

Miscellaneous series identities with Cauchy and harmonic numbers, and their interpretation as Ramanujan summation

Marc-Antoine Coppo

▶ To cite this version:

Marc-Antoine Coppo. Miscellaneous series identities with Cauchy and harmonic numbers, and their interpretation as Ramanujan summation. 2023. hal-03814355v8

HAL Id: hal-03814355 https://hal.univ-cotedazur.fr/hal-03814355v8

Preprint submitted on 3 Mar 2023 (v8), last revised 6 Aug 2023 (v10)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Miscellaneous series identities with Cauchy and harmonic numbers, and their interpretation as Ramanujan summation

Marc-Antoine Coppo* Université Côte d'Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract We provide an overview of several series identities involving the Cauchy numbers and various types of harmonic numbers, all of which are closely related to certain alternating series with zeta values (or harmonic zeta values); we then give, for each of these identities, an interpretation in terms of Ramanujan summation with the hope that this unusual but interesting interpretation of still little-known formulas could inspire further research on the topic.

Keywords Cauchy numbers; harmonic numbers; binomial identities; series with zeta values; Ramanujan summation of series.

Mathematics Subject Classification (2020) 05A19, 11B75, 11M06, 40G99.

1 Introduction

A decade ago, we showed how Ramanujan's method of summation of series could be useful to generate a number of identities linking together Cauchy numbers (also known as Bernoulli numbers of the second kind), harmonic numbers, and special values of the Riemann zeta function at positive integers [4]. This powerful method is based on a binomial transformation formula that relates the Cauchy numbers to the Ramanujan summation of series [3, Theorem 18]. More recently, new series identities were obtained by a refinement of the same method, thanks notably to the consideration of a rather natural generalization of the harmonic numbers and

^{*}Corresponding author. *Email address:* coppo@unice.fr

new binomial identities (see [8] for details). Some special cases of these results are discussed in Section 3. On the other hand, an alternative efficient method for generating such identities, based on a similar binomial transformation formula, is presented in Section 4. Combining these two methods and reversing the procedure enables us to provide an interesting interpretation in terms of Ramanujan summation of almost all the identities mentioned above, as explained in Section 5.

2 Reminder of some basic definitions

We first recall some basic facts about the Cauchy numbers [10], using the notations of [4] and [8], we then introduce various types of harmonic numbers.

a) If s(n,k) denotes the (signed) Stirling numbers of the first kind, the nonalternating Cauchy numbers $\{\lambda_n\}_{n\geq 1}$ can be defined explicitly as follows:

$$\lambda_n := \left| \sum_{k=1}^n \frac{s(n,k)}{k+1} \right| \qquad (n \ge 1) \,.$$

Alternatively, they can also be defined recursively by means of the relation

$$\sum_{k=1}^{n-1} \frac{\lambda_k}{k! (n-k)} = \frac{1}{n} \qquad (n \ge 2) \,.$$

The first ones are the following:

$$\lambda_1 = \frac{1}{2}, \ \lambda_2 = \frac{1}{6}, \ \lambda_3 = \frac{1}{4}, \ \lambda_4 = \frac{19}{30}, \ \lambda_5 = \frac{9}{4}, \ \lambda_6 = \frac{863}{84}, \ \text{etc}$$

The non-alternating Cauchy numbers λ_n are closely linked to the Bernoulli numbers of the second kind b_n (first introduced by Jordan [9]) through the relation

$$\lambda_n = (-1)^{n-1} n! \, b_n = n! \, |b_n| \qquad (n \ge 1)$$

Otherwise, the exponential generating function of the non-alternating Cauchy numbers is given by

$$\sum_{n=1}^{\infty} \lambda_n \frac{x^n}{n!} = 1 + \frac{x}{\ln(1-x)} \qquad (|x| < 1) \,.$$

In particular, the series $\sum_{n\geq 1} \frac{\lambda_n}{n!}$ converges to 1.

