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Anticanonical geometry of the blow-up of P4 in 8

points and its Fano model

Zhixin Xie

Abstract

Building on the work of Casagrande-Codogni-Fanelli, we develop our study on the birational
geometry of the Fano fourfold Y = MS,−KS

which is the moduli space of semi-stable rank-two
torsion-free sheaves with c1 = −KS and c2 = 2 on a polarised degree-one del Pezzo surface
(S,−KS). Based on the relation between Y and the blow-up of P4 in 8 points, we describe
completely the base scheme of the anticanonical system |−KY |. We also prove that the Bertini
involution ιY of Y , induced by the Bertini involution ιS of S, preserves every member in
|−KY |. In particular, we establish the relation between ιY and the anticanonical map of Y ,
and we describe the action of ιY by analogy with the action of ιS on S.

1 Introduction

Fano manifolds are classified up to dimension three. There are 10 deformation families of 2-
dimensional Fano manifolds, and 105 deformation families of 3-dimensional Fano manifolds (clas-
sified by Mori-Mukai and Iskovskih, see [Isk77, Isk78, Tak89, MM04]).

In dimension 4, toric Fano manifolds have been classified by Batyrev [Bat99] and Sato [Sat00],
and Fano manifolds of index r > 2 have been classified. Among Fano fourfolds, those of index one
have special positions: Küchle constructed a number of examples with Picard number one, and
explained some known results with lists of related problems (see [Küc97]). To find and classify
Fano fourfolds of index one, Coates, Corti and others have embarked on a program using mirror
symmetry ([CCG+13], and see a list of examples in [CGKS20]), where heavy computer calculations
are involved. A complete classification might not be desirable, but it is interesting to exhibit some
Fano fourfolds with special geometric properties, for example, those with Picard number ρ close to
the conjectural boundary ρ ≤ 18, or those whose anticanonical system has non-empty base locus.
In order to study Fano manifolds with large Picard number (see [Cas12]), Casagrande introduced
the invariant called Lefschetz defect, and developed fruitful results in this direction ([Cas13, CR22]).

Let Y := MS,−KS
be the moduli spaces of semi-stable rank-two torsion-free sheaves with c1 =

−KS , c2 = 2 on a polarised degree-one del Pezzo surface (S,−KS). The moduli spaces Y =MS,−KS

form a remarkable family of smooth Fano fourfolds with Picard number 9. The study of this family
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is motivated by two issues. Firstly, for Fano fourfolds with large Picard number (e.g. at least 7),
only few examples which are not products of del Pezzo surfaces are known. As pointed out in
[CCF19, Sect. 1,B], the family of Fano fourfolds Y is the only known example of Fano fourfolds
with Picard number at least 9, which is not a product of surfaces. Secondly, it is delicate to find
examples of Fano fourfolds whose anticanonical system has non-empty base locus, since most Fano
fourfolds classified so far are toric, which implies that any ample line bundle on them is globally
generated. Some examples are constructed in [Heu16, Chapter 6.3] as complete intersections of
two hypersurfaces in weighted projective spaces; two families are identified in [Sec21] as Fano
fourfolds with Picard number 3 and having some contraction onto a smooth Fano threefold. In
[CCF19, Thm. 1.10], it is shown that the base locus of the anticanonical system |−KY | has positive
dimension. Therefore, the geometry of Y is worth detailed understanding.

A. The anticanonical system of the Fano model Y . The birational geometry of Y =MS,−KS

is related to the birational geometry of the blow-up X of P4 at 8 points. In [CCF19, Lem. 5.18],
an explicit relation between X and Y is given: the Fano fourfold Y is obtained from X by flipping
the strict transforms of the lines through all pairs of blown up points and of the quartic curves
through 7 blown up points in P

4. Thanks to this relation between X and Y , it is shown in
[CCF19, Lem. 7.5, Cor. 7.6] that the base locus of |−KY | contains the strict transform RY of a
smooth rational quintic curve passing through the 8 blown up points in P

4, and that |−2KY | is
base-point-free. We complete the study of the anticanonical system and show more precisely that:

Theorem 1.1. For the Fano fourfold Y := MS,−KS
, the base scheme of |−KY | is the reduced

smooth curve RY .

As a direct application, we obtain the smoothness of a general member in the anticanonical
system.

Corollary 1.2. Let D ∈ |−KY | be a general divisor. Then D is smooth.

B. The Bertini involution of the Fano model Y . Now we turn our attention to the auto-
morphism group of Y . In [CCF19, Sect. 4], a group morphism ρ between the Picard groups of the
degree-one del Pezzo surface S and of the moduli spaces Y = MS,−KS

is defined. This morphism
ρ induces an isomorphism between the automorphism groups of S and of Y (see [CCF19, 6.15]).
In particular, there is an involution ιY of Y which is induced by the Bertini involution ιS of S.

We mention here that another motivation behind the study of the Bertini involution ιY is the
understanding of the corresponding birational involutions ιX of X and ιP4 of P4. These birational
maps ιX and ιP4 are classically known, as they can be defined via the Cremona action of the
Weyl group W (E8) on sets of 8 points in P

4 (see [DO88] and [DV81]). Nevertheless, the classical
definitions of ιX and ιP4 do not give a geometric description of these maps. In [CCF19, Prop. 8.9,
Cor. 8.10], a factorisation of these maps is given as smooth blow-ups and blow-downs using the
interpretation of X as a moduli space of vector bundles on S. In view of the relation among Y , X
and P

4, understanding one of the involutions helps describe the behaviour of the others.

2



By the analogy of Y and S, one expects that the action of ιY on Y has similar properties as
the action of ιS on S, where the latter is well understood (see for example [Dol12, 8.8.2]). To
emphasize their analogy, we recall that the Bertini involution ιS on S can be described as follows.
The bianticanonical system |−2KS | is base-point-free and defines a 2:1-cover with image a quadric
cone in P3. The Bertini involution ιS is then defined to be the associated covering involution. By
construction, the Bertini involution ιS on S preserves every element of |−2KS |. Since a divisor
D ∈ |−KS | defines an element 2D ∈ |−2KS |, we see that ιS preserves every divisor in |−KS |. In
view of the abstract construction of ιY on the Fano fourfold Y , the same methode cannot be applied
to decide whether ιY preserves every divisor in |−KY |. However, by analysing the anticanonical
map of Y , we show that the same property holds for Y .

Theorem 1.3. The Bertini involution ιY of the Fano fourfold Y :=MS,−KS
preserves every divisor

in |−KY |.

To understand the Bertini involution ιY on the Fano fourfold, our approach is analysing its
behaviour on a special surfaceWY which is invariant by ιY . This surfaceWY is the strict transform
of the cubic scroll swept out by the pencil of elliptic normal quintics in P

4 through the 8 blown
up points; in particular, it contains the curve RY . Inspired by the similarity with degree-one del
Pezzo surfaces, we study the morphism defined by the restricted bianticanonical system of Y on
WY , and we give the following description of ιY restricted to WY .

Proposition 1.4. The Bertini involution ιY of the Fano fourfold Y := MS,−KS
preserves the

surface WY , and its restriction ιY |WY
on WY is the biregular involution defined by the double

covering
φ|−2KY |WY

: WY → V2,4 ⊂ P
7,

where V2,4 ≃ F2 is a rational normal scroll of bidegree (2, 4). In particular, the Bertini involution
ιY acts as the identity on the curve RY and ιY induces an involution on each elliptic fibre FY of
WY → P

1.
Furthermore, there exists a smooth curve R′ ∼ 3(RY +FY ) of genus 4 on the surface WY , such

that R′ is disjoint from RY and contained in the fixed locus of ιY .

Since RY is contained in the fixed locus of the Bertini involution ιY , the involution can be
lifted to the blow-up Ỹ of Y along the curve RY . We establish the relation between the resolved
anticanonical map and the lifted involution on Ỹ as follows.

Theorem 1.5. Let µ : Ỹ → Y be the blow-up of Y :=MS,−KS
along the base curve RY of |−KY |,

and E be the exceptional divisor. Let f : Ỹ → P(H0(Y,OY (−KY ))
∨) ≃ P

5 be the morphism defined
by the base-point-free linear system |µ∗(−KY )−E|. Then f has generically degree 4 with image Q
a smooth quadric hypersurface in P

5, and f contracts the strict transform of the surface WY to a
conic in P

5. Moreover, f |E : E → f(E) is a finite birational morphism such that the image f(E)
has degree 4 in P

5.
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Furthermore, the Bertini involution ιY of Y can be lifted to Ỹ , and the lifted involution ιỸ acts

as the identity on E. Moreover, f factors through the quotient Ỹ /ιỸ :

Ỹ

Y Ỹ /ιỸ

Q ⊂ P
5

µ

f

As open questions, one may like to understand the quotient Ỹ /ιỸ , the geometric interpretation

of Ỹ /ιỸ → Q, and to describe completely the fixed locus of ιỸ (see Remark 4.15).

Plan. We briefly explain the organisation of the paper. In Section 2, we summarise some results
in [CCF19], including the geometry of the Fano model Y := MS,−KS

, the connection between the
blow-up X of P4 at 8 points and the degree-one del Pezzo surface S, and the relation between X
and Y . We finish by recalling some basic properties of the Bertini involution of a degree-one del
Pezzo surface.

In Section 3, we investigate the anticanonical system |−KY | and the bianticanonical system
|−2KY |. We prove Proposition 1.1 by an additional analysis on the simplicial facets of the cone of
effective divisors on Y . We also give some auxiliary results on |−KY | and |−2KY |, which serve as
key ingredients in the study of the Bertini involution of Y .

In Section 4, we study the action of the Bertini involution of Y . Subsection 4.1 is devoted
to the proof of Proposition 1.4. We study the morphism defined by the bianticanonical system
|−2KY | restricted to the surface WY . Computations by Macaulay2 show that the image of WY is
a surface of degree 6 in P

7, which helps us to describe completely the morphism; in particular, the
morphism is finite of degree 2 and gives an involution on the surfaceWY . By examining the action
of this covering involution, we show that it coincides with the Bertini involution ιY restricted to
the surface WY .

In Subsection 4.2, we study the geometry of the anticanonical map of Y . Computations by
Macaulay2 show that the image of Y by the antincanonical map is a smooth quadric hypersurface
Q in P

5. We are then ready to prove Theorem 1.3. The strategy is to prove by contradiction: we
suppose that ιY does not preserve every divisor in |−KY |. We show that in this case, ιY induces
a non-trivial involution ιQ on Q. We then obtain a contradiction by analysing the fixed locus of
the induced involution ιQ and by studying the geometry of a special sub-linear systems of |−KY |
consisting of divisors containing the surface WY . Theorem 1.5 is obtained as a consequence of the
study to prove Theorem 1.3.

