set-
up, in particular by (Spokoiny, 2011). However note that
despite the very general nature of Spokoiny’s work, it is not
straighforward to apply it here, because the derivatives of
the log-likelihood with respect to § are not straightforward,
thanks to the recursive nature of p’" x+- Therefore we have
been forced to replace this kind of direct approach on the
derivative, by a less direct one. In particular, our general re-
sult stops at the prediction errors and we are not able to give
bounds directly on the estimation error, |7jo — 70|, because
a general control on the derivatives of the log-likelihood is
missing. We derive bounds on the estimation error only in a
specific case that we detail in the next section, because in
this case we can find recursive bounds on the derivatives.

5. Estimation error in a special case

We prove an upper bound in large probability on the estima-
tion error |79 — 7o/, only in the case when we have only two
arms K = 2 and the loss of arm 2 is null, that is 75 = 0.

5.1. A lower bound on the prediction error

To pass from the control of the prediction error to the control
of the estimation error, we need first to find an adequate
lower bound.

Proposition 5.1. Let Ny = 0 and N; = Z 1;.—1 be the

number of times arm 1 is pulled until t > 1

There exists a constant my, . > 0, depending only on m;
and € such that, for all dy,m9 € ©

TTL Tn
Z|p? p;";s 2 My e|0n _nn|QZNt2—1-
t=1 t=1
Proof. See Section A.3.1 of the Appendix. O

5.2. Upper bound for the estimation error

Thanks to Theorem 4.2 and Proposition 5.1, the following
bound on the estimation error holds with large probability.

Proposition 5.2. For x > 0 and n € N, define by

2 1
= g\/2(10g 2T, +z)Y2 + log2Y,, + x

There exists a constant M, . > 0, depending only on
and € and a positive sequence B, verifying

1
B, :=—-71, n(1),
18 +0,(1)

such that for all n > (R/<%)= and x > 0 such that B, >
Gy (x), with Py, -probability at least 1 — 2e™",

,/(x+1)Tn+x+1>2

Bn - Gn (Z)

|7/7\0 - 770| S Mﬂ'l,s <

Proof. See Section A.3.2 of the Appendix. [

Proposition 5.2 shows that for large n, |9 — ol

O(T;%) = O(n~ 1), which means that the truncated MLE
converges at a polynomial rate, which is slower than the
classic parametric rate, but clearly faster than the logarith-
mic rate obtained in Section 3 for a constant learning rate.
As for the prediction error, we do not know if this rate is
tight, but it seems to be confirmed by the simulations (see
Section 6).

6. Numerical illustrations
6.1. Numerical set-up

All the simulations have been conducted with R. The simula-
tion of the n iterative subject’s choices have been simulated
according to an Exp3 algorithm with a given learning pa-
rameter 7, K arms and losses given by 7 = (71, ..., Tk ).
Note that if the p; k+ are too small, the Exp3 simulation stops
because "NA” can be returned when evaluating (1). In all
the simulations that are proposed here, thanks to the choices
of n and 7 this has never happened.
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6.2. Constant learning rate

We choose 17 = 0.3. The log-likelihood is given by

V5 € (0.1,0.8), £,( Zn:

o
L

log-likelihood
Probability

0.2
L

—~6000 -5000 -4000 -3000 2000 —1000
L L L L L L
0.1
L

o0

Figure 1. Log-likelihood. On the left, the log-likelihood with the
MLE in red. The simulation is performed via the Exp3 algorithm
with K = 2, 7 = (0.8,0) and n = 0.3. The value of the log-
likelihood at § = 0.6 is ~Inf. On the right, evolution of p ,
(plain black) and of p‘f,t (dotted black), with 6 = 0.6. After
n = 20, p‘ls,t is considered as null by the computer.

Figure 1 shows the shape of the log-likelihood when K = 2
and 7 = (0.8,0) on one simulation. For some parameters
d, the log-likelihood is computed as —Inf because some
probabilities become null for the numerical precision (see
the right part of Figure 1). Because of this repeated —~Inf
value, we have not been able to perform simulations for
such large n with more than 2 arms.

In the situation with K = 2, # = (0.8,0) and = 0.3,
we maximised the log-likelihood thanks to the function
DEopt imin R inside the interval (0.1, 0.8), with the default
parameters and a maxiter value equal to 50. With this choice
of set-up, DEopt im returns a correct estimator (red point in
Figure 1), but note that the log-likelihood is very flat around
the MLE so that spurious estimation is likely.

We performed 100 simulations of this situation for various
sample size between n =500, and n = 30000 (see Figure
2). If the variance of the error decreases with n, the general
tendency of the estimation error does not. The Spearman
rank correlation test does not detect any decreasing character
of the 95% quantile of the error as n increases. This is in
total adequation with Theorem 3.2 which basically states
there are some d, 7) that cannot be distinguished whatever n.
Hence the simulations corroborate that estimation cannot be

1
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@®

4
o
--# oo o o

e

T 1 1 1 1 T T T 1T 1T 177
500 4000 8000 14000 20000 26000

0.00 0.02 0.04 0.06 008 0.10 0.12

Figure 2. Estimation error when 1 = 0.3. In the set-up of Figure 1
boxplot over 100 simulations of |7) — 7| /7. The red squares are the
95% quantiles. The Spearman rank correlation test of decreasing
character of these 95% quantiles has a p-value of 0.39. The red
horizontal line is the mean of these quantiles.

done in a satisfactory manner when 7 is constant and also
suggest that even the logarithmic lower bound of Theorem
3.2 is pessimistic.

6.3. Decreasing learning rate and the stopping criterion
0.3
mn®

The truncated log-likelihood is defined by

Here we choose o« = 1/2,n =n,, =

Trmaz

Z Zlog pk)t 1It=k

t=1 k=1
(10)

Vdo € (0.1,0.8), ¢

Following the set-up of Section 4 and also to avoid values
—Inf for the log-likelihood, we stop the log-likelihood, for
a given ¢, at

Ymax = sup{t € N: pj7, > &, Vo, € grid,, Vk},

(11
with grid,, a regular grid of 50 points in (-2, ﬂ?'\%)

and1 <k < K.

Note that Y, is random and larger than the theoretical
choice T,, of Section 4.

For a fixed n taking various values between n = 500 and
n = 30000, we perform 100 simulations with K = 4 arms
and 7 = (0.8,0.6,0.4,0.2) and computed each time the
corresponding Y ... The average is shown on Figure 3. In
particular, we see that the bound Y, in \/n in Proposition
4.1 is a tight bound that reflects well the behavior of the
first time to cross €. We also see that the value of ¢ has
almost no impact on the choice of the truncation inside the
log-likelihood, since all curves are almost confounded.
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eps=0.01
eps=0.001
+ eps= 1e-07

eps=1le-15
& eps=1e-30

500
|

Tmax
200 300 400
| | |

100
|

T T T T T T T
0 5000 10000 15000 20000 25000 30000

n

Figure 3. Evolution of Y',ax as a function of n for different €. The
points are the average of the Y, over 100 simulations with K =
4 arms and 7 = (0.8,0.6,0.4,0.2) and n = 1, = 0.3/(m1v/n).
The curves for the different values of € are found by regression of
the points on the square root curve.

6.4. Performance with decreasing learning rate

We take again n,, = We perform 100 simulations.