b) The classical harmonic numbers $\{H_n\}_{n\geq 1}$ are defined by

$$H_n = \sum_{j=1}^n \frac{1}{j} = \psi(n+1) + \gamma,$$

where $\psi = \Gamma'/\Gamma$ denotes the digamma function and $\gamma = -\psi(1)$ is the Euler constant [5].

c) For any integer $k \geq 1$, the generalized harmonic numbers $\{H_n^{(k)}\}_{n\geq 1}$ are defined by $H_n^{(1)} = H_n$, and

$$H_n^{(k)} = \sum_{j=1}^n \frac{1}{j^k} = \frac{(-1)^{k-1}}{(k-1)!} \partial^{k-1} \psi(n+1) + \zeta(k) \qquad (k \ge 2)$$

d) For any integer $k \ge 0$, the Roman harmonic numbers $\{H_{n,k}\}_{n\ge 1}$ are defined by $H_{n,0} = 1$, and

$$H_{n,k} = \sum_{n \ge j_1 \ge \dots \ge j_k \ge 1} \frac{1}{j_1 \, j_2 \cdots j_k} \qquad (k \ge 1).$$

The Roman harmonic numbers¹ can be expressed as polynomials in the generalized harmonic numbers $H_n, H_n^{(2)}, \dots, H_n^{(k)}$ [4, Eq. (18)], [11, Eq. (29)]. More precisely, $H_{n,1} = H_n$, and

$$H_{n,k} = \frac{1}{k!} (H_n)^k + \dots + \frac{1}{k} H_n^{(k)} = P_k(H_n, \dots, H_n^{(k)}) \qquad (k \ge 2),$$

with

$$P_k(x_1, \cdots, x_k) = \sum_{n_1+2n_2+\cdots+kn_k=k} \frac{1}{n_1!n_2!\cdots n_k!} \left(\frac{x_1}{1}\right)^{n_1} \left(\frac{x_2}{2}\right)^{n_2} \cdots \left(\frac{x_k}{k}\right)^{n_k}.$$

These polynomials are a (slight) modification of the Bell polynomials [4]. A natural generalization of the ordinary Roman harmonic numbers, noted $H_{n,k}^{(r)}$, such that $H_{n,1}^{(r)} = H_n^{(r)}$ was also introduced in [8]. It is given by the following expression [8, Def. 2]:

$$H_{n,k}^{(r)} = \sum_{\substack{n \ge j_1 \ge \dots \ge j_k \ge 1}} \frac{1}{j_1 \, j_2 \cdots j_k^r} \qquad (k \ge 1, r \ge 1) \,.$$

^{1.} Introduced three decades ago by S. Roman, G-C. Rota and D. Loeb (see [11] for historical details).

3 Overview of some known formulas

In this section, we enumerate a number of more or less known identities, starting with the most classic examples and ending with the lesser-known, and make some comments about them.

a) The following formula:

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! \, n} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \, \zeta(n) = \gamma \tag{1}$$

is a classical representation of γ dating back to Mascheroni and Euler which can be slightly modified as follows:

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{(n+1)! n} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \left\{ \zeta(n) - 1 \right\} = \gamma + \ln 2 - 1.$$
 (2)

b) A non-trivial generalization of (1) is given by

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! n^2} = \frac{1}{2} \gamma^2 + \frac{1}{2} \zeta(2) + \gamma_1 - \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta(n+1), \qquad (3)$$

where $\gamma_1 = \lim_{n \to \infty} \left\{ \sum_{j=1}^n \frac{\ln j}{j} - \frac{1}{2} \ln^2 n \right\}$ is the first Stieltjes constant. This nice identity is already known and appears in [7, 8].

c) The following formula:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n} = \zeta(2) - 1 \tag{4}$$

is a fairly known representation of $\zeta(2) = \frac{\pi^2}{6}$ which is in fact a particular case of the more general formula

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_{n,k}}{n! \, n} = \zeta(k+1) - \frac{1}{k} \qquad (k \ge 1) \, ,$$

sometimes called Hermite's formula [6].

