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Abstract We provide an overview of several series identities involving Cauchy
numbers and harmonic numbers, all of which are closely linked to certain alternat-
ing series with zeta (or harmonic zeta) values; we then give, for each of them, their
interpretation in terms of Ramanujan summation. We believe that this unusual
interpretation of still little-known formulas should be useful for further research
on the topic.
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1 Introduction
A decade ago, we used Ramanujan’s method of summation of series to generate
a number of identities linking together Cauchy numbers (also known as Bernoulli
numbers of the second kind), harmonic numbers, and values of the Riemann zeta
function at positive integers [4]. Recently, we were able to improve this method
by making a systematic use of a general transformation formula that relates the
Cauchy numbers to the Ramanujan summation of series, in combination with the
consideration of a natural generalization of the Roman harmonic numbers (see
[6] for details). In the present article, we offer a comprehensive overview of our
methods with the hope that the unusual but interesting interpretation in terms of
Ramanujan summation of most of the basic formulas given here will inspire further
research on the subject.
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2 Reminder of some basic definitions
We first recall some basic facts about the Cauchy numbers (also known as Bernoulli
numbers of the second kind) and introduce various types of harmonic numbers.

a) The non-alternating Cauchy numbers {λn}n≥1 are defined explicitely by the
formula

λn :=
∫ 1

0
x(1− x) · · · (n− 1− x) dx .

Alternatively, they can be defined recursively by means of the relation
n−1∑
k=1

λk

k! (n− k) = 1
n

(n ≥ 2) .

The first ones are the following:

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.

The non-alternating Cauchy numbers λn are closely linked to the Bernoulli num-
bers of the second kind bn first introduced by Jordan [7] through the relation

λn = n! |bn| (n ≥ 1) .

Otherwise, with the current notation cn used in [1], we have the simple relation

λn = (−1)n−1 cn (n ≥ 1) .

b) The classical harmonic numbers {Hn}n≥1 are defined by

Hn =
n∑

j=1

1
j

= ψ(n+ 1) + γ ,

where ψ denotes the digamma function and γ = −ψ(1) is the Euler constant.

c) For any integer k ≥ 2, the generalized harmonic numbers {H(k)
n }n≥1 are defined

by

H(k)
n =

n∑
j=1

1
jk

= (−1)k−1

(k − 1)!∂
k−1ψ(n+ 1) + ζ(k) .

d) For any integer k ≥ 0, the (ordinary) Roman harmonic numbers {Hn,k}n≥1 are
defined by

Hn,0 = 1, and Hn,k =
∑

n≥j1≥···≥jk≥1

1
j1 j2 · · · jk

for k ≥ 1.
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The Roman harmonic numbers can be expressed as polynomials in the generalized
harmonic numbers Hn, H

(2)
n , · · · , H(k)

n [4, Eq. (18)]. More precisely, we have

Hn,1 = Hn and Hn,k = 1
k! (Hn)k + · · ·+ 1

k
H(k)

n = Pk(Hn, · · · , H(k)
n ) (k ≥ 2) ,

where Pk are the modifed Bell polynomials [4, Definition 2]. In particular,

Hn,2 = 1
2(Hn)2 + 1

2H
(2)
n ,

and

Hn,3 = 1
6(Hn)3 + 1

2HnH
(2)
n + 1

3H
(3)
n .

3 Overview of some known formulas
In this section, we mention a number of more or less known identities with some
comments about them.

a) The formula
∞∑

n=1

λn

n!n =
∞∑

n=2

(−1)n

n
ζ(n) = γ (1)

is a classical representation of γ due to Mascheroni and Euler which can be slightly
modified as follows:

∞∑
n=1

λn

(n+ 1)!n =
∞∑

n=2

(−1)n

n
{ζ(n)− 1} = γ + log 2− 1 . (2)

b) The formula
∞∑

n=1

λn Hn

n!n = ζ(2)− 1 (3)

is a fairly known representation of ζ(2) = π2

6 which is in fact a particular case of
the more general formula

∞∑
n=1

λn Hn,k

n!n = ζ(k + 1)− 1
k

(k ≥ 1) ,

which is sometimes called Hermite’s formula [4].
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c) A non-trivial generalization of (1) is the following formula:
∞∑

n=1

λn

n!n2 = 1
2γ

2 + 1
2ζ(2) + γ1 −

∞∑
n=2

(−1)n

n
ζ(n+ 1) , (4)

where γ1 denotes the first Stieltjes constant. This interesting identity is already
known and appears in [3], [5] and [6].

d) A non-trivial generalization of (3) consists of the following formula:
∞∑

n=1

λn H
(2)
n

n!n = ζ(3) + {γ + log(2π)− 12 log(A)} ζ(2) +
∞∑

n=2

(−1)n

n
ζ(n+ 2) (5)

where A is the Glaisher-Kinkelin constant. This identity results directly from [6,
Eq. (19)] and the well-known relation:

ζ ′(2) = (γ + log(2π)− 12 log(A)) ζ(2) .

Furthermore, formula (5) admits a kind of reciprocal given by [6, Eq. (16)] in the
case p = 2:

∞∑
n=1

λn Hn

n!n2 = ζ(2) (12 log(A)− log(2π))− 1−
∞∑

n=2

(−1)n

n
ζ(n+ 2) . (6)

Remark 1. No explicit formula, even conjectural, appears to be known for the sum
∞∑

n=1

λn H
(k)
n

n!n for k > 2 (see however Remark 4 below), nor for the sum
∞∑

n=1

λn Hn

n!nk

for k > 2.

4 Additional formulas
We now give some new formulas deduced from a variant of [1, Proposition 1]
which is an elementary but powerful tool for obtaining several series identities with
Cauchy numbers. For appropriate analytic functions f with moderate growth, we
have the following relation:

∞∑
n=1

λn

n!

n∑
k=1

(−1)k−1
(
n

k

)
f(k) =

∫ 1

0
f(x) dx . (7)

e) Applying (7) with f(x) = ψ(x+ 1) + γ

x
, and using the binomial identity

H(2)
n =

n∑
k=1

(−1)k−1
(
n

k

)
Hk

k
,
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we obtain the formula:
∞∑

n=1

λn H
(2)
n

n! =
∫ 1

0
f(x) dx = ζ(2)−

∞∑
n=2

(−1)n

n
ζ(n+ 1) . (8)

Moreover, writingH(2)
n = H

(2)
n−1+ 1

n2 and using (4) leads us to another new identity:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = 1
2ζ(2)− 1

2γ
2 − γ1 . (9)

As an interesting consequence of [5, Eq. (14)], this last identity may also be rewrit-
ten as follows:

∞∑
n=1

λn+1 H
(2)
n

(n+ 1)! = ζ(2)−
∞∑

n=2

(−1)n

n
ζH(n) , (8 bis)

where ζH denotes the harmonic zeta function defined by

ζH(s) =
∞∑

n=1

Hn

ns
(Re(s) > 1) .

Remark 2. It should be noted that, in contrast to the series
∑
n≥1

λn H
(k)
n

n! for k ≥ 2,

the series
∑
n≥1

λn Hn

n! is divergent since λn Hn

n! ∼ 1
n log(n) , n→ +∞ .

f) Applying (7) with f(x) = ψ(x+ 1) + γ

x+ 1 , and using the binomial identity

Hn

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 ,

allows us to deduce the following identity:
∞∑

n=1

λnHn

(n+ 1)! =
∫ 1

0
f(x) dx = 1

2ζ(2) + log 2− 1 +
∞∑

n=3

(−1)n

n

{
n∑

k=2
(ζ(k)− 1)

}
(10)

which is a refinement of a formula previously given by Boyadzhiev [1, Example 5].
Moreover, substracting (10) from (3) leads to the following new formula:

∞∑
n=1

λn Hn

(n+ 1)!n = 1
2ζ(2)− log 2−

∞∑
n=3

(−1)n

n

{
n∑

k=2
(ζ(k)− 1)