0.3
1 \/ﬁ '
The sample size n takes various values between 500 and
30000. We maximize the truncated log-likelihood given
by (5) truncated at Y,,,, given by (11) with ¢ = 1077,
thanks to the DEopt im function of R. We consider two
cases: K = 2 arms with 7 = (0.8,0) and K = 4 arms with
7 =(0.8,0.6,0.4,0.2).

Figure 4 shows that, as expected and for various set-up, the
prediction error seems indeed to be decreasing in n~/* (see
Theorem 4.2).

The estimation error is illustrated in Figure 5. For the case
K = 2,7 = (0.8,0), we observe as expected that the
error decreases in n~1/8 (see Proposition 5.2). For the case
K = 4 and 7(0.8,0.6,0.4,0.2), which is not covered by
Proposition 5.2, we still observe a decreasing character of
the 95% quantile as a function of n (p-value of the Spearman
rank test in 9.1075), but it seems to decrease much slower
than n—1/8.

7. Conclusion

In conclusion, we have shown that the estimation of the
learning rate in Exp3 cannot be done correctly if the true
learning rate parameter is constant, that is the estimation
rate is at most logarithmic. But the MLE on truncated
observations can estimate adequately learning rates that
are decreasing at a polynomial rate with the number of
observations. Note that the rate of convergence that we
have shown either for the general prediction error or for

0.006 o.008 o0.010
L L
0.0030
I

0.004
L

0.002
L

el ([Hoali

T T T T T T T T T T
500 4000 8000 12000 18000 24000 30000 500 4000 8000 12000 18000 24000 30000

0.000

Figure 4. Prediction errors as defined in Theorem 4.2. On the
left, K = 2 and 7 = (0.8,0). On the right, K = 4 and 7 =
(0.8,0.6,0.4,0.2). 95% quantiles are in red. Spearman rank
correlation test detects in both cases that the quantiles decrease
with 7 (both p-values < 2.107'%). The red line is obtained by a
regression with respect to n~1/4,

0 0 3 T

N L
PPN gty 0y 20700 1

iig;ﬁi?iivgiiq

\\\\\\\\\\\
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

FTTTTTTTTTTTITTTTT
500 4000 10000 16000 22000 28000

FrTT T T T T T T T T T T TTT
500 4000 8000 12000 18000 24000 30000

Figure 5. Estimation errors |7 — n|/n. On the left, K = 2 and
m = (0.8,0). On the right, K = 4 and = = (0.8,0.6,0.4,0.2).
95% quantiles are in red. Spearman rank correlation test detects in
both cases that the quantiles decrease with n (on the left p-value
< 2.107'%, on the right p-value= 9.107°). On the left, the red
line is obtained by a regression with respect to n=1/8,

the estimation error in particular cases are not the classic
parametric rate.
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Even if Exp3 is a toy learning model with respect to the vast
literature in cognition, we believe that these phenomenons
appear in a large variety of models well used in practice
such as for instance (Kruschke, 1992) or (Gluck & Bower,
1988) and that our theoretical conclusions should be kept in
mind even when working on more realistic models from a
more practical point of view.
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A. MISSING PROOFS

The Appendix contains the omitted proofs, as well as some indications on the numerical illustrations.

A.l. For a constant learning rate

In this section, we include the proofs and results used for the study of the Kullback-Leibler divergence for a constant learning
rate. Technical lemmas used throughout the proofs are gathered in Section A.1.4.

A.1.1. PROPERTIES OF ¢,

Lemma A.1. The following properties hold:

(i) Letn > 0. The sequence (q;');> is decreasing to 0 as i — +oc.
(ii) For alli € N*, the function  — q; is decreasing.
(iii) The sequence (T;);> is non-decreasing. Moreover, T; — +00 as i — 400 almost surely.

(iv) Let n > 0. Under the distribution with parameter 0, for all t € N, the T;;1 — T; are independent and geometrically
distributed with parameter ;.

(v) Let S,, = >}, I, be the number of times the worst arm is pulled before time n. Then, S,, — +00 as n — 400 almost
surely.

(vi) Letn > 0. The sequence (p?,t)teN* is decreasing to 0 as t — +o00 almost surely.

Proof of (i). Letn > 0. We show that (¢}');>¢ is a decreasing sequence by induction. Denote by g the function defined for
ally > 0and g > 0 by

9(v,0) =0, /
qe~Ym/4 1 (12)
= = 0,1 h 0.
g(,}/?q) (l_q)_j’_qe—'yﬂl/q (%_1)e’yﬂl/q+1 S ( 1) ] W enq>

This function is continuous in both its parameters. The denominator is an increasing function of 1/¢, and thus ¢ — ¢(7, q)
is an increasing function.

—2nm . . . . . .
Moreover, q] = % > e qy. Leti > 0, and assume g;' ; > ¢;. Since g is an increasing function of ¢, by the

Te-27m1
induction hypothesis,
0l =9(n.q) <gn.q_1) = q;.
Hence (g;')i>o is decreasing. Since it is lower bounded by 0, it converges to some m € [0, 1/2]. Since g is continuous in its

second parameter, m = g(y,m), that is
me=mn/m

"= (1 —m) + me-mn/m’

or equivalently,
m(1—m)(1 —e ™™ =0,

which admits only one solution in [0,1/2]: m = 0. O

Proof of (ii). We show that ) — ¢ is a decreasing function by induction on i € N. Let § < 7. Firstly, for i = 0,
q = qg = 1/2. Let ¢ € N, and assume that qf > ¢;'. The function g from (12) is decreasing in its first parameter and
increasing in its second, therefore

a1 =9(n,q}) < 96.q47) < 9(6,d)) = a0,

hence the result by induction. O
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Proof of (iii). By definition of T}, T; 11 > T} and T; > 1, hence the result. O
Proof of (iv). By definition, for all ¢ € [T; + 1, T;41], p; = ¢/, and therefore, for all s > 1,

PU Ty = Ti = 5| (L1 — Tj)jzi) = 3 PUIESE T = 0, Tjps = 1| Ti = k, (Ty1 — 1)) )P (T = k | (Tj1 — Tj) i)
k>1

¢ !> PUT =k | (T — Tj) )

E>1
=(1—¢/)""'q,
which shows that T;; — T; is geometrically distributed with parameter ¢, and independent from the other 71 — T;. [
Proof of (v). The sequence (S,,),>1 is non-decreasing, so, almost surely, it either tends to +-co or it converges to some limit
m € N.
Consider the event where lim,, S;,, = m € N, then on this event, T,,, < 400 and T;,, 11 = 400, in particular T}, 41 — 15, =

~+00, which is an event with probability zero by (iv) since ¢!, > 0 for all m € N. Therefore, P"(lim,, S,, < +00) =0. O

Proof of (vi). First, note that py ; = qgtil, where (S}, ), >0 is defined in (v), with the convention Sy = 0. The sequence

(Sn)n>1 is non-decreasing and tends to +oo almost surely by (v). Combining this with (i) shows that (P?,t)tg is non-
increasing and converges to 0 almost surely. O

A.1.2. PROOF OF PROPOSITION 3.1: TETRATION BEHAVIOUR OF THE UPDATED PROBABILITIES.