d) A non-trivial generalization of (4) is given by

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(2)}}{n! \, n} = \zeta(3) + \left\{\gamma + \ln(2\pi) - 12 \ln A\right\} \zeta(2) + \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta(n+2) \,, \quad (5)$$

where $A = \lim_{n \to \infty} \left\{ \frac{\prod_{k=1}^{n} k^k}{n^{\frac{n^2}{2} + \frac{n}{2} + \frac{1}{12}} e^{-\frac{n^2}{4}}} \right\} = \exp\left\{ \frac{1}{12} - \zeta'(-1) \right\}$ is the Glaisher-Kinkelin constant². This identity is a direct consequence of [8, Eq. (19)] and of the well-known relation:

$$\zeta'(2) = \{\gamma + \ln(2\pi) - 12\ln A\}\,\zeta(2)$$

e) Furthermore, formula (5) admits a kind of reciprocal which is given by [8, Eq. (18)]. More precisely, we have the following identity:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n^2} = \left\{ 12 \ln A - \ln(2\pi) \right\} \zeta(2) - 1 - \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta(n+2) \tag{6}$$

which is another non-trivial generalization of (4).

Remark 1. When k is greater than 2, no explicit formula, even conjectural, appears to be known for the sum $\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(k)}}{n! n}$, nor for the reciprocal sum $\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n^k}$ (see however Remark 4 below where an interpretation of these sums in terms of Ramanujan summation is given).

4 New supplementary formulas

The following binomial formula is nothing else than a variant of [1, Prop. 1] which is an elementary but efficient tool to generate several series identities with Cauchy and harmonic numbers. For appropriate analytic functions f with moderate growth, we have the relation:

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n!} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} f(k) = \int_0^1 f(x) \, dx \,. \tag{7}$$

For instance, formulas (1) and (4) above can be easily derived from formula (7) using adequate functions f [1, Ex. 4]. We now present a number of interesting new identities that can also be deduced by this method.

$$\sqrt{2\pi} = \lim_{n \to \infty} \left\{ \frac{n!}{n^{n+\frac{1}{2}} e^{-n}} \right\} = \exp\left\{ -\zeta'(0) \right\}.$$

^{2.} This constant plays a role similar to the Stirling constant $\sqrt{2\pi}$ in the celebrated formula

a) Applying (7) with $f(x) = \frac{\psi(x+1) + \gamma}{x+1}$, and using the binomial identity [2, Eq. (9.32)]

$$\frac{H_n}{n+1} = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{H_k}{k+1},$$

we derive the following identity:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{(n+1)!} = \frac{1}{2}\zeta(2) + \ln 2 - 1 + \sum_{n=3}^{\infty} \frac{(-1)^n}{n} \left\{ \sum_{k=2}^n (\zeta(k) - 1) \right\}$$
(8)

which is a refinement of a formula previously given by Boyadzhiev [1, Ex. 5]. Moreover, substracting (8) from (4) leads to the new identity:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{(n+1)! n} = \frac{1}{2} \zeta(2) - \ln 2 - \sum_{n=3}^{\infty} \frac{(-1)^n}{n} \left\{ \sum_{k=2}^n (\zeta(k) - 1) \right\}$$
(9)

which can be seen as a modification of (4) quite similar to (2).

b) Applying (7) with $f(x) = \frac{\psi(x+1) + \gamma}{x}$, and using the binomial identity [2, Eq. (5.22)]

$$H_n^{(2)} = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{H_k}{k},$$

allows us to obtain the following new identity:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(2)}}{n!} = \int_0^1 \frac{\psi(x+1) + \gamma}{x} \, dx = \zeta(2) - \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta(n+1) \,. \tag{10}$$

Moreover, writing $H_n^{(2)} = H_{n-1}^{(2)} + \frac{1}{n^2}$ in the left member of (10), and using (3), leads to yet another interesting new identity:

$$\sum_{n=1}^{\infty} \frac{\lambda_{n+1} H_n^{(2)}}{(n+1)!} = \frac{1}{2} \zeta(2) - \frac{1}{2} \gamma^2 - \gamma_1 \,. \tag{11}$$