In Appendix A, we include the code for several computations in Section 3 and Section 4 using
the software system Macaulay2.
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2 Preliminaries

We fix S a general del Pezzo surface of degree one. Let MS,L be the moduli space of semi-stable
(with respect to L ∈ Pic(S) ample) rank-two torsion free sheaves F on S with c1(F) = −KS and
c2(F) = 2. Then it follows from the classical properties of the determinant line bundle that for the
polarisation L = −KS , the moduli space Y :=MS,−KS

is Fano.
For the degree-one del Pezzo surface S, we introduce the following notions (see [CCF19,

Sect. 2.1]). A conic on S is a smooth rational curve such that −KS · C = 2 and C2 = 0. Every
such conic yields a conic bundle S → P

1 having C as fibre. There are 2160 conics (as classes of a
curve) in H2(S,Z). A big divisor h on S which realises S as the blow-up σ : S → P

2 at 8 distinct
points is called a cubic. We have h = σ∗OP2(1). There are 17280 cubics (as classes of a curve) in
H2(S,Z).

Notation 2.1. Given a cubic h, we use the following notation:

• σh : S → P
2 is the birational map defined by h

• q1, . . . , q8 ∈ P
2 are the points blown up by σh

• ei ⊂ S is the exceptional curve over qi, for i = 1 . . . , 8

• Ci ⊂ S is the transform of a general line through qi, so that Ci ∼ h− ei, for i = 1, . . . , 8

• ℓij ⊂ S is the transform of the line qiqj ⊂ P
2, so that ℓij ∼ h−ei−ej and ℓij is a (−1)-curve,

for 1 ≤ i < j ≤ 8.

2.1 The Fano model Y

By [CCF19, Prop. 1.6], the moduli space Y := MS,−KS
is a smooth, rational Fano fourfold with

index one and Picard number 9. For such a moduli space Y , the determinant map ρ : H2(S,R) →
H2(Y,R) is an isomorphism (see [CCF19, Thm. 1.3]) and yields a completely explicit description
of the relevant cones of divisors Eff(Y ), Mov(Y ) and Nef(Y ), as well as the cone of effective curves
NE(Y ). We cite the following statements for the cone of effective divisors Eff(Y ) and the cone of
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effective curves NE(Y ), and refer the readers to [CCF19, Sect. 6] for the description of the other
relevant cones.

Proposition 2.2 ([CCF19], Sect. 2.3, Cor. 6.2). The determinant map ρ : H2(S,R) → H2(Y,R)
yields an isomorphism between E and Eff(Y ), where E is the subcone of Nef(S) generated by the
conics:

E := 〈C |C a conic〉 ⊂ H2(S,R).

Hence, the cone Eff(Y ) has 2160 extremal rays, each generated by a fixed divisor EC , where C ⊂ S
is a conic.

Moreover, given a cubic h, (2h+KS)
⊥∩E is a simplicial facet (i.e. a face of codimension one)

of E, generated by the conics Ci for i = 1, . . . , 8 (notations as in Notation 2.1). Hence, the fixed
divisors ECi for i = 1, . . . , 8 generate a simplicial facet of Eff(Y ).

Proposition 2.3 ([CCF19], Prop. 1.7). The cone of effective curves NE(Y ) has 240 extremal rays,
and is isomorphic to NE(S). If ℓ is a (−1)-curve on S, the corresponding extremal ray of NE(Y )
is generated by the class of a line Γℓ in Pℓ

∼= P
2 ⊂ Y . The corresponding elementary contraction

is a small contraction, sending Pℓ to a point.

The determinant map ρ also relates the two automorphism groups Aut(Y ) and Aut(S). By
[CCF19, Thm. 1.9], the map ψ : Aut(S) → Aut(Y ) given by ψ(φ)[F ] = [(φ−1)∗F ], for φ ∈ Aut(S)
and [F ] ∈ Y , is a group isomorphism. In particular, Aut(Y ) is finite; if S is general, then

Aut(Y ) = {IdY , ιY },

where ιY : Y → Y is induced by the Bertini involution of S. We still call the involution ιY := ψ(ιS)
of Y the Bertini involution. Explicitly, ιY : Y → Y is given (see [CCF19, Def.6.19]) by ιY ([F ]) =
[ι∗SF ]. We have a commutative diagram:

H2(S,R)
ι∗
S

//

ρ

��

H2(S,R)

ρ

��

H2(Y,R)
ι∗
Y

// H2(Y,R).

(1)

Finally, motivated by the analogy with del Pezzo surface of degree one, the study of the base
loci of the anticanonical and the bianticanonical linear systems of Y gives the following:

Theorem 2.4 ([CCF19], Thm. 1.10). The linear system |−KY | has a base locus of positive dimen-
sion, while the linear system |−2KY | is base point free.
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2.2 The blow-up X of P4 at 8 general points

2.2.1 Degree one del Pezzo surfaces and blow-ups of P4 in 8 points

For S = Blq1,...,q8 P
2 andX = Blp1,...,p8 P

4 the blow-ups respectively of P2 and P
4 at 8 general points,

there is a classical association between these two varieties due to Gale duality. The following is
summarised from [CCF19, 2.21]; for further details of the association, we refer to [CCF19, 2.18].

Let h be a cubic on S. We associate to (S, h) a blow-up X of P4 in 8 points in general linear
position as follows.

Let q1, . . . , q8 ∈ P
2 be the points blown up under the birational morphism S → P

2 defined by h
(the points q1, . . . , q8 are in general linear position by [CCF19, Rem. 2.20]), and let p1, . . . , p8 ∈ P

4

be the associated points to q1, . . . , q8 ∈ P
2 (the points p1, . . . , p8 are in general linear position by

[CCF19, Lem. 2.19]). Then we set

X = Xh = X(S,h) := Blp1,...,p8 P
4.

We always assume that q1, . . . , q8 ∈ P
2 and p1, . . . , p8 ∈ P

4 are associated as ordered sets of point.
Conversely, letX be a blow-up of P4 in 8 general points. Differently from the case of surfaces, the

blow-up map X → P
4 is unique and thus X determines p1, . . . , p8 ∈ P

4 up to projective equivalence.
The 8 points p1, . . . , p8 ∈ P

4 in turn determine q1, . . . , q8 ∈ P
2 up to projective equivalence, and

thus a pair (S, h) such that X ∼= X(S,h). The pair (S, h) is unique up to isomorphism, therefore S
is determined up to isomorphism, and h is determined up to the action of the automorphism group
Aut(S) on cubics.

2.2.2 Notation for the blow-up X of P4 at 8 points

Let p1, . . . , p8 ∈ P
4 be 8 points in general linear position, and set X := Blp1,...,p8 P

4. We use the
following notation:

• Ei ⊂ X is the exceptional divisor over pi ∈ P
4, for i = 1, . . . , 8

• H ∈ Pic(X) is the pull-back of OP4(1)

• Lij ⊂ X is the transform of the line pipj ⊂ P
4, for 1 ≤ i < j ≤ 8

• ei ⊂ Ei is a line, for i = 1, . . . , 8

• γi ⊂ P
4 is the rational normal quartic through p1, . . . , p̌i, . . . , p8, for i = 1, . . . , 8

• Γi ⊂ X is the transform of γi ⊂ P
4, for i = 1, . . . , 8.
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2.3 From the blow-up X to the Fano model Y

We recall the explicit relation between X and Y :

Lemma 2.5 ([CCF19], Lem. 5.18). The birational map ξ : X 99K Y is the composition of 36 (K-
positive) flips: first the flips of Lij for 1 ≤ i < j ≤ 8, and then the flips of Γk for k = 1, . . . , 8.
There is a commutative diagram:

X̂

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

��
❄❄

❄❄
❄❄

❄❄

X
ξ

//❴❴❴❴❴❴❴ Y

where X̂ → X is the blow-up of the curves Lij and Γk, with every exceptional divisor isomorphic to

P
1 × P

2 with normal bundle O(−1,−1), and X̂ → Y is the blow-up of 36 pairwise disjoint smooth
rational surfaces.

Notation 2.6. We use the following notation:

• Pℓij ⊂ Y is the flipped surface replacing Lij ⊂ X, for 1 ≤ i < j ≤ 8

• Pek ⊂ Y is the flipped surface replacing Γk ⊂ X, for k = 1, . . . , 8.

We will sometimes write ξh : Xh 99K Y to stress that Xh and ξh depend on the chosen cubic h
(while Y does not). Denote by ηh the composition map:

Y Xh P
4

ξ−1

h

ηh

2.4 The Bertini involution of S

We recall some basic properties of the Bertini involution of a del Pezzo surface of degree one.

Proposition 2.7 ([Dol12],Thm. 8.3.2). Suppose that S is a del Pezzo surface of degree 1. Then

(i) |−KS | is a pencil of genus 1 curves with smooth general member and one base point;

(ii) |−2KS | is base-point-free and defines a morphism φ|−2KS | : S → P
3 which is finite of degree

2 with image Q a quadric cone.

The Bertini involution ιS : S → S is the biregular involution defined by the double covering

φ|−2KS | : S → Q.

For S general, ιS is the unique non-trivial automorphism of S. The pull-back ι∗S acts on Pic(S)
(and on H2(S,R)) by fixing KS and acting as −1 on K⊥

S (see [Dol12, §8.8.2]). This yields:

ι∗Sγ = 2(γ ·KS)KS − γ for every γ ∈ H2(S,R). (2)

The fixed locus of ιS is a smooth irreducible curve of genus 4 isomorphic to the branch curve of the
double cover and the base point of |−KS |. The fixed curve belongs to the linear system | − 3KS |.
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3 Anticanonical and bianticanonical linear systems of the Fano

model Y

Let S be a degree-one del Pezzo surface, and Y := MS,−KS
be the associated Fano fourfold. To

analyse the anticanonical linear system |−KY |, we introduce a special surface as follows.

Lemma 3.1 ([CCF19], Lem. 7.2). Let p1, . . . , p8 ∈ P
4 be general points. Then there is a pencil of

elliptic normal quintics in P
4 through p1, . . . , p8, which sweeps out a cubic scroll W ⊂ P

4.
Let moreover q1, . . . , q8 ∈ P

2 be the associated points to p1, . . . , p8 ∈ P
4. Then there is a

birational map α : W → P
2 such that α(pi) = qi for i = 1, . . . , 8, α sends the pencil of elliptic

normal quintics to the pencil of plane cubics through q1, . . . , q8, and α is the blow-up of the ninth
base point q0 ∈ P

2 of the pencil of plane cubics.