Let us show by induction that for all k > 1:

n < Qmin(nﬂlaq?(n)+k) < 1
Irm)+k+1 = 7 (2) = fm2)
Foranyn > 0andi > 0,1 — g + g/e”"™1/% > L because ¢! < L. Therefore, ¢, ; < 2¢7e~"™/%'. In particular,
q’ < q?(n)+1€7777r1/q?(n>+1
I(m)+2 — 7 —nm1/ 777
L= Gigyer + Gryae 0
< 2q]() g0 o
2min(nmy,q; ) 1
: -1 > AI(n)+1
= 2min(rme gy ) ¢ = Ty S )

Let £ > 2. Assume the result is true for £ > 2. Then,

n n =071/ 4] 0y s k1
Uy+k+2 = 200 () 1r41© !

< 2 min(nﬂ'l, ) . e_7l7r1f(k)(2)/(27]7r1)

n
91 (m)+hk+1
1
n
U (m)+ht1) ef®(2)/2
2min(nm, ¢7 )4 ji1) 1
- .
< Flet1) (2) = fl+D) (2)

< 2min(nmy,

Let us study the monotonicity of the sequence (f*)(2))x>0: f(9(2) = 2 < e = f(1)(2). Suppose the result is true for
k € N. Then, since f is increasing,

FP@) < fH(2) = fED(2) < F(2).

Hence, (f(*)(2))>0 is increasing.
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thatis k+I(n)+1 > J(n,n) + 1. Letlog"(n)

For the second part of the Proposition, ﬁ(z) < % implies q?(n) ka1

be defined as in Proposition 3.1. For all kK > 1

1 1

=log™(n) + 1,

because the sequence (f*)(2)), ., is increasing. In particular, taking k

J(n,n) < I(n) +log™(n) + 1.

A.1.3. PROOF OF THEOREM 3.2
The proof is divided into two parts. We first show that the KL divergence can be bounded, up to an additive constant, by a

sum whose number of terms is bounded by J(n, §), that is

e e_q | ]
L0 (I (n,6) + D1 = g ) T+ 10, (1).

KL(P},|[P};) < Z

We then show the existence of § > 0 and n > J, as in the theorem, that verifies that the KL divergence is bounded

—<O.

i

)

Proof of Theorem 3.2. Let us split the KL divergence into three parts. Assume in the following that > 4, so that log

Recall from Equation (2) that

n—1
1— q7l n
KL(P?;LHP‘S{L) = Z Eyllr <n(Tiv1 —Ti — 1) log - “ +1r,,,<nlog %
=0 7 7
1-q,
+E, [(n — T (ny)log 75()
1=
J(n,8) 1— qn qn
= 3 Eylrien (T — T~ Dlog =% 15, <, log L]
i=0 1-¢ K
A
n—1 —q" n
+ Z E [1T+1<n(Ti+1*T *1)10g1 . Jr]-T 1<n10g 5]
i=J(n,6)+1 qz @
B
"
+ En [( - T(n)) log 77(70
e

C
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Since 0 < ¢! < qf and log(1 — -) is non-increasing and 2-lipschitz on [0, %} foralli > 0, if dmn > log2 and n > 3,

n—1
1—g7
B< Y EAhﬂéﬁnH_qwh%l_?

i=J(n,8)+1 i

n—1

< Y nPy(Tipr <n) x2(q) — qf)
i=J(n,0)+1

n—1

<m > g

i=J(n,8)+1
1 —57\'17’Li

by Lemma A.3
n—2 ; € y

6
ST S 12

<2n

For the same reasons,

- qzm]

1 =@

C = Ey[(n— o)) log

< 2nE, [¢) )]
= 2nEn[q£(n) 1T(n)§J(n,5)} + 2nE7] [Qi(n) 1T(n)2,](n,5)+1]
1
< 2n x §Pn(7(n) < J(n,d))+2 by definition of J(n, d)

= nPn(T](n75)+1 > n) +2
n

|7
< n(J(n,6) + 1)1 = g}, 5) T L2 by as)

Finally, provided that nmin > log2 and n > 3,

=
3

6) .

1—¢
Eﬂ[lTi+1§n(Ti+1 =T — 1)] log 1— Zzg

2

A

™

Il
=]

7

<

S

(n,9)

(67 — a7) {Eg[Tivs = T AnPy(Tips < n)}

™

I
=)

i
J(n,9)

1
2 @ —q’ {
( ) 7

i=0 i

IN
>

A an;'} by (18)

U LA 00) 5 2 fee
i 44 —nmin(i—J(n,n)—1
<2 z 7 +2n_2} > emmn=J=h by Lemma A3
=0 i=J(n,n)+2
Trm+DAI(8) 5 n

q; —4q; _
<2 Z C 7 L 12ne” 1T,
i=1

Therefore,

(T +DAT(n,6) n

5 g _n
KLPLIPR) <2 ) % + (I (n,8) + 1)(1 = gl 5) 7O T 4144 120e71mn,
i=1 i '



On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

From Lemma A.5, by monotonicity of the sequence (g3 /g}) k>0,

n

0 n E 7S
BGins) ~ Ui : :
)T (T (0,0) + D=, ) T T 14 1memmn (13)

KL(P},

P.) < 2J(n,0 5
45(n,s)

By Proposition 3.1, for any 6 > 0 such that 6w > +,
I1(6) < J(n,8) < I(6) +log"(n) + 1.
Let R > 0 be such that £ < Rm; < 1/2. By the inequalities above, for any § such that + < émy < Ry,

J(n,8) — J(n, R) > 1(5) — (I(R) +log*(n) + 1).

From Lemma A.6, I(§) > I(R) + log*(n) + 1 (and thus J(n,d) > J(n, R)) as soon as

1 2
—2>— —4+log" 1
2(571'1 Rﬂ'l + & (n)+ ’

that is when )
2my

0 < - .
Ril +log*(n) — 1

1
27

Ril +log"(n) — 1
of y — q}(m R)+1 and the fact that its limit is 1/2 (resp. smaller than 1/n) when v — 0 (resp. R), for all n > 2, there
exists § € (0, R) such that qf;(n,R)H € [5,1). Let 6, be such a 6. In particular, .J(n,d,) < J(n, R), thus is equal since
d — J(n,d) is non-increasing. Therefore,

Therefore, by contraposition, choosing § such that J(n,d) = J(n, R) implies § > . By continuity

1 —
e Um)

Rer +logt(n) =1 7 log™n T log'n

(14)

for n such that log™(n) > Rim — 1. As a consequence, d,mn > 1V log 2 for all n > ng, for some n that depends only on

R and ;. From Lemma A.7, for any 7 > 9,

Q?Zn,(;n) - QZ(n’gn) < G(n, 571)(77 — 6n),

where

s )7y J(n.62)
8 (7) - 8 on
G(n,0n) = - =2 ( )

5nW1 57,871'1 —1 - 5n7l'1

In particular, for 7,, = §,, + W,

G(n,dn)

On _ Aln < . 15
qJ(n,zSn) qJ(n,én) — (log n)1+5 ( )

Note that %25)2 — 0 asn — +oo for any o > 0. Indeed, by Proposition 3.1 and Lemma A.6,
J(n,0pn) +1<I(0,)+1og"(n)+2< —4+4log™(n) +2 < 9log*(n) (16)

OnTi

2

by (14), as long as n is such that log*(n) > yo

O(log*(n)loglog®(n)) = o(loglogn).