}
. (11)

It should be noted that this last formula is a modification of (3) quite similar to
(2).
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5 Interpretation as Ramanujan summation

If ∑Rn≥1 denotes the R-sum of the series (i.e. the sum of the series in the sense of
Ramanujan’s summation method [3]), then, under certain appropriate conditions
of growth and analyticity, we can make use of the following formula [6, Eq. (10)]:

∞∑
n=1

λn

n!n

n∑
k=1

(−1)k−1
(
n

k

)
k f(k) =

R∑
n≥1

f(n) . (12)

This formula allows us to give, for each of the series identities mentioned above,
an interesting interpretation in terms of Ramanujan summation.

a) Thus, by means of the identities

1 =
n∑

k=1
(−1)k−1

(
n

k

)

and
1

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
k

k + 1 ,

we obtain respectively
∞∑

n=1

λn

n!n =
R∑

n≥1

1
n

(A)

and the shifted formula
∞∑

n=1

λn

(n+ 1)!n =
R∑

n≥1

1
n+ 1 (B)

b) By means of the binomial identity

Hn =
n∑

k=1
(−1)k−1

(
n

k

)
1
k
,

we obtain
∞∑

n=1

λn Hn

n!n =
R∑

n≥1

1
n2 (C)

and, by inversion of this identity,

∞∑
n=1

λn

n!n2 =
R∑

n≥1

Hn

n
(D)
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Remark 3. Formula (D) is a particular case of the more general formula [6, Eq.
(12)]:

∞∑
n=1

λn

n!nk
=
R∑

n≥1

Hn,k−1

n
(k ≥ 1) .

c) By means of the identity

H(2)
n =

n∑
k=1

(−1)k−1
(
n

k

)
Hk

k
,

we obtain
∞∑

n=1

λn H
(2)
n

n!n =
R∑

n≥1

Hn

n2 (E)

and, by inversion of this identity,

∞∑
n=1

λn Hn

n!n2 =
R∑

n≥1

H(2)
n

n
(F)

Remark 4. Formulas (C) and (E) are two particular cases of the more general
formula [6, Eq. (11)]:

∞∑
n=1

λn H
(k)
n

n!n =
R∑

n≥1

Hn,k−1

n2 (k ≥ 1) .

d) By means of the binomial identity

Hn

n+ 1 =
n∑

k=1
(−1)k−1

(
n

k

)
Hk

k + 1 ,

we obtain the self-reciprocal identity

∞∑
n=1

λn Hn

(n+ 1)!n =
R∑

n≥1

Hn

n(n+ 1) (G)

e) In order to give an interpretation of the series
∞∑

n=1

λn H
(2)
n

n! in terms of Ramananu-

jan summation, we can make use of the binomial identity

nH(2)
n = n+

n∑
k=2

(−1)k−1
(
n

k

)
1−Hk

k − 1 (13)
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which is obtained by inversion of the identity [2, Eq. (5.24)]:
n∑

k=1
(−1)k−1

(
n

k

)
kH

(2)
k = 1−Hn

n− 1 for n ≥ 2 .

Applying (12) to the function

f(x) = ψ(x+ 1) + γ − 1
x(x− 1) ,

which verifies
f(1) = lim

x→1

ψ(x+ 1) + γ − 1
x(x− 1) = ζ(2)− 1 ,

and
f(n) = Hn − 1

n(n− 1) for n ≥ 2 ,

by means of the binomial identity (13), we then deduce the formula

∞∑
n=1

λn H
(2)
n

n! = ζ(2)−
R∑

n≥1

Hn − 1
n(n− 1) (H)

Remark 5. Very recently, Young [8] has established the following relation:

∞∑
n=1

λn H
(k+1)
n

n! = ζ(k + 1)−
R∑

n≥1

Hn,k −Hn,k−1

n(n− 1) (k ≥ 1)

which is a deep generalization of our formula (H).
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