Let W ′ ⊂ X be the transform of the cubic scroll W ⊂ P
4. By [CCF19, (7.3)], we have the

following diagram:
W ′

⊂ X

η

yyrr
rr
rr
rr
rr

##●
●●

●●
●●

●●

α′

��

W ⊂ P
4

α

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

S

σ
{{✇✇
✇✇
✇✇
✇✇
✇

P
2

(3)

where η : W ′ → W is the blow-up of p1, . . . , p8, so the composition α′ := α ◦ η : W ′ → P
2 is the

blow-up of q0, . . . , q8. Thus W ′ is isomorphic to the blow-up of S in the base point of |−KS |.
Hence, there is an elliptic fibration π : W ′ → P

1, where the smooth fibres are the transforms of the
elliptic normal quintics through p1, . . . , p8 in P

4, and every fibre is integral.

Lemma 3.2 ([CCF19], Lem. 7.4). The surface W ′ ⊂ X is disjoint from Lij for 1 ≤ i < j ≤ 8
and from Γk for k = 1, . . . , 8, and W ′ is contained in the open subset where ξ : X 99K Y is an
isomorphism.

We denote by WY the strict transform of W ′ in Y . Then WY ≃W ′.

Lemma 3.3 ([CCF19], Lem. 7.5, Lem. 7.7, Rem. 7.10). We have (−KX)|W ′ = OW ′(R+ 2F ) and
R = Bs |(−KX)|W ′ |, where F ⊂W ′ is a fibre of the elliptic fibration, and R ⊂W ′ is a (−1)-curve
and a section of the elliptic fibration. The curves R and F satisfy −KX · R = −KX · F = 1 and
Ei · R = Ei · F = 1 for every i = 1, . . . , 8, so R ≡ F in X and ξ(R) ≡ ξ(F ) in Y .

Moreover, let R4 ⊂ P
4 be the images of R under η : W ′ ⊂ X → W ⊂ P

4 (see diagram (3)).
Then R4 is a smooth rational quintic curve through p1, . . . , p8

Corollary 3.4 ([CCF19], Cor. 7.6). The base locus of |−KX | contains the smooth rational curve
R, and the base locus of |−KY | contains the smooth rational curve ξ(R).
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We denote by RY the smooth rational curve ξ(R) contained in the base locus of |−KY |, and
FY a fibre of the elliptic fibration WY → P

1.

Lemma 3.5. The normal bundle NRY /Y
∼= OP1(−1)⊕O⊕2

P1 .

Proof. Since R4 is a rational quintic curve in P
4, one has

NR4/P4
∼= OP1(a)⊕OP1(b)⊕OP1(c)

with a ≤ b ≤ c and a + b + c = 23. Since TP4 |R4
։ NR4/P4 → 0, one has that NR4/P4 is ample.

Hence, we deduce that a, b, c > 0. Moreover, by Macaulay2 (see Listing 2),

h0(R4,N
∗
R4/P4 ⊗OP4(1)⊗ ω∗

R4
) = 1,

we deduce that a = 7 and b, c > 7. Hence, b = c = 8. Therefore, by [Ful98, B.6.10], one has

NR/X
∼= OP1(−1)⊕O⊕2

P1 .

As R is disjoint from the indeterminacy locus of the map ξh, we deduce that

NRY /Y
∼= OP1(−1)⊕O⊕2

P1 .

Remark 3.6. (see also [CCF19, Remark 7.8]) In P
4, let M be the linear system of quintic hyper-

surfaces with multiplicity at least 3 at 8 general points. Then by Macaulay2 (see Listing 1) the base
ideal b(M) is the intersection of the ideals of 28 line pipj for 1 ≤ i < j ≤ 8, the ideals of 8 rational
normal quartic curves γk for k = 1, . . . , 8 and the ideal of the rational quintic curve R4. This shows
that the base scheme of |−KY |, in the open subset of Y where ηh : Y 99K P

4 is an isomorphism, is
RY (reduced) minus the 8 points of intersection with the 8 exceptional divisors ξ(E1), . . . , ξ(E8).
The base locus of |−KY | is thus given by RY , possibly union some other components contained in
ξ(E1), . . . , ξ(E8).

Lemma 3.7. The base locus of the anticanonical system |−KY | is disjoint from the surfaces Pℓij

and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.

Proof. Consider the commutative diagram in Lemma 2.5:

X̂

X Y

p q

ξ

where p : X̂ → X is the blow-up of X along the curves Lij and Γk with every exceptional divisor
isomorphic to P

1×P
2, and q : X̂ → Y is the blow-up of 36 pairwise disjoint smooth rational surfaces

Pℓij and Pek , for 1 ≤ i < j ≤ 8 and k = 1, . . . , 8.
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Suppose by contradiction that there exists a base point y of |−KY | contained in some flipped
surface that we denote by P (which is one of the surfaces Pℓij or Pek). Denote by C ⊂ X the
corresponding flipping curve (which is one of the curves Lij or Γk).

Let E be the sum of exceptional divisors over Lij for 1 ≤ i < j ≤ 8 and over Γk for k = 1, ..., 8.
Since

p∗(−KX)− 2E = −KX̂ = q∗(−KY )− E,

one has
q∗(−KY ) = p∗(−KX)− E.

Let Ey ≃ P
1 be the exceptional fibre in X̂ above y. Then Ey is contained in Bs |q∗(−KY )| =

Bs |p∗(−KX)− E| and Ey is mapped surjectively onto C.
Since the blow-up of the 8 points X = Blp1,...,p8 → P

4 is an isomorphism near a general point
of C, the base scheme of |−KX | is generically reduced along C by Remark 3.6. Hence, the linear
system |p∗(−KX) − E| is base-point-free above the generic point of C. This contradicts the fact
that Bs |p∗(−KX)− E| contains a curve which is mapped surjectively onto C.

Remark 3.8. More generally, the proof of Lemma 3.7 shows the following. Let X,Y be smooth
projective fourfolds. Let ξ : X 99K Y be an anti-flip. In [Kaw89, Thm. 1.1], Kawamata showed that
for smooth projective fourfolds, there exists only one type of flip and it is obtained by blowing up a
P
2 with normal bundle OP2(−1)⊕2 (the exceptional locus of the blowing up is P2 ×P

1) and blowing
down this P

2 × P
1 to P

1. Thus ξ (anti-)flips a smooth curve C ⊂ X to a smooth surface P ⊂ Y .
If Bs |−KX | is reduced in the generic point of C, then |−KY | is base-point-free on P .

Corollary 3.9. The curve RY is the unique base curve in Bs |−KY | of anticanonical degree 1.
Therefore, RY is independent of the choice of cubic h.

Proof. Let C ⊂ Bs |−KY | be a base curve contained in some exceptional divisor ξ(Ei), for i =
1, . . . , 8. Let C̃ be its strict transform in X. By Lemma 3.7, the curve C is disjoint from the
indeterminacy locus of ξ−1. Hence, one has −KY · C = −KX · C̃ and C̃ ⊂ Ei.

Since −KX = 5H − 3
∑8

j=1Ej, H · C̃ = 0, Ej · C̃ = 0 for j 6= i, and Ei · C̃ ≤ −1, one has

−KY · C = −KX · C̃ ≥ 3.

Therefore, the curve RY is the unique base curve satisfying −KY · RY = −KX ·R = 1.

Corollary 3.10. Let B ⊂ Y be an irreducible component of the (set-theoretic) base locus of |−KY |,
which is distinct from RY . Then for every simplicial facet 〈EC1

, . . . , EC8
〉 of Eff(Y ) (notation as

in Notation 2.1 and Proposition 2.2), there exists a unique ECi for i = 1, . . . , 8 such that B ⊂ Ei.

Proof. Given a cubic h, consider the simplicial facet 〈EC1
, . . . , EC8

〉 of Eff(Y ), where Ci ∼ h − ei
for i = 1, . . . , 8 (notation as in Notation 2.1). Then ECi are the strict transforms of the exceptional
divisors Ei ≃ P

3 ⊂ Xh = X under ξh = ξ : X 99K Y .
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Since B is distinct from RY , we deduce that B is contained in some fixed divisor ECi by Remark
3.6. By the construction of the composition of flips ξ (see Lemma 2.5), the intersection of two fixed
divisors ECj and ECk

(for k 6= j) is the union of the flipped surfaces Pℓjk and Pel for l 6= j, k.
Hence, by Lemma 3.7, the fixed divisor Ei containing B is unique.

Proof of Theorem 1.1. We first show that RY is the unique irreducible component of the (set-
theoretic) base locus of |−KY |.

Let h be a cubic. Let Ci be a conic such that Ci ∼ h − ei for i = 1, . . . , 8 (notation as
in Notation 2.1). Let Ei := ECi , where we use the notation of Proposition 2.2. By the same
proposition, E1, . . . , E8 generate a simplicial facet of Eff(Y ). Suppose by contradiction that there
exists another component B distinct from RY of the base locus of |−KY |. Then by Corollary 3.10,
we may suppose that B ⊂ E1 and B 6⊂ E2, E3, . . . , E8.

Let i, j, k, l be distinct indices in {1, . . . , 8}. Consider the conics C ′
l such that C ′

l ∼ 2h − ei −
ej − ek − el and the corresponding fixed divisors Fijkl := E2h−ei−ej−ek−el .

Claim. The fixed divisors Ei, Ej , Ek and Fijkl for l ∈ {1, . . . , 8} distinct from i, j, k generate a
simplicial facet of Eff(Y ).

Indeed, by Proposition 2.2, it is enough to find a cubic h′ such that 2h′ +KS is orthogonal to
the 8 conics Ci, Cj , Ck and C ′

l for l ∈ {1, . . . , 8} distinct from i, j, k.
We take h′ ∼ 2h− ei − ej − ek. Then we can check that

Ci ∼ h′ − ℓjk

Cj ∼ h′ − ℓik

Ck ∼ h′ − ℓij

C ′
l ∼ h′ − el

and 2h′+KS is orthogonal to the above 8 conics. Moreover, h′ is nef and big, and the corresponding
birational map σh′ : S → P

2 contracts the 8 pairwise disjoint (−1)-curves ℓjk, ℓik, ℓij , el for l 6= i, j, k.
Hence, h′ is a cubic. This proves the claim.

We will repeatedly use Corollary 3.10 in the following.

• Consider the simplicial facet generated by E1, E2, E3, F1234, F1235, F1236, F1237, F1238. Then
B 6⊂ F1234, F1235, F1236, F1237, F1238.

• Consider the simplicial facet generated by E2, E3, E4, F1234, F2345, F2346, F2347, F2348. Then
B is contained in one of the fixed divisors F2345, F2346, F2347, F2348. We may suppose that
B ⊂ F2345. Then B 6⊂ F2346, F2347, F2348.

• Consider the simplicial facet generated by E2, E3, E5, F1235, F2345, F2356, F2357, F2358. Then
B 6⊂ F2356, F2357, F2358.
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• Consider the simplicial facet generated by E2, E3, E6, F1236, F2346, F2356, F2367, F2368. Then
by what precedes, we know that B is contained in one of the fixed divisors F2367, F2368. We
may suppose that B ⊂ F2367. Then B 6⊂ F2368.