— 1, which also entails % < 4log*(n), so that log G(n,d,) =

701
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Therefore, since qg? by Lemma A.4 and the assumption qi’gn_ sy = 1 /(2n),

(57T1
n,0p) Z log(2n)

Mn _ ’ > 17
Linsa) = log(2n)  (logn)*# ~ 8log*(n)logn (an

for n > ng, for some ny depending on R, 71 and S. Therefore, by (16),

| STew AR
) 410 = 50 T I <0000+ (1 g ) 000
n 1
<n(J(n,d,) + 1) exp <_LJ(n7§n) + 7 8log*(n) 10gn>
* n 1
< n x 9log™(n)exp <_L910g*(n)J 8log” (n) logn)

= 0,(1),

where we used log(1 — z) < —z for z € (0, 1). Injecting this result in (13), and since 7, m1n > logn for n > ny, for some
ny, that depends only on 71 and S,

n

6’71,
9 in5,) ~ Din _
KL(P|IP}) < 2J(n, )= =000 414 4 q9pemmn/Gosm™ 4o (1),
b ©r(n.5.)

Using (15) and (17), for n large enough,

G(n,9n)
(logn)'*7
I

KL(PT:

Pin) <2J(n,d,) + 14+ 0,(1).
8log*(n)logn

8log* (n)G(n,d,)
(logn)?

< 18log*(n) + 14+ 0,(1)
— 14+ 0n(1)

since G(n, d,,) V log™(n) = o,((logn)®) for any o > 0. Note that this 0,,(1) only depends on 71 and 3. Therefore, there
exists Ag », > 0 depending on 7; and 3 and ng € N depending on 71, R and 3, such that for all n > nq,

KLPRIPY) < Agom,.

O
A.1.4. TECHNICAL LEMMAS
Lemma A.2 (Bracketing the c.d.f. of T;). Letnp > 0. Foralli € N,
L—i(l =g ) <PUT <n) <1 (1—ql )" <ngl . (18)

Proof. Since T; =T; — Ty = ZZ;B(TICH —Ty) >T;, — T,

i1
PN T, <n)= P"(Z Tpyr — T <)
k=0
<PNT; —Ti-1 <n)
=1-(1—g¢/ ;)" by Proposition A.1 (iv)
<1-(1-ng] ;) =ng] ; byBernoulli’s inequality.
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On the other hand,
n i—1
PUT; <n) >P'(Vk €{0,...,i =1}, T —Tp 1 < [=]) = 1= (1—g_)'* by union bound
i
k=0
>1—i(l—ql ),
which concludes the proof. O

Lemma A.3. Foralln > 3 such that nmin > log?2, foralli > J(n,n) + 1,

n 1

> (=T () ~1)
T n-—-2

€

In particular, under the same conditions on n and n, for all i > J(n,n) + 2,

e~ nmin
< e*’l’]ﬂ'ln

q; <

n—2

Proof. Write h : (z,y) € (0,1) x Ry — 22— so that ¢/,; < h(q}, ). This function  is increasing in z and

-z’ 1) g,

decreasing in y.

Now, let k& > 1, and assume that there exists 0 < ¢; < n such that qf}(ank < ﬁe‘"”l”'(k_l). By definition of J(n,7),
this holds for k = 1 with ¢; = 0.

<1 s

Since i > ¢} is decreasing and J(n,n) + k+1 > J(n,n), qg(n)n”k“ <4,

nmi 1 _ k 1
i < Thy= - ¢mn
ks S Qo ks 770) = e Qe ——TIC

efnwlnk

n—cp— efnﬂln(kfl)

thus the same inequality holds for q;(,,n)4+x+1 With i1 = cp + e~mmn(k=1) "and for all k > 1, ¢, < % Since

—e—nTin

nmn > log2, ¢y < 2 < nforall k > 1 (and n > 3), which concludes the proof. O

Lemma A4. Letn > 0. Foralli > 0,
> N

9 Z T 177 N
IOg(l/qinJrl)

In particular, for all i < J(n,n) — 1,
N

7>
"~ logn

Proof. First, for any ¢ > 1,

n i/l n
l e g ,
diz1 Giz1  —nmi/a), < g—nmi/d],

n
K L—q] ) +q] e ™/~ 1—ql,

since ¢, ; < 1/2, which leads to the first inequality.

For the second, recall that by definition, for any ¢ < J(n,n), q;’ > %, and use the first inequality. O

)

Lemma A.5. Let 6 > n > 0. Then, the sequence (q—ﬁl) is decreasing and tends to 0 when i tends to +oo.
q; /i

>0

5
Proof. Letu; := Z—% for all ¢ > 0. Then, by definition of q? s
(2
e~dm/a: (1—g]) +glemm/a
(1—q?) + gleom/al emmm/al

Uj41 = Uj -
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e—1m1/4q

Let h(q,v) := =g g/ Then, forall0 < ¢ < 1and~v > 0,
oh ,ﬂef’ym/Q(l —q+ q€77771/q) _ e*"fﬂ'l/Q(fﬂ—le*Wﬂ/Q)
q

3
(1 —q+ qe*V“I/‘?>

_%e*vm/qo — q)
= 2 < 0.

(1 —q+ qe*”l/‘l)

And, forall0 < ¢ < landy > 0,

o %e_%/q(l g+ qe—'m/q> _ e—m/q( — 14 e rm/a(1 + %”))

2
(1 —q+ qe‘"Y“l/q>
e/~ g) — e M/A(-1 4 e

2
(1 —q+ qe_’YTrl/Q)

s e _ e—m1/q
i Sl > 0.

P
(1 —q+ qe*”l/q>

Hence h is decreasing in y and increasing in q. Let i > 0. Since § > 1, ¢ < q; and u; > 0,

< hia;m) _ 4
Wit+1 h(qfv 5) h(q:]a 5) h(ai'm)
S T Rl S Rl ol g/l —Gein
) a; 57 q; 57 = 1—q,."+q,."e_5"1/q? : S—nmi/ay ~ e i —0
since q? — 0 when 7 — 4o0. Therefore, (u;);>1 is decreasing and tends to 0. O
Lemma A.6. Ler 1) > 0 such that nmy < 1. For all i < I(n),
1 1
5 —inm < gl < 5—2’%. (19)
Therefore,
1
-2<1I
o XS (n)
and when nm < %,
2
I < ——-4
(n) e

Proof. Let’s prove (19) first, starting with the lower bound. For all 7,

M1 — " _ o—nmi/q}
n_n _ % (1-g¢g)d-e °) < 1] — e—nm/aly < ML _
4 1T T @+ qle i = q'(l—e ) < g a N1

1—q;

since —————t 7
1—q; +q;e i

<1land1 — e~ < z. Thus, by summation,

— 777T1i.

