
HAL Id: hal-03602568
https://hal.univ-cotedazur.fr/hal-03602568v1

Preprint submitted on 9 Mar 2022 (v1), last revised 4 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Complement to Laurent expansion of harmonic zeta
functions

Marc-Antoine Coppo, Bernard Candelpergher

To cite this version:
Marc-Antoine Coppo, Bernard Candelpergher. A Complement to Laurent expansion of harmonic zeta
functions. 2022. �hal-03602568v1�

https://hal.univ-cotedazur.fr/hal-03602568v1
https://hal.archives-ouvertes.fr


A Complement to Laurent expansion of harmonic
zeta functions

Marc-Antoine Coppo∗ , Bernard Candelpergher

Abstract We complement an earlier article dedicated to harmonic zeta functions
by outlining a method for obtaining closed-form expressions of the Laurent series
coefficients of the harmonic zeta function ζH about its pole at s = 1. These
coefficients are named harmonic Stieltjes constants by analogy with the classical
case.

1 Two representations of the harmonic zeta func-
tion

We recall that the harmonic zeta function ζH (noted h in [2]) is defined by

ζH(s) :=
∞∑
n=1

Hn

ns
for Re(s) > 1 ,

where Hn are the classical harmonic numbers

Hn = 1 + 1
2 + · · ·+ 1

n
.

We consider the function F defined by the integral representation

F (s) := Γ(1− s)
2iπ

∫
L

zs−1ez

ez − 1Log
(
ez − 1
z

)
dz ,

where Log denotes the principal logarithm and L is the Hankel contour defined by
the parametrization

z = Log(1 + eix) with x ∈ ]− π, π [ for all z ∈ L .
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This function appears in [2] and plays a central role in the study of the function
ζH around its poles at the negative integers. The following representation:

ζH(s) = π cot(πs) ζ(s)+ζ(s+1)−ψ(1−s)ζ(s)−ζ ′(s)+F (s) for s in Cr Z , (1)

where ψ(s) = Γ′(s)/Γ(s) is the digamma function, is a direct consequence of [2,
Theorem 1] (see [2, Eqs. (8), (12) and (25)]).

On the other hand, differentiating the Hankel integral representation of ζ:

ζ(s) = Γ(1− s)
2iπ

∫
L

zs−1ez

1− ez dz

leads to the following identity:

ζ ′(s) + ψ(1− s)ζ(s) = Γ(1− s)
2iπ

∫
L

zs−1ezLog(z)
1− ez dz for s 6= 1, 2, 3, . . . (2)

(see [1, Eqs. (2.4)–(2.7)]). Furthermore, the above integral splits into two parts:
∫
L

zs−1ezLog(z)
1− ez dz =

∫
L

zs−1ez

ez − 1Log
(
ez − 1
z

)
dz −

∫
L

zs−1ez

ez − 1Log(ez − 1) dz ,

allowing a rewriting of formula (2) as follows:

ζ ′(s) + ψ(1− s)ζ(s) = F (s)−G(s) , (3)

with
G(s) := Γ(1− s)

2iπ

∫
L

zs−1ez

ez − 1Log(ez − 1) dz .

Finally, a substitution of (3) in formula (1) leads to another simpler representation
of ζH involving the function G. We have

ζH(s) = π cot(πs) ζ(s) + ζ(s+ 1) +G(s) for s in Cr Z . (4)
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2 Laurent series expansions at s = 1
The splitting of ζH(s) into three parts given by formula (4) above is the key formula
for obtaining the Laurent series expansion of the harmonic zeta function about its
(double) pole at s = 1. To show this, we will make use of the following expansions:

a) The Laurent expansions of π cot(πs) and ζ(s) at s = 1 are known. They are
respectively

π cot(πs) = 1
s− 1 − 2ζ(2)(s− 1)− 2ζ(4)(s− 1)3 − · · · ,

and
ζ(s) = 1

s− 1 + γ − γ1(s− 1) + 1
2γ2(s− 1)2 + · · · ,

where γn are the classical Stieltjes constants. The expansion of π cot(πs) ζ(s)
is then deduced by Cauchy’s product as follows:

π cot(πs) ζ(s) = 1
(s− 1)2 + γ

s− 1 −2ζ(2)−γ1 +
(1

2γ2 − 2γζ(2)
)

(s−1) + · · ·

(5)

b) The Taylor series expansion of ζ(s+ 1) at s = 1 is given by

ζ(s+ 1) = ζ(2) + ζ ′(2)(s− 1) + 1
2ζ
′′(2)(s− 1)2 + · · · (6)

Moreover, we will use afterwards a well-known expression of ζ ′(2):