Remark 2. If ζ_H denotes the harmonic zeta function defined by

$$\zeta_H(s) = \sum_{n=1}^{\infty} \frac{H_n}{n^s} \qquad (\operatorname{Re}(s) > 1) \,,$$

then, using the following nice identity [7, Eq. (14)]:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta_H(n) = \frac{1}{2} \zeta(2) + \frac{1}{2} \gamma^2 + \gamma_1 \,,$$

we can rewrite formula (11) above as follows:

$$\sum_{n=1}^{\infty} \frac{\lambda_{n+1} H_n^{(2)}}{(n+1)!} = \zeta(2) - \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta_H(n) \,. \tag{11 b}$$

Remark 3. Very recently, using a more powerful method, Young [12] has established the identity below which significantly generalizes (10):

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(k)}}{n!} = \zeta(k) - \sum_{n=2}^{\infty} \frac{(-1)^n}{n} \zeta(n+1, \underbrace{1, \dots, 1}_{k-2}) \qquad (k \ge 2) \,.$$

However, it should be noted that this formula cannot be extended to the case k = 1. Indeed, the series $\sum_{n \ge 1} \frac{\lambda_n H_n}{n!}$ is divergent since $\frac{\lambda_n H_n}{n!} \sim \frac{1}{n \ln n}$.

5 Interpretation as Ramanujan summation

If $\sum_{n\geq 1}^{\mathcal{R}} f(n)$ denotes the \mathcal{R} -sum of the series $\sum_{n\geq 1} f(n)$ (i.e. the sum of the series in the sense of Ramanujan's summation method, following the masterful exposition in [3]), then, under certain appropriate conditions of growth and analyticity, we can make use of the following binomial transformation formula [8, Eq. (10)]:

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! n} \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} k f(k) = \sum_{n\geq 1}^{\mathcal{R}} f(n) .$$
(12)

This formula allows us to give an interesting interpretation in terms of Ramanujan summation of almost all the series identities mentioned above.

a) From the binomial identities

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} = 1 \quad \text{and} \quad \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{k}{k+1} = \frac{1}{n+1} \,,$$

we derive respectively the formulas

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! \, n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{1}{n} \,, \tag{A}$$

and

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{(n+1)! \, n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{1}{n+1} \,, \tag{B}$$

whose expressions are given by (1) and (2).

b) From the reciprocal binomial identities

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} H_k = \frac{1}{n} \quad \text{and} \quad \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{1}{k} = H_n,$$

we derive respectively the reciprocal formulas

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! n^2} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_n}{n}, \qquad (C)$$

and

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{1}{n^2}, \qquad (D)$$

whose expressions are given by (3) and (4).

c) From the reciprocal binomial identities

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{H_k}{k} = H_n^{(2)} \quad \text{and} \quad \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} H_k^{(2)} = \frac{H_n}{n} \,,$$

we derive respectively the reciprocal formulas

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(2)}}{n! n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_n}{n^2}, \qquad (E)$$

and

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n^2} = \sum_{n\geq 1}^{\mathcal{R}} \frac{H_n^{(2)}}{n} , \qquad (F)$$

whose expressions are given by (5) and (6).

Remark 4. 1) Formulas (A) and (C) are two particular cases of the more general relation [8, Eq. (12)]:

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{n! n^k} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_{n,k-1}}{n} \qquad (k \ge 1) \,.$$

2) Formulas (D) and (E) are two particular cases of the more general relation [8, Eq. (11)]:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(k)}}{n! \, n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_{n,k-1}}{n^2} \qquad (k \ge 1) \, .$$

3) Formula (F) is also a special case of the more general formula:

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{n! n^k} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_{n,k-1}^{(2)}}{n} \qquad (k \ge 2) \,,$$

where $H_{n,k}^{(r)}$ are the generalized Roman harmonic numbers introduced in [8].