DN | =
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Conversely, for all i < I(n),

10— g)(1 — e /)
1= g +qgjemm/al)

> (1 - q))g (1 — e /%)

n n _
4 — 441 =

1 2
> (1—q)(nm — 5(772;) ) sincel —e™® >z —2%/2

1
>(1- 5)(7771'1 - %) since nmy < ¢ < 1/2fori < I(n)
nm
T

The upper bound on ¢;' follows by summation. For the bracketing I(7), by definition of I(n) and (19),

N> Gy = 5 — L) + nm
and when nm; < 1/2,

1 nmy
nm < q[(n) < 5 —1(77) 4
Therefore,
1
—2<I(n) < — —4
2777'('1 7771'1

Lemma A.7. Let § and n such that Tr% >n >0 >0. Then forall i > 0,

8 (T)i—l

8
0<q)—q! <=5 -—F—
oy

Proof. Let

—om1/q
qe
91(6,q) =

: 1 1
From Equation (21), for -~ >7 > 0and g € 0,3),

1—q+qedm/a’

(1~ g+ qge-nmm/a)?
e 1m/4
STy
< 2me /1,

991(n,q)| (1 —q)me 1m/1
on

since 1 —q + qe” "™/ > 1 — g > % And from Equation (22), for 7%1 >n>0andq € (0, %),

8¢ (1—q+qem/a)?
e~nm/4q
S p 4(1+777T1)

—nr 1— s
dg1(n,q) _ €™/ + S

e~ Mm1/q

q

In particular, since m; < 1 < %,

)

ax <391 éz, q)

I a) [\ o ge ™" _ 8
an -
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where we used e* > x applied to x = 5%. Let 7 > 0, then by the mean value theorem, for all 7 > 0,

5 5 5 5
diy1 — qg+1 =qi+1 — 91(n,q7) +91(n,q7) — (Jfﬂ

—6771/q,‘-5

e 7

SST (qf—q?-l—n—&)
< S (@ +n-0)

= 57’(1 % %

Therefore, since qg = q, = 3, iterating this equation leads to: for all 7 > 0,

The inequality qf — ¢ > 0 follows from the fact that § — ¢’ is non-increasing, see Lemma A.1 (ii).

A.2. For a decreasing learning rate

In this section, we prove all the results concerning Section 4.

A.2.1. PROOF OF PROPOSITION 4.1: CHOICE OF A STOPPING TIME.
Letnge®and1 <k < K.

e~ TR/ PR K
e r—k+ jz_:l -

j#k

nn
P4

Tn n ,—MNMnT;j /P
pji) T pjie o

Tin
P4

1- ijLt) + Py

MNn _ .
P41 = ( 17—

For any q € [0,1], 1 — ¢ + ge~"™*/9 < 1. Therefore,

K
N M —Nn Tk /PR, 7 )
Pili41 = Pr€ Rtlp =k + Prylr=j-

j=1
ik
Since e /PRl < 1,
K o
— n _ nn _ nn k
Phippr 2 Dye TP L g D pile T P = plre TP > plly (1= SR = ply = i
i—1 Kt
T
Summing from 1 to t, since pil = %,
Mo 1 ‘
— — n,mt.
pk,t - K NnTk
. 1 n*p. .
Hence, choosing 1, = {(? — E)fJ implies that forallny € ©,t <Y, and1 < k < K,
1 R 1 1 1 1
e < K e m Y, = ' R,m T, < e N1 Ly < ' NaTk Ln < ya Mt < pz,t'

A.2.2. PROOF OF LEMMA 4.3: LIPSCHITZ CHARACTER OF THE UPDATED PROBABILITY.

Recall that, forng € ©,forall 1 < k < K, forallt <Y, — 1,

M ,—NMnTk /pﬁn K Tn
Pl = il - 1o+ Pt 1
kit+1 = M o /Py TR n; s /P I
(1 _pk7t) —|—pk’te Tk PR j=1 (1 _pj,'Z) +pj:te nTi /Py

J#k
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For all 1 < k < K, denote by hj and g;, the following functions:

1 —nm
hi(n,q) = [ E——yr and  gx(n,q) = ge~"™/ "y (1, q).

Then,

K
Plir = 96 P Lr=r + Dk (s ) 11—
j=1

ik
Let dp, 0, € ©. Let 1 < k < K. Then, forallt <Y, — 1,

K
O 8 dn o O dn 8 o
|pk,t+1 - Pk,t+1| < |9k<5mpk,t) - gk((xwpk,t)'lft:k + Z |pk,thj(5mpj,t) - pk,thj((xmpj,t)|llt:j-
j=1
K

(20)

The following lemma controls the derivatives of hj and g and is proved at the end of the current section. Recall that
m > m, > 0 for all k.

Lemma A.8. Letk € {1,...,K}. Foralln > 0 such that nm < 1,

0<h(n,q) < 1=

0 < e (n,q) < gy (2 A1)
oh

0 < T;(%Q) < 1_71;7171-1

—m1 < %2 (n,q) <0
0 1

0<%xn.49) < g2

Let us now consider the two cases. Let ng be such that Rn, * < €2, so that N1 < ¢? < eforalln > ng and Ny € O,
and let. Rn = nfm. Recall that 1,, = (% — €)% is chosen such that pZ':Lt > ceforall k,t < Y, and g € © with
Proposition 4.1.

e If I, = j # k, then, by the triangle inequality,
137 1 = Dl < (P (B 0 — D2 (8l )|+ (2 (81, 0) — i (8L,
< (B, B) — g (8, P00 | + oy (3L, 0 P27, — pin |
< N (8 ) — Ry (B 0|+ 1Ry (B 03) — By (81, D]+ g (8L, ) 05 — P2 oo

Then, by Lemma A.8 and the mean value theorem, for all n > ny,

5 5! 1 (R,m1)? s 5 m ,
n _ n < n o__ n 6 _ 6 .
e~ el < (1o + s ) I =3Pl + =16, = 1

o If I; = k, then, by the triangle inequality, Lemma A.8 and the mean value theorem, for all n > ny,

on 5, Sn Sn Sn S
|pk,t+1 - pk,t+1| < ‘gk((snapk’t) - gk(5,/1,pk’t)| + ‘gk(éiupk,t) - gk(éiwpk’t”
1 5 5
< |y — 0| + AR Iy — i
n
1

<m0 = O]+ 7 — P o
— 7T1| n| + (1 _Rnﬂ_l)g ||pt Py ||

Thus, almost surely, foralln > npgandt <Y, — 1,

1-— Rn’/Tl —+ (R”Trl )2

)

5 _ O
(].*R ’/T1)2 ||pt — b ||OO+

5y, 5n m
Hpt+1 _pt+1||00 <

1-— Rn’ﬂ'l
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Now, [|py" — pi"
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s = 0, so that

s—1
5! — Rnm +( fam)2
" -0 .
=t < =03 (L
The latter quantity is an increasing function of ¢, thus for all t < Y,
5 dn
lpe" — Pt

T,—1
1—Rn,ﬂ1+(@)2 1
, (1_Rn771)2 -
o < ————|6, — 0
- 1- R | nl

1,an+(@)2 1
(I—Rnﬂ'l)2 -
Now,
1 _ Rnﬂ—l + ( nT1 )2
=14+ R,m +u
(1 — Rn’ﬂ'l)z "
where 0 < u < C(an)2 for some numerical constant ¢, for instance ¢ = %, since R,m <¢e? < i. Therefore
T
1-R,m + (L"Em )2
(1 — Rnﬂ'l)2

1

K

w1

) =exp((YTy, — 1) log(1 + R,m1 + u)) = exp(YTpRym + @)

where |u| < R,m + ¢Y,(R,m)? for some numerical constant ¢, for instance ¢ = 22. Recall that T,, = (
—c .

R 9

so that |a| < 12R,m; < 3 and
nT1

% —¢)

T,—1
1—-R,m + (”7”1)2 1
(1 — Rnﬂ'l)
All in all,

= exp(? -

) exp(a@).