• Consider the simplicial facet generated by E2, E3, E7, F1237, F2347, F2357, F2367, F2378. Then
B 6⊂ F2378.

• Finally, consider the simplicial facet generated by E2, E3, E8, F1238, F2348, F2358, F2368, F2378.
Then by what precedes, we know that B is contained in none of these 8 fixed divisors, which
contradicts Corollary 3.10.

Therefore, the curve RY is the unique irreducible component of the base locus of |−KY |.
Now we show that the base scheme of |−KY | is the reduced curve RY , i.e. there are no

embedded points. Indeed, given a cubic h, consider the birational map ηh : Y 99K P
4. By Remark

3.6, the base scheme of |−KY | is the reduced curve RY with possible embedded points which have
support in the 8 points of intersection with the 8 exceptional divisors of ηh. By varying h, we may
consider another map ηh′ : Y 99K P

4 with other 8 exceptional divisors, so that we get 8 different
points of intersection on RY . Such a cubic h′ exists because otherwise, there is a base point y
on RY such that for every simplicial facet 〈EC1

, . . . , EC8
〉 of Eff(Y ) the point y is contained in a

unique ECi , and thus we obtain a contradiction by replacing B with y in the above paragraph.
Hence, there is no embedded base point on RY .

Proof of Corollary 1.2. Since the base scheme Bs |−KY | is the smooth curve RY by Proposition
1.1, we can apply [MM86, Prop. 6.8] which implies that a general member in |−KY | is smooth.

In the rest of this section, we collect some auxiliary results which will be used in Section 4.

Lemma 3.11. For a general point x ∈ R4 (notation as in Lemma 3.3), there exists a unique
divisor in M which has multiplicity 3 at x: it is the secant variety of the elliptic normal quintic
through the nine points p1, . . . , p8 and x.

By varying x on R4, one obtains a one-dimensional family Sec of divisors in M with scheme-
theoretic intersection BsSec defined by the ideal b(Sec). Then

(b(Sec) : b(M)) : IW = IW ,

where the scheme defined by the ideal IW is the reduced surface W .

Proof. We choose a random point x on R4 which is not one of the 8 blown up points. Let Mx,3

be the linear subspace of divisors in M having multiplicity at least 3 at the point x. Then
dimMx,3 = 0 by Macaulay2 (see Listing 3) and thus the unique element in Mx,3 is the secant
variety Sec(Ex), where Ex is the elliptic normal quintic in W passing through the point x and the
8 blown up points.
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Let Sec be the family of secant varieties Sec(Ex) for x varying on R4 and b(Sec) be the ideal
associated to the scheme-theoretic intersection BsSec of the family Sec. Let b3(Sec) be the ideal
associated to the scheme-theoretic intersection of three general secant varieties in Sec (obtained by
choosing three distinct random points on R4 and intersecting the corresponding secant varieties).

By Macaulay2 (see Listing 4), the quotient IS := (b3(Sec) : b(M)) has degree 6 and dimension
2. Let IW be the ideal of singular locus of the variety defined by IS . Then by Macaulay2 (see
Listing 4), IW has dimension 2 and degree 3; moreover, the variety defined by IW is smooth and
one has (IS : IW ) = IW . Since each of these secant varieties in Sec contains the cubic scroll W ,
we deduce that the variety defined by IW is indeed the surface W .

Let MW be the sub-linear system of effective divisors in M containing the surface W . By
Macaulay2 (see Listing 5), the base ideal b(MW ) is equal to b3(Sec). Since Sec is a family of
divisors in MW , we deduce that b3(Sec) = b(Sec) = b(MW ).

Lemma 3.12. The surface WY is unique, i.e. WY is independent of the choice of cubic h. There-
fore, WY is disjoint from every one of the loci Pℓ of the small extremal rays of Y .

Proof. Let SecY be the family of the strict transforms in Y of the secant varieties in Sec. Let
MY,3 be the family of divisors in |−KY | having multiplicity 3 at some point on RY . Then the two
families MY,3 and SecY are equal, as dimMx,3 = 0 for a general point x ∈ R4 by Lemma 3.11 and
ηh is an isomorphism at the generic point of R4.

Suppose by contradiction that WY depends on h. Then there exist two distinct surfaces WY,h

and WY,h′ . Let BsMY,3 be the scheme-theoretic intersection of the family MY,3. Then by Lemma
3.11, one has the following set-theoretic inclusion:

BsMY,3 ⊃WY,h ∪WY,h′.

Since WY,h′ contains the curve RY which is generically in the locus where ξ−1
h : Y 99K Xh is an

isomorphism, we deduce that WY,h′ is not contracted by ξ−1
h .

Since the surface ξ−1
h (WY,h′) contains the curve R, this surface cannot be contained in any

exceptional locus Ei, i = 1, ..., 8 of Xh → P
4, and thus it cannot be contracted; we denote by Wh′

its image in P
4. Therefore, BsSec contains two distinct surfaces W and Wh′ , which contradicts

Lemma 3.11.
Since by Lemma 3.2 the surface WY is disjoint from the indeterminacy locus of the map

ξ−1
h : Y 99K Xh, which is a union of some of the loci Pℓ (depending on h), and WY is the same for
all h, we deduce that WY is disjoint from every one of the loci Pℓ.

Lemma 3.13. (i) We have h0(WY ,OWY
(−KY )) = 3. The restriction

r1 : H
0(Y,OY (−KY )) → H0(WY ,OWY

(−KY ))

is surjective.
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(ii) We have h0(WY ,OWY
(−2KY )) = 8. The restriction

r2 : H
0(Y,OY (−2KY )) → H0(WY ,OWY

(−2KY ))

is surjective.

Proof. Since −KWY
∼ FY and −KY |WY

∼ RY + 2FY by Lemma 3.3, by the Riemann-Roch
formula one has χ(WY ,−KY |WY

) = 3. Since −KY |WY
is ample on WY and −KWY

is nef, by
Kodaira vanishing theorem one has

hj(WY ,OWY
(−KY )) = hj(WY ,OWY

(KWY
−KWY

+ (−KY ))) = 0

for j = 1, 2. Therefore, h0(WY ,OWY
(−KY )) = 3. The same argument can be applied to obtain

h0(WY ,OWY
(−2KY )) = 8.

(i) By Macaulay2 (see Listing 5),

h0(P4,OP4(5)⊗ I3
p1,...,p8 ⊗ IW ) = 3.

Since H0(Y,OY (−KY )) ≃ H0(P4,OP4(5) ⊗ I3
p1,...,p8), and the surface WY is disjoint from the

indeterminacy locus of ηh by Lemma 3.2 and WY is not contained in the exceptional locus of ηh,
we deduce that

H0(Y,OY (−KY )⊗ IWY
) ≃ H0(P4,OP4(5) ⊗ I3

p1,...,p8 ⊗ IW ).

Hence,
h0(Y,OY (−KY )⊗ IWY

) = 3.

As h0(Y,OY (−KY )) = 6 and h0(WY ,OWY
(−KY )) = 3, we deduce that the restriction morphism

H0(Y,OY (−KY )) → H0(WY ,OWY
(−KY ))

is surjective.
(ii) By Macaulay2 (see Listing 7),

h0(P4,OP4(10) ⊗ I6
p1,...,p8 ⊗ IW ) = 21.

Since H0(Y,OY (−2KY )) ≃ H0(P4,OP4(10) ⊗ I6
p1,...,p8) and by the same argument as above, we

deduce that
H0(Y,OY (−2KY )⊗ IWY

) ≃ H0(P4,OP4(10) ⊗ I6
p1,...,p8 ⊗ IW ).

Hence,
h0(Y,OY (−2KY )⊗ IWY

) = 21.

As h0(Y,OY (−2KY )) = 29 and h0(WY ,OWY
(−2KY )) = 8, we deduce that the restriction mor-

phism
H0(Y,OY (−2KY )) → H0(WY ,OWY

(−2KY ))

is surjective.

15



4 The Bertini involution of the Fano model Y

Let S be a degree-one del Pezzo surface, and Y :=MS,−KS
be the associated Fano fourfold. In this

section, we study the action of the Bertini involution ιY on the Fano fourfold Y , which is analogous
to the action of the Bertini involution ιS on the surface S. We first notice that by the diagram
(1) and the behaviour of ιS described in (2), the invariant part of H2(Y,R) by the action of ιY is
RKY .

4.1 Action of the Bertini involution on the surface WY

In this subsection, we further our study of the involution ιY by looking at its action on the surface
WY (which is the strict transform of the cubic scroll swept out by the pencil of elliptic normal
quintics in P

4). The aim of this subsection is to prove Proposition 1.4.
We start by showing that the surface WY is invariant by the Bertini involution ιY .

Lemma 4.1. The Bertini involution ιY preserves the curve RY and the surface WY . Moreover,
(ιY |WY

)∗(ei) ∼ −2KY |WY
− ei and (ιY |WY

)∗(FY ) ∼ FY , where ei is the exceptional curve of
ηh|WY

: WY →W for i = 1, . . . , 8.

Proof. Since ιY preserves the family of divisors in the anticanonical system |−KY |, the involution
ιY preserves the base locus of |−KY |. Thus ιY (RY ) = RY by Proposition 1.1.

Let x be a general point in RY . Then by Lemma 3.11, there exists a unique divisor in |−KY |
having multiplicity 3 at x: it is the strict transform in Y of the secant variety of the elliptic normal
quintic through p1, . . . , p8 and ηh(x) in P

4. In particular, this divisor has multiplicity 3 along the
elliptic fibre of WY through x. By varying x in RY , this gives a one-dimensional family MY,3 of
divisors in |−KY |, which is preserved by ιY . On the other hand, the intersection of these divisors is
the surface WY , so WY is preserved by ιY . Let D1 ∈MY,3 and D2 = ιY (D1) ∈MY,3. Let F1 (resp.
F2) be the elliptic fibre of WY along which D1 (resp. D2) has multiplicity 3. Then ιY (F1) = F2,
and thus ιY preserves the family of elliptic fibres of WY , i.e. (ιY |WY

)∗(FY ) ∼ FY .
By [CCF19, 7.12], one has ι∗Y (ξ(Ei)) ∼ −2KY − ξ(Ei). Hence, (ιY |WY

)∗(ei) ∼ −2KY |WY
−

ei.

Now we investigate the morphism defined by the linear system |−2KY |WY
|.

Proposition 4.2. The linear system |−2KY |WY
| defines a finite morphism φ : WY → V ⊂ P

7 of
degree 2, where V = V2,4 ≃ F2 is a rational normal scroll of bidegree (2, 4). There is a non-trivial
involution i of WY such that φ = φ◦i. Moreover, i is the identity on RY and i induces an involution
on each elliptic fibre of WY .