d) From the self-reciprocal binomial identity

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{H_k}{k+1} = \frac{H_n}{n+1},$$

we derive the formula

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n}{(n+1)! n} = \sum_{n \ge 1}^{\mathcal{R}} \frac{H_n}{n(n+1)}, \qquad (G)$$

whose expression is given by (9).

e) Applying formula (12) to the function

$$f(x) = \frac{\psi(x+1) + \gamma - 1}{x(x-1)},$$

which verifies

$$f(n) = \frac{H_n - 1}{n(n-1)}$$
 $(n \ge 2)$,

and

$$f(1) = \zeta(2) - 1 = \lim_{x \to 1} \frac{\psi(x+1) + \gamma - 1}{x(x-1)},$$

and using the binomial identity

$$\sum_{k=2}^{n} (-1)^{k-1} \binom{n}{k} \frac{1-H_k}{k-1} = nH_n^{(2)} - n$$

which is the reciprocal of the identity [2, Eq. (5.24)]:

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} k H_k^{(2)} = \frac{1 - H_n}{n - 1} \qquad (n \ge 2) \,,$$

we then obtain the formula

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(2)}}{n!} = \zeta(2) - \sum_{n\ge 1}^{\mathcal{R}} \frac{H_n - 1}{n(n-1)}, \qquad (H)$$

where the \mathcal{R} -summed sequence in the right member of (H) has the value $\zeta(2) - 1$ when n = 1; this is the interpretation of formula (10). Furthermore, subtracting (C) from (H) allows us to derive yet another formula:

$$\sum_{n=1}^{\infty} \frac{\lambda_{n+1} H_n^{(2)}}{(n+1)!} = \zeta(2) - \sum_{n\geq 1}^{\mathcal{R}} \frac{H_{n-1}}{n-1}, \qquad (I)$$

where the \mathcal{R} -summed sequence in the right member of (I) has the value $\zeta(2)$ when n = 1; this is the interpretation of formula (11 b).

Remark 5. Very recently, using a more sophisticated method, Young [12] has established the relation below which is a substantial improvement of our formula (H):

$$\sum_{n=1}^{\infty} \frac{\lambda_n H_n^{(k+1)}}{n!} = \zeta(k+1) - \sum_{n\geq 1}^{\mathcal{R}} \frac{H_{n,k} - H_{n,k-1}}{n(n-1)} \qquad (k\geq 1) \,.$$

References

- [1] K. N. Boyadzhiev, New series identities with Cauchy, Stirling, and harmonic numbers, and Laguerre polynomials, *J. Integer Sequences* **23** (2020).
- [2] K. N. Boyadzhiev, Notes on the Binomial Transform, Theory and Table, World Scientific, 2018.
- [3] B. Candelpergher, Ramanujan Summation of Divergent Series, Lecture Notes in Math. 2185, Springer, 2017.
- [4] B. Candelpergher, M-A. Coppo, A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, *Ramanujan J.* 27 (2012), 305– 328.
- [5] H. Cohen, Number Theory, Volume II: Analytic and Modern Tools, Graduate Texts in Math., vol. 240, Springer, 2007.
- [6] M-A. Coppo, Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz, Expo. Math. 27 (2009), 79–86.
- [7] M-A. Coppo, A note on some alternating series involving zeta and multiple zeta values, J. Math. Anal. App. 475 (2019), 1831–1841.
- [8] M-A. Coppo, New identities involving Cauchy numbers, harmonic numbers and zeta values, *Results in Math.* **76** (2021).

- [9] C. Jordan, Calculus of finite differencies, Chelsea, New York, 1965.
- [10] D. Merlini, R. Sprugnoli, M. C. Verri, The Cauchy numbers, Discrete Math., 306 (2006), 1906–1920.
- [11] J. Sesma, The Roman harmonic numbers revisited, J. Number Theory 180 (2017), 544–565.
- [12] P. T. Young, Global series for height 1 multiple zeta functions, preprint, August 2022.