5’ ™1 Op — (5/ 1
55— pin o < 9 = Onl (exp<

— —¢g)exp(u) — 1
R,m +u K ) exp(@) )
0o — O
< C/| 0 O|
R
for some numerical constant ¢/, for instance ¢’ = 11

Proof of Lemma A.S. Firstof all, usinge™ > 1 —xand1 —nmp > 1 —nm >0

1 1
hi(n,q) < < :
1- NTg 1-— nm
Let’s study the derivatives of hy,
Ohy 1 — e m/q(1 4 1Tk)
87(777(1): _W/QQ >0
q (1 —q+ ge—mmx/9)
since e *(1 + x) < 1, and
s (UL DG L L
Ohy, —(n,q) < (1—q+qe""k/9)2 = (1—-nm1)? lfnﬂk/q <1
3 (1—q+qel_"’rk/q)2 < a T}Trl)Q if 777Tk/q >1
Similarly, since 1 — ¢+ qe™* > (1 — q)e ™ + ge~* = e~ % forany z > 0
%( q) _ ﬁke_nﬂ'k:/q T < m
an " (I—q+qe /92 = 1—qm, —

1—nmy
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Now let’s study the derivatives of gi. For all ¢ € (e, 1],

Ogr(n,q)  —(1— q)mpe 1™/ <0 2
o (1—q+ge /a2 =7
Thus,
_Ogk(ma) . (A—a@me  _ e <
6’{] 1—q+q6 nmk/q - ’
and
U — Nk _ Oh(n, q)
ZIRNPE) TR/}, U7k nﬂk/qh N7k /q ’
94 e k() +4q 2 k(n,q) + qe 9

e_nﬂk/q N _ B Nk
— 1 1— nmr/q 1 — e mk/4(q
s (0 ) = g g g1 = a4 T

e*nﬂk/q(l + M)

— q
= A —grger 20 (22)

Now, since e* > 1+x,1+% §1+% < emk/4) g0

Ogr(n,9) _ 1 < 1 < 1
dq (1—q+qe mme/a)2 = (1 —nmp)? T (1 —nm)?

A.2.3. PROOF OF PROPOSITION 4.4

Y, K
For g € ©, recall that X5, = ¢, (o) — Zlog e ) . Fort > 1, let
t=1 k=1
K
On
= log(py)lr,—k
k=1
and let
" =, 117 = 3 st

be its compensator. Then, X;, = Z;rz"l (Y2 — CP"). Since 7y is the maximum likelihood estimator, the following
inequalities hold:

T, -
(Cim = C™) <y (M) — bne(no) — Y (C™ —C™)
t=1 ~ P
T, )
=y = (- )
t=1
T,
< sup Z(Yt‘sn — Yt"" _ (CE” _ Ctn"))-
50€0 1.
t—1 , /
Let 00,0, € ©. Let Z; = Oand for2 < t < T, let Z; = Z(Y:ﬁn vy (% — an)). Then, (Z); is an
s=1
(Ft)¢-martingale. Indeed,
5! 5 t—1 5 5
En [Zera|Fe) = By, [V = YH | F] = (CFr = ) + D (Yo =Y = (Chr =€) = Z.
s=1

=0
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Let A} = Zt E,.[(Zs — Zy 1 )F|Fs_1]ift > 2and 0 if t = 1. Let A > 0. From Lemma 3.3 in (Houdré &

Reynaud-Bouret, 2002), the sequence (&;);>1 defined for all integers ¢ > 1 by
& = exp(\Z; — Z FA
E>2
is a supermartingale with respect to the filtration (F;);. As a result, for any ¢t > 1,
E, (€] < Ey 6] = 1

Therefore, for any ¢ > 1,

2\E
By, [exp(AZ))] < By, [exp(} 77 A7) (23)
k>2

Let t > 2. When there exists a constant C'z such that | Z; — Z,_1| < Cy for all 2 < s < ¢ almost surely, it holds for all
k> 2,

t
|AF| <D Ep [(Zs — Zo1)?| Fan]CE 2 (24)
s=2
Forall u > 2,
K pén
Zy— Zu1 =Y log( 5 ) (Lr,= = P,
k=1 P
Hence,
X p p
ku n ku n
Zu = Zua| <Y [log(—5)| - [Lr,=k — pin, | < [ sup |10g lezu—k*PZ,m
k=1 pk:u 1<k<K k,u

Then, using the lipschitzianity of the log function on [, 1] and Lemma 4.3,
2c

Zy = Zy—1| < =160 — 6]

| 1| < 552180 = do
Therefore, Equation (24) becomes

k 2c /Yk—2 ; 2
‘At | < (@l‘so - 50|) Z Enn[(ZS — Zs-1) |]:871]‘ (25)
s=2

Let us control the order 2 moment in the above equation:

t t
Z Enn[(Zs - Zsfl)2|-7:sfl] = Z Enn[(ysén - stn - (an - an))ﬂ]:sfl]

s=2 s=2
t K pé" 2
= En.. (Z log(—5 =) (Lr, =k 'y S)) | Fo-1
s=2 k=1 pk,s
t K pén
k,s
= Eﬂn [Z IOg( 57 ) (11 =k _pk s) |]:s 1]
s=2 k=1 pk75
t On p&n
k,s .8 n n
36, |Clos?eon (Qxhak*ﬁﬁﬂnq‘P%»VL1
s=2 i#k  Phs Pjs
t K p‘S" 6n
k,s n n
= log(=5")* (1= pin)plls — Zzlog S )pip

s=2 k=1 Dr.s 5=2 j#k pk s pﬂv
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where for the last line we used that

En, [(Lr,=k = p) | Fs—1] = Vi, (L1, =k Foa] = (1 = i )i

and
En [(Lr=k — P (Lr.=¢ — p{)| Fs1] = —p{7sp}lls-
Therefore,
t t K p5n, p 5n
k.s n k s n n
ISR ED DL SITTARD p DL SIML N
s=2 s=2 k=1 Ic,s s=2 j,k pk,s pj,s
t K S K Sn, 2
pk,s n pk75 n
= Z(log( 57 ))2]72,5 - < IOg( 5 )pZJ)
s=2 \ k=1 Py,s k=1 Dy.s
t K pén
k,s n
<30 (log(—5)*pi,
s=2 k=1 k,s
The log function is lipschitz on [, 1], and its lipschitz constant is L. Therefore,
¢ 1A K 5
On n Tn
Z EU?L[(ZS - Z8—1)2|]:8—1] < ? Z Z(pk,s _pk,s>2pk),s’
s=2 s=2 k=1
and by Lemma 4.3,
t 2 t K
Z Enn[(zs - Zs—l) |]:5 1] R2:2 Z Z |§0 - 50|2p2ns
s=2 s=2 k=1
2
!
R2 5 |60 — 9, | (t—1). (26)

Injecting (26) and (25) in (23),

)\k 2 26 _
k>2

Forall k > 0, (k +2)! > 2k+1 5o

(%160 — 661)* Y
AC

2(1 — =169 — 0

( Ra‘ 0 —dol)

c
YAl < (5

|60 = d61) ", Ep, [exp(AZr,11)] < exp
To conclude, note that Zv, 11 = X5, — Xo .