Proof. Since h0(WY ,OWY
(−2KY )) = 8 (see Lemma 3.13), and |−2KY | is base-point-free by The-

orem 2.4, the linear system |−2KY |WY
| defines a morphism φ : WY → V ⊂ P

7, where V is the
image of WY .
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Claim. V is a surface of degree 6 in P
7, the image of an elliptic fibre FY by φ is a line and the

image of RY by φ is a conic.
Since the restriction morphism H0(Y,OY (−2KY )) → H0(WY ,OWY

(−2KY )) is surjective by
Lemma 3.13 (ii), the restriction of the morphism φ|−2KY | defined by |−2KY | to the surface WY

coincides with the morphism φ, i.e. φ = φ|−2KY ||WY
.

In P
4, let 2M be the linear system of hypersurfaces of degree 10 with multiplicity at least 6 at

the 8 general points p1, ..., p8. Consider the map φ2M defined by the linear system 2M. Then by
Macaulay2 (see Listing 8), the image of the surface W by φ2M is a surface of degree 6, the image
of an elliptic normal quintic through the 8 points by φ2M is a line and the image of the rational
quintic R4 through the 8 points by φ2M is a conic. This proves the claim.

Since (−2KY |WY
)2 = 4(RY +2FY )

2 = 12, and the image of WY by φ is of degree 6, we deduce
that φ is of degree 2. As −KY is ample, the morphism φ does not contract any curve and thus it
is a finite morphism of degree 2.

Since the linear system |−2KY |WY
| has no fixed divisor, the image V is not contained in any

hyperplane of P7 (see for example [Bea96, II.6]), i.e. V is non-degenerate. Hence, V is a non-
degenerate irreducible surface of degree 6 (variety of minimal degree) in P

7, and by [GH94, p. 525]
we deduce that V is a rational normal scroll Vk,l of bidegree (k, l), with 0 ≤ k ≤ l and k+ l = 6. In
particular, V is isomorphic to one of the following: a cone over a rational normal curve of degree
6, P1 × P

1, or a Hirzebruch surface Fl−k, where the minimal section is mapped to the rational
normal curve of degree k, and the fibres are mapped to lines. Therefore, φ is a finite morphism
between two normal surfaces and by [Fuj83, (2.3)], there is a non-trivial involution i of WY such
that φ = φ ◦ i and V ≃WY /i.

Since the restriction of φ to a general fibre FY induces a finite morphism from an elliptic curve
to a line l ⊂ V , which cannot be an isomorphism, we deduce that φ−1(l) = FY as φ is of degree 2.
Hence, i induces an involution on FY .

Since −2KY |WY
is i-invariant, one has 2(i∗(−KY |WY

)−(−KY |WY
)) ∼ 0. As Pic(WY ) is torsion-

free (this is because WY is isomorphic to P
2 blown up at 9 points), we deduce that i∗(−KY |WY

) ∼
−KY |WY

. Since RY is the base locus of |−KY |WY
|, the curve RY is preserved by i. We claim that

RY is contained in the ramification locus of φ. Indeed, suppose that RY is not contained in the
ramification locus of φ. Then there exists a curve C ⊂ V such that RY = φ∗(C). As RY is a
(−1)-curve on WY , one has

−1 = R2
Y = (φ∗(C))2 = deg φ · C2,

i.e. C2 = −1
2 . Hence, C is not Cartier on V , i.e. V is singular. In view of the classification

of minimal degree varieties, we see that V is a cone. But there is no curve with negative self-
intersection number on a cone, which leads to a contradiction. Therefore, RY is in the ramification
locus. As φ is a double cover, we deduce that i is the identity on RY .

Let C = φ(RY ). Since RY is contained in the ramification locus of φ, and every point in RY
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has ramification index 2, one has

R2
Y = (

1

2
φ∗(C))2 =

1

2
C2.

Since RY is a (−1)-curve on WY , one has C2 = −2. Therefore, V = V2,4 ≃ F2, and φ(RY ) is
minimal section of F2 which is a conic.

Remark 4.3. Since φ is a finite morphism of degree 2 between smooth surfaces, the ramification
locus is a smooth divisor on WY (see [Fuj83, (2.5)]). Let e be the minimal section of V ≃ F2 and
f be a fibre of V . Let D be the ramification divisor. Then

KWY
∼ φ∗(KS) +D.

As KWY
∼ −FY = −φ∗(f), and KS ∼ −2e− 4f , one has

D ∼ φ∗(2e+ 3f).

Let B ⊂ V be the branch locus. Then D = 1
2φ

∗B and thus B ∼ 4e + 6f . As e is contained in
the branch locus, we can write B = e + B1, where B1 is a smooth curve disjoint from e. Then
B1 ∼ 3e + 6f . Notice that B1 is irreducible. Indeed, suppose that B1 has at least two disjoint
irreducible components. Then we can decompose B1 as

B1 ∼ (e+ bf) + (2e+ (6− b)f)

with 0 ≤ b ≤ 6 and (e+ bf) · (2e+ (6− b)f) = 0. Hence b = −2, which leads to a contradiction.
Hence D = RY + R′, where R′ ∼ 1

2φ
∗(3e + 6f) = 3(RY + FY ) is a smooth curve of genus 4

which is disjoint from RY .

Finally, we compare the action of the two automorphisms i and ιY |WY
on WY .

Lemma 4.4. Let ei be the exceptional curves of ηh|WY
: WY →W for i = 1, . . . , 8. Then

i∗(ei) ∼ −2KY |WY
− ei.

Proof. For i = 1, . . . , 8, by Macaulay2 (see Listing 9), there exists a unique hypersurface of degree
10 with multiplicity at least 7 at the point pi and multiplicity at least 6 at pj for j 6= i. Moreover,
this hypersurface does not contain the surface W . Therefore, the linear system |−2KY |WY

− ei| is
non-empty.

Let Ri ∈ |−2KY |WY
− ei|. Since −KY |WY

∼ RY + 2FY , and RY · ei = FY · ei = 1, one has
R2

i = −1, and Ri · FY = Ri · RY = 1. Hence, Ri is a (−1)-curve on WY .
Since ei +Ri ∈ |−2KY |WY

| = φ∗|OV (1)|, one has Ri ∼ i∗(ei).

Proposition 4.5. The involution i coincides with the restriction of the Bertini involution ιY on
the surface WY , i.e. ιY |WY

= i.
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Proof. We first show that (ιY |WY
)∗ = i∗. By Lemma 4.2, Lemma 4.4 and Lemma 4.1, it is enough

to show that RY , FY and ei for i = 1, . . . , 8 form a basis of H2(WY ,R).
Since W ′ is disjoint from the indeterminacy locus of ξh, it is equivalent to show that R,F and

ei for i = 1, . . . , 8 form a basis of H2(W ′,R). We have the following diagram (see (3)):

W ′ ⊂ X

W ⊂ P
4

P
2

η

α′

α

where α is the blow-up of P2 at one point and η is the blow-up of W at p1, . . . , p8. Moreover, let
e0 ⊂W be the (−1)-curve and f0 ⊂W be a fibre of the P

1-bundle on W , then by Lemma 3.1 and
Lemma 3.3, one has F ∼ η∗(2e0 +3f0)−

∑8
i=1 ei and R ∼ η∗(e0 +4f0)−

∑8
i=1 ei. Therefore, R,F

and ei for i = 1, . . . , 8 form a basis of H2(W ′,R).
We have a group homomorphism ρ1 : Aut(WY ) → Aut(H2(WY ,R)) given by g 7→ (g−1)∗. Let

Aut(RY ,WY ) be the subgroup of automorphisms in Aut(WY ) fixing the curve RY . We show that
the restriction ρ1 : Aut(RY ,WY ) → Aut(H2(WY ,R)) is injective, which implies that ιY |WY

= i.
Since RY is a (−1)-curve on WY , by blowing down RY , we obtain a rational surface S′ with

(−KS′)2 = 1, and the curve RY is contracted to a point x0 ∈ S′. We denote by β : WY → S′ the
blow-up of S′ at x0. Since −KWY

is nef, we obtain that −KS′ is nef by the projection formula (see
for example [Har77, Appendix A, A4]). Moreover, since every fibre of WY → P

1 is integral, there
is no KS′-trivial curve. Hence, S′ is a del Pezzo surface of degree one. By [Dol12, Prop. 8.2.39],
the homomorphism ρ2 : Aut(S′) → AutH2(S′,R) is injective.

Let Aut(x0, S
′) be the subgroup of automorphisms in Aut(S′) fixing the point x0. Then

Aut(x0, S
′) ≃ Aut(RY ,WY ). Since Pic(WY ) ≃ β∗ Pic(S′)⊕ Z[RY ], the image ρ1(Aut(RY ,WY )) is

contained in a subgroup G1 of Aut(H2(WY ,R)) such that G1 ≃ Aut(H2(S′,R)). Hence, we have
the following diagram:

Aut(RY ,WY ) G1

Aut(x0, S
′) Aut(H2(S′,R))

ρ1

≃ ≃

ρ2

Since ρ2 is injective, the restriction ρ1 : Aut(RY ,WY ) → G1 ⊂ Aut(H2(WY ,R)) is injective.

Proof of Proposition 1.4. The first paragraph follows from Lemma 4.1, Proposition 4.2 and Propo-
sition 4.5. The second paragraph follows from Remark 4.3.
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4.2 Action of the Bertini involution on the anticanonical system

In this subsection, we study the action of the involution ιY on the anticanonical system |−KY |.
This is closely related to the anticanonical map of Y =MS,−KS

.

Lemma 4.6. Let µ : Ỹ → Y be the blow-up of Y along the curve RY which is the base scheme
of |−KY |. Let E be the exceptional divisor and D̃ be the strict transform of a general member
D ∈ |−KY |. Then |D̃| = |µ∗(−KY ) − E| is base-point-free and induces a morphism f : Ỹ →
P(H0(Y,OY (−KY ))

∨) ≃ P
5 with image Q a smooth quadric hypersurface, and f has generically

degree 4. We have the following commutative diagram:

Ỹ

µ

����
��
��
�� f

""❊
❊❊

❊❊
❊❊

❊❊

Y
φ|−KY |

//❴❴❴❴❴❴❴ Q ⊂ P
5

(4)

The following statements hold:

(i) The Bertini involution ιY can be lifted to an involution ιỸ of Ỹ , which preserves the excep-
tional divisor E and induces an involution on each P

2 above a point of RY .

(ii) The Bertini involution ιY induces an involution ιP5 of P5, which preserves the quadric hy-
persurface Q. Denote by ιQ its restriction on Q. Then ιQ ◦ f = f ◦ ιỸ .