ζ ′(2) = ζ(2)γ + ζ(2) log(2π)− 2π2 log(A) ,

where A is the Glaisher-Kinkelin constant defined by

logA = lim
n→∞

{
n∑
k=1

k log k −
(
n2

2 + n

2 + 1
12

)
log n+ n2

4

}
.

c) The Laurent expansion of Γ(z) at z = 0 is given by

Γ(z) =
∑
k≥0

Pk(−γ, . . . , (−1)kζ(k))zk−1 ,

where the polynomials Pk are the modified Bell polynomials defined by

exp(
∑
k≥1

xk
zk

k
) =

∑
k≥0

Pk(x1, . . . , xk)zk

= 1 + x1z +
(1

2x2 + 1
2x

2
1

)
z2 +

(1
3x3 + 1

2x1x2 + 1
6x

3
1

)
z3 + · · ·
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The Laurent expansion of Γ(1 − s) at s = 1 is easily deduced from this
expression by setting z = 1− s. We have

Γ(1− s) = − 1
s− 1 − γ −

(1
2ζ(2) + 1

2γ
2
)

(s− 1)

−
(1

3ζ(3) + 1
2γζ(2) + 1

6γ
3
)

(s− 1)2 + · · · (7)

d) Let us consider the function

g(s) := G(s)/Γ(1− s) = 1
2iπ

∫
L

zs−1ez

ez − 1Log(ez − 1) dz .

This is an entire function of s, and the change of variables

z = Log(1 + eix) with x ∈ ]− π, π [

leads to the integral representation

g(s) = − 1
2iπ

∫ π

−π
x(Log(1 + eix))s−1 dx .

If we now define Kn by

Kn := g(n)(1) = iπ

2

∫ 1

−1
xLogn(Log(1 + eiπx)) dx ,

then K0 = g(1) = 0, and the Taylor series expansion of g(s) at s = 1 is given
by

g(s) =
∑
n≥1

Kn

n! (s− 1)n . (8)

e) The Laurent expansion of G(s) at s = 1 is deduced from (7) and (8) by
Cauchy’s product. The result is as follows:

G(s) = −K1 −
(
K2

2 + γK1

)
(s− 1)

−
(
K3

6 + γ
K2

2 + (γ2 + ζ(2))K1

2

)
(s− 1)2 + · · · (9)

In particular, it results from the decomposition (4) and the expansions (5), (6),
and (9) above that the constant term in the Laurent expansion of ζH(s) at s = 1
is −ζ(2)− γ1 −K1. However, by using yet another representation of ζH , we have
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shown (see [3, Corollary 1 and Lemma 2]) that this constant term is 1
2γ

2 + 1
2ζ(2).

By comparing these two expressions, we derive the relation

−ζ(2)− γ1 −K1 = 1
2γ

2 + 1
2ζ(2)

which gives an expression of the integral K1 in terms of ζ(2), γ and γ1. We have

−K1 = −iπ2

∫ 1

−1
xLog(Log(1 + eiπx)) dx = 3

2ζ(2) + γ2

2 + γ1 = 2.561174 . . . (10)

Remark 1. Unfortunately, no such formula is known for the integral K2 whose dec-
imal approximation is K2 = −1.924491. More generally, it is not known whether
the integrals Kn for n ≥ 2 may be expressed using classical constants.

3 Evaluation of the harmonic Stieltjes constants
The expansions (5), (6), and (9) above and the decomposition (4) enable us to
write the Laurent series expansion of the harmonic zeta function ζH about its
double pole s = 1. We have

ζH(s) = 1
(s− 1)2 + γ

(s− 1) +γ̃0−γ̃1(s−1)+
∞∑
n=2

(−1)n
n! γ̃n(s−1)n (0 < |s−1| < 1) ,

where the coefficents γ̃n are the harmonic Stieltjes constants which are so called
by analogy with the classical Stieltjes constants (see [3, Remark 3]). Moreover,
this provides a method to evaluate these constants. Thus, for the first two ones,
we obtain the following closed-form expressions:

γ̃0 = −ζ(2)− γ1 −K1 = γ2

2 + π2

12 = 0, 98905599 . . .

and

γ̃1 = 1
2K2 + 2π2 logA− 1

2γ2 −
π2

12γ −
π2

6 log 2π − 1
2γ

3 − γγ1 = 0, 40076 . . .

Remark 2. The expressions for γ̃0 and γ̃1 given above coincide with the asymptotic
formula for γ̃n mentioned in [3] (see [3, Remark 3 c)]). In this order, we have

γ̃0 = lim
n→∞

{
n∑
k=1

Hk

k
− 1

2 log2(n)− γ log(n)
}

and
γ̃1 = lim

n→∞

{
n∑
k=1

Hk

k
log k − 1

3 log3(n)− 1
2γ log2(n)

}
.
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