A.2.4. PROOF OF THEOREM 4.5
The goal is to apply Theorem 2.1 of (Baraud, 2010). The distance d(-, -) derives from a norm, and for all 6y € ©,

«(BR-r) _c

C
d(d0,m0) = EWO —no| < e S:

Therefore, Assumption 2.2 in (Baraud, 2010) is verified for the constants v = gx/’fn and b = g, so that

Ve >0, P, |Z,>s(Vz+1+bz+1)|<e™®

with x = 18.
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A.2.5. PROOF OF THEOREM 4.2
Take the notations of Section A.2.3. Since 7 is the maximum likelihood estimator, the following inequalities hold:

Trn n
> (€ = CI) < o) = bnclm) = D (CF" = CJ)

t=1 1

;_%

o~
Il

>0

T’VL
=YW -y - (- a)

t=1
Ty
< sup Y (Y - Y = (O = C)).
%0€0 4
Note that
T, T, K i
" n k.t
(CPm =) =D log(=5)pi,
=1 t=1 k=1 Pt

so that using Pinsker’s inequality,

By comparison of the norms,

2 K
<Z Py, — pZ’;) > i = pinl? = i = 113
k=1
Thus,
T‘n,
Z(Ctn" Cnn >2Z”pnn nn g
t=1 t=1
All in all,

T,

Tn
n 7in On n Sn nY)) —
2> vl o} Hﬁégsté%Z(Yt —Y = (G = C) = 2y
= 05" t=1

Using Theorem 4.5 with the same constants,

T
= 18¢
vz > 0, PWPEZMﬂ Pl = — (VTava+1 +x+U)} g
t=1

that is,

T,
1 9c z+1 x+1 a
VIZO, Pnn|:'r § Hptn 7ptn||2 > ? ( T + T >:| Se .

A.3. Application to a special case

In this section, we prove all the results of Section 5. Some lemmas are used for the two propositions. They can be found at
the end of each section.

A.3.1. PROOF OF PROPOSITION 5.1: A LOWER BOUND ON THE PREDICTION ERROR.
By Lemma A.9, there exists D, such that

7 — P > Dy [ — nale” TDRm/EN,
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Taking the square and summing,

Tr Trn Tr
On n n —a(l— n n —<lniin
Z'pl,t _prll,t‘2 2 D72r1|77n —77n|226 26-2)R 71'1/61\715271 2 D72r1|77n _7771|26 Skt Wl/EZNtzfl'
t=1 t=1 t=1
. 1 n
Since T, = (5 - E)E,

n

T'Vl
On n ~ —(1—
Z P17y _p?,t|2 2 D72r1 [T — 1n| e (1=2e)/e ZNtQ—r

=1 t=1

Letmy, o 1= D?rle’(lfza)/f. Then,

o+

TTL TTL

On Nn |2 ~ 2 2
§ :lth —pilt 2 My el — Nl E Ni_q,
t=1 t=1

which is the desired result.

1 e}
= —&)n
Lemma A.9. Recall that R = max{dy,dy € O} = % Let N; = 2221 1;,—1. Let no, dg € ©. There exists
Dy, > 0, such that forany t € {1,...,T,}
t
|p(157t+1 — p?z+1| 2 Dﬂ—l |77n — (571‘ Z ef(t*S)Rn‘ﬂ'l/ElIS:l 2 ‘Dﬂ_1 |nn _ 5n|e*(t71)Rn7T1/5Nt. (27)

s=1
Proof. Suppose dy < 7. Then, forall t > 1,
6’71 n
Py 2 p?,t'
Indeed, the result holds for ¢ = 1. Assume it is true for ¢t € N. If I; = 2, then
On — 0n n _ Mn
Pilty1 = P17 2 p717,t = P?,tﬂ'
If I, = 1, then
O On On n n
Piiy1 = g(pl,t7 6n) = g(pl,t,"]n) 2 g(p?,mn) = p?,t-&-l
where g is the function defined in the proof of Lemma A.1 and verifies that ¢ — ¢(q, n) is an increasing function and
1 — g(q,n) is a decreasing function. Hence the result. Let’s examine
On n _ (0n n On n
P1t+1 *p?,t+1 = (pl,t *p?,t)llt=2 + (g(pl,h n) — g(p?,ﬂn"))lltzl'
Recall that R = max ©. Using Lemma A.10,

g<p?:lt’ (Sn) - g( 1]:;.7 nn) > g(pilsjbh 5n) - g(p?,nt’ 671) + 9(???27 671) - g(p?,nta nn)

> efRnﬂl/f(p‘i:’t —p?z) + D7r1 ("7n - 5n)'

Therefore,
o " o n —fin o K
P — Py > (B0 — ) 1g, o + (giﬂi(pl,t — %) + Dr, (10 — 6n))11t=1
<1
B 5n " —R, 5n n
>e an/e(pl L — p?t)llt:2 + (e R m/a(pl)t —p?,t) + Dm (ﬁn - 6n))11t:1
> e~ (pdn — pI) + Do, (11 — 0n) 11,21

Therefore, iterating,
t

ptlszlt-f-l - p?;nt-i-l > Dry (n — 6n) Z 115216_(t_s)R"7r1/6~

s=1

The proof is the same for §y > 7. O]
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Lemma A.10. For all ym; € (0,1] and q € [max(e,ym), 1],

991(7, q) o91(v,q4) _ _
! =Dy, and — > e m/E
| oy - 2 Loan Oq = ¢

Proof. In (21), for all ym; € (0,1] and ¢ € [max(g,ym), 1],

Galva) (- g)me 1™/

oy T (=g +ge TR
> 7T1€71 X < 1
since -
= (1= q) + e /o) =3
7r164 .
> 5 = D,, usingthatl —q+ ge 7™/1 < 1.

Similarly, using (22), for all ¢ € [e, 1],

dg(v.q) _ €TI0+ M)

dq (1 —q) + germi/a)?
e~ m1/¢e
>
(1= g) +gemrm/a)?
> e~ Ym/E

Lemma A.11. Let 61, 0o, €1, €2 be positive numbers. Let X and 'Y be two random variables such that P(X > e1) < §;
and P(Y > e9) < 09. Then,
P(X+Y >e1 +¢e2) <+ 6o

Proof. 1tis a direct consequence from the inclusion {X +Y > 1 +e3} C {X > 1 }U{Y > &1} and the union bound. [
A.3.2. PROOF OF PROPOSITION 5.2: AN UPPER BOUND ON THE ESTIMATION ERROR.

Let 4, TolTa = DT =)

. By Lemma A.12, for all y > 0,

2 2, s 2T
P, (An - (5,/ log T”T + T log = "

By Proposition 4.2, for all n. > (R/sz)l/a and z > 0,,

Ty
P, (Z i — pi |12 < % (\/(x T T, + o+ 1)) >1—e®, (29)
t=1

By Proposition 5.1, there exists a constant m,, . > 0, such that for all g, 7o € ©,

T
) > ZN31> <y. (28)
t=1

TTL Tn

Tin Nn |2 ~ 2 2
leLt —pilt 2 Moy e | — Ml ZNtfl'
t=1 t=1

2, injecting this result in Equation (29),

T, 1 Xn ~
3 Tn Nn |2 __ n Mn
Since Y |pi7, — I = 3 > " lIpi™ = pf
t=1 t=1

T
=R n 9 _
Pu. <2mm,5|nn —n)? ZNt{l > ?c ( (z4+ DY, +z+ 1)) <e™®,
t=1
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that is,

Ty
- (m N, >

— (VT +x+1)> e, (30)

71'1 65

Combining (28) and (30) with Lemma A.11,

9c R 2 QTn
77” <77n77n|2An > ( (x+1)T7L+x+1) +|77n77n|2(\/r
2m771,58 5 y

Tn
<Py, (Wn _nn|2th271 o = (\/ (z+1)T +$+1)>
— T1,E

2Tn 5 27,
+ Py, Z NPy > ( A )
Y Y
< o
Therefore, with probability at least 1 — (e~ + y),

e ¥ +y.
2 27, s 27
B — |2 An—(— 2log =T34 121 ) ( N 1)
|70, — N < 5/2lg = + T log = _2mmas VE+ DT, +z+