Proof. In P
4, let M be the linear system of quintic hypersurfaces with multiplicity at least 3 at 8

general points. Then by Macaulay2, the image of P4 by the map defined by M is a smooth quadric
hypersurface Q in P

5.
Let E be the exceptional divisor of f . Since

µ∗(−KY )
4 = (−KY )

4 = 13,

µ∗(−KY ).E
3 = −KY .RY = 1,

µ∗(−KY )
3.E = µ∗(−KY )

2.E2 = 0,

E4 = −KY .RY + 2g(RY )− 2 = −1,

one has D̃4 = 8. Hence φ|−KY | (and also f) has generically degree 4.
(i) Follows from the fact that RY is contained in the fixed locus of ιY (see Proposition 1.4).
(ii) The pull-back ι∗Y induces an involution on H0(−KY ,OY (−KY )), and thus an involution of

P(H0(Y,OY (−KY ))
∨) ≃ P

5 preserving φ|−KY |(Y ) = Q.

Let s ∈ H0(Ỹ ,OỸ (D̃)) be a global section which is zero at the point ιỸ (x), where x is a point

in Ỹ . Then for s′ := ι∗
Ỹ
(s) ∈ H0(Ỹ ,OỸ (ι

∗
Ỹ
D̃)) ≃ H0(Ỹ ,OỸ (D̃)), one has

s′(x) = (ι∗
Ỹ
(s))(x) = s(ιỸ (x)) = 0.
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Hence,
φ|D̃|(ιỸ (x)) = {s ∈ H0(Ỹ ,OỸ (D̃)) | s(ιỸ (x)) = 0},

φ|ι∗
Ỹ
D̃|(x) = {s′ ∈ H0(Ỹ ,OỸ (ι

∗
Ỹ
D̃)) | s′(x) = 0}.

Therefore, we obtain the following commutative diagram:

Ỹ P(H0(Ỹ ,OỸ (ι
∗
Ỹ
(D̃)))∨)

Ỹ P(H0(Ỹ ,OỸ (D̃))∨).

f

ιỸ ι
P5

f

Thus, ιQ ◦ f = f ◦ ιỸ .

Remark 4.7. The following statements are equivalent:

(a) The Bertini involution ιY preserves every divisor in |−KY |.

(b) The action ι∗Y : H0(Y,OY (−KY )) → H0(Y,OY (−KY )) is Id or − Id.

(c) The involution ιP5 of P5 (resp. ιQ of Q) is the identity.

Recall that we have a special surface WY ⊂ Y containing RY , which is an elliptic fibration
WY → P

1 with fibre FY . With the same notation as in Lemma 4.6, we describe the image of WY

in Q ⊂ P
5.

Lemma 4.8. Every elliptic fibre FY (resp. its strict transform F̃Y ⊂ Ỹ ) is contracted by φ|−KY |

(resp. by f). Moreover, the image of the surface WY (resp. its strict transform W̃Y ⊂ Ỹ ) is a
conic C in Q ⊂ P

5.
Furthermore, the curve R̃Y := W̃Y ∩E is contained in the fixed locus of ιỸ , and the conic C is

contained in the fixed locus of ιQ.

Proof. Since −KY · FY = 1, one has D̃ · F̃Y = 0, where D̃ is the strict transform of a general
member D ∈ |−KY |. Hence f contracts the elliptic fibres of W̃Y .

As−KY |WY
= RY +2FY , one has D̃|W̃Y

= (µ∗(−KY )−E)|W̃Y
= 2F̃Y . Therefore, the morphism

f sends W̃Y to a conic in P
5.

By Lemma 4.6 (i), ιỸ induces an involution on each fibre P
2 of µ|E : E → RY . Since WY is

preserved by ιY by Proposition 1.4, its transform W̃Y ⊂ Ỹ is preserved by ιỸ . Therefore, the

curve R̃Y := W̃Y ∩ E (which is a section of µ|E) is invariant. Since RY is in the fixed locus of ιY
by Proposition 1.4, it follows that R̃Y is contained in the fixed locus of ιỸ . By Lemma 4.6 (ii),

f(R̃Y ) = f(W̃Y ) = C is contained in the fixed locus of ιQ.
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The rest of this subsection is devoted to the proofs of Theorems 1.3 and 1.5. To show that ιY
preserves every divisor in |−KY |, our strategy is to exclude the other remaining case by analysing
the anticanonical map.

Lemma 4.9. If the action ι∗Y on H0(Y,OY (−KY )) is not ± Id, then

H0(Y,OY (−KY )) = V1 ⊕ V2,

where V1 is the sub-vector space of global sections vanishing on the surface WY , and V2 is uniquely
determined as eigenspace corresponding to the eigenvalue 1 or −1 of ι∗Y , with dimV1 = dimV2 = 3.
More precisely, ι∗Y acts as Id or − Id on Vi for i = 1, 2.

Proof. In P
4, let M be the linear system of quintic hypersurfaces with multiplicity at least 3 at 8

general points. Let MW be the sub-linear system of effective divisors in M containing the surface
W . By Macaulay2 (see Listing 5), one has b(MW ) = b(Sec) (see Lemma 3.11 for notation) for the
base ideals. Moreover, by Macaulay2 (see Listing 6), a random divisor in MW is singular along
two elliptic normal quintic curves Ep, Eq through the 8 blown up points (the two elliptic curves
may coincide, in which case the divisor has multiplicity at least 3 along this elliptic curve, and in
fact the divisor is the secant variety of the elliptic curve). Moreover, there exists a unique divisor in
MW which is singular along Ep and Eq, as H

0(P4,IW ⊗OP4(5)⊗I3
p1,...,p8) ≃ H0(P1,OP1(2)) ≃ C

3.
Let V1 ⊂ H0(Y,OY (−KY )) be the sub-vector space of global sections vanishing on the surface

WY . Let |V1| be the corresponding sub-linear system (i.e. the linear system of effective divisors in
|−KY | containing the surfaceWY ). Then ιY preserves the family of divisors in |V1|, as ιY preserves
the surface WY by Proposition 1.4. Since WY is disjoint from the indeterminacy locus of the map
ηh : Y 99K P

4, and the intersection of WY with the exceptional locus of ηh is the union of 8 points,
we deduce that a general member in |V1| is singular along two elliptic fibres FY,1, FY,2 of WY , and
there exists a unique divisor in |V1| which is singular along FY,1 and FY,2. Since ιY preserves every
elliptic fibre FY of WY (see Proposition 1.4), we deduce that ιY preserves every divisor in |V1|, i.e.
the action of ι∗Y on V1 is Id or − Id.

By Lemma 3.13(i), we have the following short exact sequence:

0 → H0(Y,OY (−KY )⊗ IWY
) → H0(Y,OY (−KY ))

r1→ H0(WY ,OWY
(−KY )) → 0.

Hence, H0(Y,OY (−KY )) = V1 ⊕ V2 with V1 ≃ Ker r1 and V2 ≃ Im r1.
By Proposition 1.4, every elliptic fibre FY is preserved by ιY and RY is fixed by ιY . Since

−KY |WY
= 2FY +RY , we deduce that ιY preserves every divisor in |−KY |WY

. Thus the action of
(ιY |WY

)∗ on H0(WY ,OWY
(−KY )) is Id or − Id. As ι∗Y is not ± Id on H0(Y,OY (−KY )), we deduce

that V2 can be uniquely determined as the eigenspace corresponding to the eigenvalue 1 or −1 of
ι∗Y .

Let {s11, s12, s13} (resp. {s21, s22, s23}) be a basis of V1 (resp. of V2). Suppose that ιQ is not
the identity. Then for y ∈ Y \RY , one has

ιQ(φ|−KY |(y)) = [s11(y) : s12(y) : s13(y) : −s21(y) : −s22(y) : −s23(y)] (5)
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by Lemma 4.9. Moreover, if y is a fixed point of ιY , then by Lemma 4.6 (ii), φ|−KY |(y) is fixed
by ιQ. Thus by (5), one has s11(y) = s12(y) = s13(y) = 0 or s21(y) = s22(y) = s23(y) = 0, i.e.
y ∈ Bs |V1| or y ∈ Bs |V2|.

Now for i = 1, 2, let Ṽi ⊂ H0(Ỹ ,OỸ (µ
∗(−KY )−E)) be the sub-vector space of global sections

which are the linear spans of s̃ij with j = 1, 2, 3, where s̃ij is the strict transform of the global
section sij ∈ Vi. Hence, if a point y ∈ Ỹ is fixed by ιỸ , then by repeating the argument in above

paragraph, we obtain y ∈ Bs |Ṽ1| or y ∈ Bs |Ṽ2|. To summarise, we have the following corollary.

Corollary 4.10. Suppose that ιQ is not the identity. If a point y ∈ Ỹ is fixed by ιỸ , then y ∈ Bs |Ṽ1|

or y ∈ Bs |Ṽ2|.

Recall that we have the normal bundle NRY /Y
∼= OP1(−1) ⊕ O⊕2

P1 by Lemma 3.5. Hence

E = P(N ∗
RY /Y ) ≃ P(OP1(1)⊕O⊕2

P1 ). Denote by ξ a tautological divisor associated to OP(N ∗

RY /Y
)(1),

and FE a fibre of the projection E = P(N ∗
RY /Y ) → RY ≃ P

1. Let l be an exceptional curve of µ

and γ be the curve which generates the other extremal ray Γ of NE(E) such that −KE · γ is the
length of Γ. Then

FE · l = 0, FE · γ = 1,

ξ · l = 1, ξ · γ = 0.

Moreover, R̃Y ∼ l + γ.
With the same notation as in Lemma 4.6, we may describe the image f(E) as follows.

Remark 4.11. The exceptional divisor E is isomorphic to the blow-up B of P3 at a line (and B
is embedded in P

1 × P
3 with bidegree (1, 1)).

Let D̃ ⊂ Ỹ be the strict transform of a general member D ∈ |−KY |. Then (D̃|E)
3 = 4, hence

D̃|E ∼ ξ+FE is very ample, with h0(E,OE(D̃)) = 7. Thus the corresponding linear system embeds
B in P

6 as a hyperplane section of the Segre embedding of P1 × P
3 in P

7, and B has degree 4.
Hence, f |E is given by the projection of B from a point x outside B in P

6 (in fact, it is given by a
sub-linear system of |D̃| of dimension 5, which is still base-point-free).

If the point x is general, then the projection is birational and the image has degree 4 in P
5. There

could be special point x such that the projection has degree 2, and the image is a 3-dimensional
quadric in P

5. In any case, the image of a fibre FE is a plane in P
5.

Lemma 4.12. Suppose that ιQ is not the identity. Then ιỸ |E is not the identity, and the following
statements hold:

(i) The fixed locus of ιỸ |E is the disjoint union SE ∪ C2, where SE = Bs |Ṽ1| ∩ E is the unique

member in |ξ−FE| isomorphic to P
1×P

1, and C2 = Bs |Ṽ2|∩E is a curve satisfying C2 ∼ l+γ
which is mapped surjectively to RY .

(ii) The fixed locus of ιP5 is two disjoint planes P
2
1 ∪ P

2
2 such that f(SE) = P

2
1 and that f(C2) is

a conic contained in P
2
2. Furthermore, f(E) is a 3-dimensional quadric in P

5.
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Proof. Suppose by contradiction that ιỸ |E is the identity. Then by Corollary 4.10, one has E ⊂

Bs |Ṽ1| or E ⊂ Bs |Ṽ2|. Since |Ṽi| ⊂ |µ∗(−KY ) − E| for i = 1, 2, this contradicts to the fact that
there is no divisor in |−KY | having multiplicity at least 2 along RY by Macaulay2 (see Listing 11).

(i) Since ιỸ |E is not the identity and ιY |RY
is the identity, we have that ιỸ |FE

is not the identity.
Thus the fixed locus of ιỸ |FE

is the disjoint union of a point and a line.

We first describe the base locus of |Ṽ1|. Since by Macaulay2 (see Listing 5), one has b(MW ) =
b(Sec) (see Lemma 3.11 for notation) for the base ideals. Thus the base locus of |V1| contains
the surface WY with multiplicity 2 by Lemma 3.11. Therefore, the base locus of |Ṽ1| contains the
strict transform W̃Y ⊂ Ỹ . Moreover, since a general member in |V1| is singular along two elliptic
fibres of WY , a local computation shows that every member in |Ṽ1| contains two fibres FE above
the two points on RY where it is singular. As D̃|E ∼ ξ + FE , we deduce that the unique member
SE ∈ |ξ − FE | is contained in the base locus of |Ṽ1|. Therefore, Bs |Ṽ1| ∩ E = SE ≃ P

1 × P
1, and

SE ∩ W̃Y = E ∩ W̃Y = R̃Y .
Now we describe the base locus of |Ṽ2|. Since |µ∗(−KY ) − E| is base-point-free, Bs |Ṽ2| is

disjoint from the surface SE . Let D2 be a general member in |V2|. Since D2 does not contain the
surfaceWY , and D2|WY

= RY +2FY , we deduce that the intersection of the singular locus SingD2

with the curve RY contains at most one point (which is a singularity of multiplicity two). Hence
a general member in |Ṽ2| contains at most one fibre FE of E → RY .

Claim. Bs |Ṽ2| ∩ E has dimension at most one.
Suppose that there is a surface S2 ⊂ Bs |Ṽ2| ∩ E. Since D̃|E ∼ ξ + FE , one has S2 ∈ |ξ| or
S2 ∈ |ξ + FE |. As ξ · R̃Y = FE · R̃Y = 1, one has S2 · R̃Y > 0, which contradicts the fact that S2 is
disjoint from SE . This proves the claim.

Note that Bs |Ṽ2| ∩E has dimension one. This is because the fixed locus of ιỸ |FE
is the disjoint

union of a point and a line, and Bs |Ṽ1| ∩ FE is a line. Thus by Corollary 4.10, the fixed point
disjoint from the fixed line is contained in Bs |Ṽ2| ∩ FE . Therefore, Bs |Ṽ2| ∩ E is a curve which is
mapped surjectively to RY .

Denote by C2 the curve Bs |Ṽ2|∩E. Since C2 is disjoint from SE ∈ |ξ−FE |, one has (ξ−FE)·C2 =
0 and thus C2 ∼ m(γ + l) with m ≥ 1. As (D̃|E)

2 ∼ (ξ +F )2 ∼ γ +3l, we deduce that C2 ∼ γ + l.
Hence C2 is an irreducible curve which is mapped surjectively to RY .

(ii) Since ιQ is not the identity (i.e. ιP5 is not the identity), the fixed locus of ιP5 is the union
of two disjoint sub-linear spaces P

i ∪ P
j with i + j = 4. Therefore, the fixed locus of ιP5 is two

disjoint planes P2
1 and P

2
2 by the equation (5).

By Remark 4.11, f(SE) has dimension 2. Hence, f(SE) ⊂ Q is one of the two planes P
2
1 and

P
2
2 contained in the fixed locus of ιP5 . We may denote f(SE) = P

2
1. Following the discussion in

Remark 4.11, we now describe the map f |SE
: the restricted linear system |D̃|E |SE

embeds the
surface SE in P

3 as the Segre embedding of P1 × P
1 in P

3, and the image S′
E has degree 2. Hence,

f |SE
is given by the projection of S′

E from a point outside S′
E in P

3. The projection has degree
2 and the image is the plane P

2
1. Note that in Remark 4.11, the projection of B from a point x
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outside B in P
6 cannot be birational, as the projection of S′

E ⊂ B from the point x in P
3 ⊂ P

6 has
degree 2. Therefore, f(E) is a 3-dimensional quadric in P

5.
Since D̃ · C2 = (ξ + FE) · (γ + l) = 2, the image f(C2) is a conic. As f(C2) is disjoint from

f(SE), we deduce that f(C2) is contained in P
2
2.

Corollary 4.13. The involution ιQ is the identity, and thus the Bertini involution ιY preserves
every divisor in |−KY | and f factors through the quotient Ỹ /ιỸ via the lifted involution ιỸ .

Proof. Suppose by contradiction that ιQ is not the identity. We use the notation as in Lemma
4.12.

Since the restricted linear system |D̃|E |SE
embeds the surface SE in P

3 as the Segre embedding
of P1 × P

1 in P
3 with image S′

E a quadric surface, the map f |SE
is given by the projection of S′

E

from a point outside S′
E in P

3. The projection has degree 2, and f(SE) = P
2
1 by Lemma 4.12.

Therefore, f |SE
: SE ≃ P

1×P
1 → P

2
1 is a double cover branched over a non-singular conic ∆ in P

2
1;

moreover, the image of any line on SE is a tangent line to ∆, and conversely the preimage of each
tangent line on ∆ is two lines on SE, one from each ruling.

Let D ∈ |V1| be a general member and D̃ ∈ |Ṽ1| be its strict transform. Then by Lemma
4.12, D̃ ∩E contains the surface SE and two distinct P2 (denoted by FE1

and FE2
) above the two

points on RY where D is singular. Thus f(D̃) contains f(FE1
) =: Π1 and f(FE2

) =: Π2 which are
two planes in P

5 by Remark 4.11. Moreover, Π1 and Π2 are distinct. This is because FE1
∩ SE

and FE2
∩ SE are two distinct lines of a same ruling of SE ≃ P

1 × P
1, and thus their images in

P
2
1 = f(SE) are two distinct tangent lines to ∆ by the above discussion. Therefore, f(D̃) ∩ f(E)

contains three distinct planes P2
1,Π1,Π2. This contradicts to the fact that f(D̃) is a hyperplane in

P
5 and f(E) is a 3-dimensional quadric in P

5 (so that their intersection is a surface of degree 2 in
P
5).
Therefore, ιQ is the identity. By Lemma 4.6 (ii), one has f = f ◦ ιỸ . Thus f factors through

the quotient Ỹ /ιỸ .

Corollary 4.14. The morphism f |E : E → f(E) is birational, and f(E) has degree 4 in P
5.

Moreover, the restricted involution ιỸ |E is the identity.

Proof. By Remark 4.11, either f |E has degree 2 and the image is a 3-dimensional quadric in P
5, or

f |E is finite birational and the image has degree 4 in P
5. We will show that the first case cannot

happen.
Suppose that f |E has degree 2 and f(E) is a 3-dimensional quadric in P

5. We will follow the
same argument as in the proof of Corollary 4.13. By Lemma 4.12 (with the same notation), for a
general member D ∈ |V1|, its strict transform D̃ ∈ |Ṽ1| contains the surface SE ⊂ E. Moreover, D̃
contains the two distinct fibres (denoted by FE1

and FE2
) of µ|E : E → RY above the two points

on RY where D is singular. Hence, f(D̃) ∩ f(E) contains the surface f(SE) and the two planes
f(FE1

), f(FE2
) (which may coincide).
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(a) If f |SE
has degree 2, then the same argument as in the proof of Corollary 4.13 shows that

f(SE), f(FE1
), f(FE2

) are 3 distinct planes.

(b) If f |SE
has degree 1, then f(SE) is either a non-normal surface or isomorphic to SE ≃ P

1×P
1.

Thus f(SE) has degree at least 2 in P
5.

This contradicts to the fact that f(D̃)∩ f(E) is a surface of degree 2 in P
5. Therefore, f |E is finite

birational and f(E) has degree 4 in P
5.

Now suppose that ιỸ |E is not the identity. Since f |E = f |E ◦ ιỸ |E by Corollary 4.13, we deduce
that f |E has degree 2, which leads to a contradiction.

Proof of Theorem 1.3. Follows from Corollary 4.13.

Proof of Theorem 1.5. Follows from Lemmas 4.6, 4.8, and Corollaries 4.13, 4.14.

Remark 4.15. The fixed locus of ιỸ is E ∪ Res, where Res has dimension at most 2 and its

intersection with every P̃ℓ is non-empty and zero-dimensional, where P̃ℓ ⊂ Ỹ is the strict transform
of Pℓ (see notation in Proposition 2.3).

Proof. Let Pℓ ≃ P
2 be the exceptional locus of a small extremal contraction of Y . Then ιY (Pℓ) =

Pι∗S(ℓ)
is also the exceptional locus of some small extremal contraction of Y and Pℓ intersects ιY (Pℓ)

transversally at 3 points by [CCF19, Rem. 2.15 (c), Lem. 6.4]. Therefore, the intersection of Pℓ

with the fixed locus of ιY is non-empty and zero-dimensional.
As RY ⊂ WY is disjoint from Pℓ by Lemma 3.12, we deduce that E is disjoint from P̃ℓ.