1 «
Recall that Y, = (5 — s) % and that

i + Y2 log QTn)
)

1
770|

nol—

|;7\n - 77n| =

Ay . .
Let B,, := T2 Then, with probability at least 1 — (e™* + y),

n

- 2 2T, 1 27, 9¢(Rm )2
i =l ( B = (52108 0 10p 0 ) ) < 2B (VG Y e 1),
5 y y 2L —¢)2my, e

Rm 9c Vie+ )T, +x+1
1
7~ ¢ 2y, € B, — (%,/QIOg 2T"T2 + log %)

Choose y = e~*, then with probability at least 1 — 2e™7%,

that is,

M0 — no| <

Rm 9¢ Vc+ DY, +z+1
1—c\ 2mg, ce B, — (§\/2(log 27, + x)Té +log 27, + x)

Lemma A.12. Let A, := T (Th — ;é(QTn —1)

e
= 2 27, .3 27,
Py, <An—ZNt21>5\/g7y 2+ 72 log ; ><y.
t=1

Proof. Fort > 0,let My = 0and M; = Zi:l (11521 — pgi';) if t > 1. Then (M) is an (F;)-martingale. Indeed,

M0 — no| <

. Forally > 0,

t—1

E77n [Mt|]:t_1:| = Z (115:1 - p?”‘)‘) + E"In I:lIs:ll‘Ft—l} _p;]jzt = Mt_l'

s=1

=0
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Using Lemma 3.3 in (Houdré & Reynaud-Bouret, 2002), for all A,

t

k
£ =exp [ AM; — > % Y E,, [(Ms _ Ms_l)k|fs_1}

E>2 7 s=1

is an (F;)-supermartingale. Therefore,
E,. (€] <Ej (6] =

that is,

€, {em} <E,, |exp Z ZE%[M M, )*|F,_ 1}

E>2 ! s=1
IA[*
<E,, |exp Z ZE% | M — M| Foa
k>2 s=1

using the monotonicity of exp and the triangle inequality. The difference |M; — M;_1| is almost surely bounded:

M, — Mo = 17,21~ Pl < 1,

and it conditional variance can be controlled by

t t

> By (Mo = My )?Fo ] = DBy [(Rrmn = p1)AF | = Zp -p) <

s=1 s=1

since p", < 3. Therefore, (33) and (34) imply

t
Z Enn |:|M9 - Ms—1|k|~/T'.s—1:| = Z Enn |:|M9 - Ms—1|k72(Ms - Ms—1)2‘-F9—1
s=1

s=1

e

< Z Enn {(Ms — My_1)?|Fs- 1} <

Injecting this equation in (31) shows that for all A,

E, [e2] <E Jﬁiﬁg,
M | € N | €XP Z

A2 [Nt A2t
E,. I:e)\ﬂft:| < exp > Z T < exp 78(1 - m) .
2

Letz > 0 and A € (0,2). Then,
Po. (IMy]| > 2) <P, (M, >2) + Py, (— M, >2).

Using (37) and Chernoff’s bound,

A\2t/2
M| >z) <2 Az .
P (=) exp(4<1—;> )

NS

€1y

(32)

(33)

(34)

(35)

(36)

(37)
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It can be shown that

)\2/2t > 272
su AN — ——— | =t-h(2z/t
,\e[or,)z) < 4(1-2/2) (22/1) 2 t+ 2x

where h(u) = 1+ u — +/1 + 2u for u > 0, using that A(u) > for u > 0. Therefore,

2(1+ )

(M| > x) < 2ex 207
P k P Ct422)°

That is
t

Py (| = Sl

s=1

Forallthn,OgthtandOSZ —1]97'; <t,s0

V7~ (Z Dl =N - ZP""

s=1

2

2
> 1) <20 (t f%) (38)

t
Nt + Zp?j; < Qt‘Nt an"
s=1

Therefore,

nn(zp% —a = N?) <Py (N7 - zp% |27
2

<P,, (2t‘Nt Zp”” ) < 2exp (—M) )

Lemma A.13 (Inequality Reversal (Lemma 1 in (Peel et al., 2010))). Let X be a random variable and a, b > 0, ¢, d > 0
such that

xr > (| |>x)<aexp *
N 0.P(1X _ .
’ - - C+(1J:

d
Yy > 0,P | |X]| > Elogg—&-flogg <uy.
b7y b Ty

Using this Lemma, the previous equation implies: for all u > 0,

77n ( ann _]Vt2 ZH(t>u>> Suv

Then,

/ 2 2
where H (t,u) := t log + 2t log —. Using Lemma A.11 and summing the probabilities from ¢ = 1to T,,,

n  t—1 Th Th
2
P (D (X pl)* =3 N2 =D HE-1,0) < Ty (39)
t=1 s=1 t=1 t=1
Now,
T, T
2 nog 9
ZHtflu §\/210g7/ t2dt+ 1, (Y, —1)log —
t=1 U Jo U
2 2.5 2
< —4/2log =12 —|—Tilog7.
5 U U
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Choosing y = Y, u, (39) becomes

n t—1

5 oA, 2 Mpos o 2T,
P (D0 (Xopin)® = DoNZ 2 £y [2log = AT 4 Thlog = ) <. (40)
Yy
t=1 s=1 t=1
From the proof of Proposition 4.1 (see Section A.2.1), for s < T,,, p?’"s > % — NpT1S > % — nlf”y s. Therefore,

1
andsincet <Y, = (5 — 6)

t—1

1 t(t—1 t—1
Ep?”@%t—l)—ﬁ( )—<1—Rt>v
= 2 ne 2 2 ne

na

§9

so that

T, t—1 1 Thn T3
(o) = =S (- 1)2 = A, = "+ O(T2).
16 48
t=1 s=1 t=1

Injecting this equation in Equation (40),

e
. 2 2T, s 27,
P, (An ~ ) ONEL =2y 20 ; i+ 12 log ; )
t=1

T t—1 T
- - 2 27, .3 27,
<Py (o (Oopl) = YN = 5y [2l0g = T 4+ TR I0g =) <
' ) )
t=1 s=1 t=1

B. NUMERICAL ILLUSTRATIONS

The numerical illustrations have been realized using R. All the material necessary for the reproduction of the simulations of
the article is contained in the same file as the supplementary in a zip file. Let’s explain the link between the different data
files and the available algorithms.

All necessary functions are in the file my functions.R. It contains in particular the procedure Exp3, but also the
functions which calculate the MLE for a constant learning rate and the truncated MLE for a decreasing learning rate.

The algorithm est_etaconstant_nveclarge.R generates the data file Data_.eta03_nveclarge.Rdata
containing the estimators for a constant learning rate necessary for Figure 2.

The algorithm Tmax_comp . R generates the data file Tmax_eta03_dec_K4 .Rdata containing the Y5 necessary
for Figure 3.

The algorithm est_etadecreasing.R generates the data file Data.eta03.dec.Rdata or
Data_eta03_dec_K4.Rdata (depending on the number of arms) containing the estimators for a decreas-
ing learning rate respectively for 2 arms and 4 arms. These data are used in Figures 4 and 5.

The Markdown file Test _Exp3.Rmd reproduces all the figures from the article for these different data files. To spare
the reader lengthy computations, the output of the functions est _etaconstant_nveclarge.R, Tmax_comp.R
and est _etadecreasing.R, is made available in the previous enumerated data files.