Therefore, Res ∩ P̃ℓ is non-empty and zero-dimensional. As every non-zero effective divisor in
Y must have positive intersection with some extremal ray of NE(Y ), we deduce that Res has
dimension at most 2.
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A Computations by Macaulay2

restart

k = ZZ/67

We set up the projective space P
4:

R = k [ x 0 . . x 4 ]

We choose 8 points in P
4:

I 0 = ideal ( x 1 , x 2 , x 3 , x 4 )
I 1 = ideal ( x 0 , x 2 , x 3 , x 4 )
I 2 = ideal ( x 1 , x 0 , x 3 , x 4 )
I 3 = ideal ( x 1 , x 2 , x 0 , x 4 )
I 4 = ideal ( x 1 , x 2 , x 3 , x 0 )
I 5 = ideal ( x 1−x 2 , x 2−x 3 , x 3−x 4 , x 0−x 4 )
I 6 = ideal ( x 0−3∗x 1 , x 1−7∗x 2 , x 2−11∗x 3 , x 3−13∗ x 4 )
I 7 = ideal ( x 0−17∗x 1 , x 1−23∗x 2 , x 2−29∗x 3 , x 3−31∗ x 4 )

We compute the ideal II defined by the 6 quintics through the 8 points with multiplicity at least
3:

J = I 0 ; for j from 1 to 7 do J = intersect (J , I j ) ;
H = saturate J ˆ3 ;
G = gens (H) ;
betti G
G1 = submatrix (G, { 0 . . 5 } ) ;
I I = ideal (G1 ) ;
I I I = sheaf module I I ;
HHˆ0( I I I ( 5 ) )

We check that II is the intersection of the ideal of the 28 lines, the ideal of the 8 quartics and the
ideal I5 of a smooth rational quintic curve:

LL = ideal (1 R ) ;
for i from 0 to 7 do for j from 0 to i−1 do

LL = intersect (LL , ideal submatrix(gens intersect ( I i , I j ) , { 0 . . 2 } ) ) ;
isSubset ( I I , LL)
RN = ideal (1 R ) ;
for i from 0 to 7 do

RN = intersect (RN,minors (2 , submatrix ( ( res ( J : I i ) ) . dd 4 , { 3 . . 6 } , { 0 . . 1 } ) ) ) ;
isSubset ( I I ,RN)
I5 = ( ( I I : LL ) :RN) ;
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degree I5 , genus I5 , ideal singularLocus variety I5
I I == intersect ( intersect (LL ,RN) , I5 )

Listing 1: Base scheme

We compute the normal bundle of the smooth rational quintic curve:

RI5 = R/ I5
N5 = (module I5 )∗∗RI5
PI5 = Proj RI5
SN5 = sheaf N5
HHˆ0(SN5)
HHˆ0( sheaf dual N5)
KI5 = Extˆ3(Rˆ1/ I5 ,Rˆ{−5})∗∗RI5
HHˆ0(SN5∗∗OO PI5 (1)∗∗ ( sheaf dual KI5 ) )

Listing 2: Normal bundle

We choose three points on the smooth rational quintic curve:

P1 = ideal ( x 3−14∗x 4 , x 2−x 4 , x 1+x 4 , x 0−12∗x 4 )
P2 = ideal ( x 3+17∗x 4 , x 2−22∗x 4 , x 1+20∗x 4 , x 0+2∗x 4 )
P3 = ideal ( x 3−26∗x 4 , x 2+27∗x 4 , x 1−30∗x 4 , x 0+21∗x 4 )

We compute the quintic with multiplicity 3 at the 8 points and the point P1 (resp. P2 and resp.
P3):

J13 = intersect ( J ˆ3 ,P1ˆ3 ) ;
H13 = saturate J13 ;
G13 = gens (H13 ) ;
betti G13
GP1 = submatrix (G13 , { 0 } ) ;
Q1 = ideal (GP1 ) ;

J23 = intersect ( J ˆ3 ,P2ˆ3 ) ;
H23 = saturate J23 ;
G23 = gens (H23 ) ;
betti G23
GP2 = submatrix (G23 , { 0 } ) ;
Q2 = ideal (GP2 ) ;

J33 = intersect ( J ˆ3 ,P3ˆ3 ) ;
H33 = saturate J33 ;
G33 = gens (H33 ) ;
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betti G33
GP3 = submatrix (G33 , { 0 } ) ;
Q3 = ideal (GP3 ) ;

Listing 3: Three secant varieties

We compute the elliptic normal quintic curve along which Q1 is singular:

SingQ1 = ideal singularLocus variety Q1;
dim SingQ1 , degree SingQ1
SSingQ1 = ideal singularLocus variety SingQ1 ;
dim SSingQ1 , degree SSingQ1
E1 = ( SingQ1 : SSingQ1 ) ;
dim E1 , degree E1 , genus E1
ideal singularLocus variety E1

We compute the intersection of the three quintics and obtain the cubic scroll W:

SS3 = Q1 + Q2 + Q3;
SS = (SS3 : I I ) ;
dim SS , degree SS
W = ideal singularLocus variety SS ;
dim W, degree W, genus W, ideal singularLocus variety W
W == (SS :W)

Listing 4: Scheme-theoretic intersection of secant varieties

We compute the quintics through the 8 points with multiplicity at least 3 containing the surface W:

JW = intersect ( J ˆ3 ,W) ;
HW = saturate JW;
GW = gens (HW) ;
betti GW
GW1 = submatrix (GW, { 0 . . 2 } ) ;
IIW = ideal (GW1) ;
IIIW = sheaf module IIW ;
HHˆ0( IIIW (5 ) )
IIW == SS3

Listing 5: Quintics containg W

We look at the singular locus of a quintic hypersurface through the 8 points with multiplicity at
least 3 containing the surface W:

QW = ideal (11∗GW1 (0 ,0)+7∗GW1 (0 ,1)+19∗GW1 ( 0 , 2 ) ) ;
SingQW = ideal singularLocus variety QW;
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dim SingQW, degree SingQW, genus SingQW
SingW1 = (SingQW: J ) ;
SingW2 = (SingW1 : J ) ;
SingW3 = (SingW2 : J ) ;
LSingQW = decompose SingW3 ;
EE = ideal (LSingQW) ;
degree EE, genus EE, dim EE
SingEE = ideal singularLocus variety EE;
dim SingEE , degree SingEE
degree (E1 + EE)
degree ( I5 + EE)

Listing 6: Singular locus of a quintic containg W

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

JI5 = intersect ( I 5 ˆ6 , intersect ( I 6 ˆ6 , I 7 ˆ 6 ) ) ;
HI5 = saturate JI5 ;
GI5 = gens HI5 ;
betti GI5
GI15 = submatrix (GI5 , { 0 . . 1 0 5 } ) ;
I I 5 = ideal (GI15 ) ;
JI4 = intersect ( I 4 ˆ6 , I I 5 ) ;
HI4 = saturate JI4 ;
GI4 = gens HI4 ;
betti GI4
GI14 = submatrix (GI4 , { 0 . . 1 3 2 } ) ;
I I 4 = ideal (GI14 ) ;
JI3 = intersect ( I 3 ˆ6 , I I 4 ) ;
HI3 = saturate JI3 ;
GI3 = gens HI3 ;
betti GI3
GI13 = submatrix (GI3 , { 0 . . 1 5 4 } ) ;
I I 3 = ideal (GI13 ) ;
JI2 = intersect ( I 2 ˆ6 , I I 3 ) ;
HI2 = saturate JI2 ;
GI2 = gens HI2 ;
betti GI2
GI12 = submatrix (GI2 , { 0 . . 1 2 3 } ) ;
I I 2 = ideal (GI12 ) ;
JI1 = intersect ( I 1 ˆ6 , I I 2 ) ;
HI1 = saturate JI1 ;
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GI1 = gens HI1 ;
betti GI1
GI11=submatrix (GI1 , { 0 . . 1 3 6 } ) ;
I I 1 = ideal (GI11 ) ;
JI0 = intersect ( I 0 ˆ6 , I I 1 ) ;
HI0 = saturate JI0 ;
GI0 = gens HI0 ;
betti GI0
GG = submatrix (GI0 , { 0 . . 2 8 } ) ;
IGG = ideal (GG) ;

We compute the hypersurfaces of degree 10 through the 8 points with multiplicity at least 6
containing the surface W:

JW2 = intersect (W, IGG) ;
HW2 = saturate JW2;
GW2 = gens HW2;
betti GW2
GGW = submatrix (GW2, { 0 . . 2 0 } ) ;
IW2 = ideal (GGW) ;
IIW2 = sheaf module IW2 ;
HHˆ0( IIW2 (10 ) )

Listing 7: Decics containing W

We compute the image of the elliptic normal quintic E1 via the map defined by the linear system
of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

S2 = k [ u 0 . . u 28 ] ;
ImE1 = ker map(R/E1 , S2 ,GG) ;
dim ImE1 , degree ImE1

We compute the image of the rational quintic curve I5 via the map defined by the linear system
of hypersurfaces of degree 10 through the 8 points with multiplicity at least 6:

ImI5 = ker map(R/ I5 , S2 ,GG) ;
dim ImI5 , degree ImI5

We compute the image of the surface W via the map defined by the linear system of hypersurfaces
of degree 10 through the 8 points with multiplicity at least 6:

ImW = ker map(R/W, S2 ,GG) ;
dim ImW, degree ImW

Listing 8: Some images by the bianticanonical map

31



We compute the hypersurfaces of degree 10 with multiplicity at least 7 at the point I 0 and
multiplicity at least 6 at the other 7 points:

JI00 = intersect ( I 0 ˆ7 , I I 1 ) ;
HI00 = saturate JI00 ;
GI00 = gens HI00 ;
betti GI00
GG0 = submatrix (GI00 , { 0 } ) ;
IGG0 = ideal (GG0) ;

And we obtain a unique such hypersurface of degree 10; now we check if this hypersurface contains
the surface W:

JW0 = intersect (W, IGG0 ) ;
HW0 = saturate JW0;
GW0 = gens HW0;
betti GW0

Listing 9: Special member in the bianticanonical system

We compute the image of P4 via the map defined by the linear system of quintic hypersurfaces
through the 8 points with multiplicity at least 3.

JJ = minors (2 ,random(Rˆ{4 :0} ,Rˆ{−2 ,−3}));
degree JJ
genus JJ
betti res JJ == betti res ideal (G1)
S = k [ y 0 . . y 5 ] ; g = map(R, S , gens JJ ) ;
K = ker g ;
dim K
degree K
singularLocus variety K

Listing 10: Image by the anticanonical map

We check that there is no quintic hypersurfaces through the 8 points with multipilicity at least 3
and having multiplicity at least 2 along the smooth rational quintic curve I5:

JRR = intersect ( J ˆ3 , I5 ˆ2 ) ;
HRR = saturate JRR;
GRR = gens HRR;
betti GRR

Listing 11: Quintics having multiplicity 2 along the smooth rational quintic base curve

32



References

[Bat99] V. V. Batyrev. On the classification of toric Fano 4-folds. volume 94, pages 1021–1050.
1999. Algebraic geometry, 9.

[Bea96] Arnaud Beauville. Complex algebraic surfaces, volume 34 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, second edition, 1996.
Translated from the 1978 French original by R. Barlow, with assistance from N. I.
Shepherd-Barron and M. Reid.

[Cas12] Cinzia Casagrande. On the Picard number of divisors in Fano manifolds. Ann. Sci. Éc.
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