N

N

Unveiling the end-user viewport resolution from
encrypted video traces
Othmane Belmoukadam, Chadi Barakat

» To cite this version:

Othmane Belmoukadam, Chadi Barakat. Unveiling the end-user viewport resolution from encrypted
video traces. IEEE Transactions on Network and Service Management, 2021, 18 (3), pp.3324-3335.
10.1109/TNSM.2021.3083070 . hal-03230168

HAL Id: hal-03230168
https://inria.hal.science/hal-03230168

Submitted on 19 May 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-03230168
https://hal.archives-ouvertes.fr

Unveiling the end-user viewport resolution from
encrypted video traces

Othmane Belmoukadam
Université Cote d’Azur, Inria, France
othmane.belmoukadam @inria.fr

Abstract—Video streaming is without doubt the most requested
Internet service, and main source of pressure on the Internet
infrastructure. At the same time, users are no longer satisfied by
the Internet’s best effort service, instead, they expect a seamless
service of high quality from the side of the network. As result,
Internet Service Providers (ISP) engineer their traffic so as to
improve their end-users’ experience and avoid economic losses.
Content providers from their side, and to enforce customers pri-
vacy, have shifted towards end-to-end encryption (e.g., TLS/SSL).
Video streaming relies on the dynamic adaptive streaming over
HTTP protocol (DASH) which takes into consideration the under-
lying network conditions (e.g., delay, loss rate, and throughput)
and the viewport capacity (e.g., screen resolution) to improve the
experience of the end user in the limit of the available network
resources. In this work, we propose an experimental framework
able to infer fine-grained video flow information such as chunk
sizes from encrypted YouTube video traces. We also present
a novel technique to separate video and audio chunks from
encrypted traces based on Gaussian Mixture Models (GMM).
Then, we leverage our dataset to train models able to predict
the class of viewport (either SD or HD) per video session with
an average 92% accuracy and 85% F1-score. The prediction of
the exact viewport resolution is also possible but shows a lower
accuracy than the viewport class.

Index Terms—Video streaming, controlled experiments, video
chunk size, viewport resolution, YouTube encrypted traces, ma-
chine learning.

I. INTRODUCTION

The Internet as we know it today, has revolutionized peo-
ple’s life, from shopping to ordering food, sharing moments
with family and friends, ending with instant messaging. Every-
thing is one click away from anybody anywhere on the globe.
Video traffic is unarguably the major contributor to the global
Internet traffic and the main source of pressure on the Internet
infrastructure. By 2023, video traffic is expected to account for
73% of the global mobile data traffic [1]. Moreover, due to
the COVID-19 pandemic, lockdown forced people around the
globe to restrict their mobility and increase their video traffic,
for remote working, entertainment, and education. Recently,
researchers have leveraged data from ISPs, IXPs and educa-
tional networks, to show that video traffic has increased by 15-
20% almost within a week [2]. A statement by the European

'This work is supported by the French National Research Agency un-
dergrant BottleNet no. ANR-15-CE25-0013 and by Inria within the Project
LabBetterNet.

2 An earlier version of this work appeared in the proceedings of the 16-th
International Conference on Network and Service Management CNSM, 2-6
November 2020.

Chadi Barakat
Université Cote d’Azur, Inria, France
chadi.barakat@inria.fr

Union raised concerns about the Coronavirus lockdown putting
strain on broadband delivery systems. As result, mainstream
content video providers, such as Netflix, reduced their video
resolution to the standard definition during the pandemic [3].
Later, some providers started again to upgrade their services
back to high definition or 4K around [4].

Meanwhile, in light of the rapid growth of video traffic, In-
ternet Service Providers (ISPs) feel more pressure to optimize
their networks and meet the expectations of their end users.
They give high importance to video traffic engineering which
requires the ability to infer the context of the video streaming
such as the characteristics of the terminal on which the
video is played out and the resolution of the streamed video.
However, this is getting more difficult because of the end-to-
end encryption adopted by major video streaming platforms
(e.g., YouTube, Netflix and Amazon) [5]. For example, to
prioritize or load balance video traffic efficiently, ISPs need
information on end-users’ Quality of Experience (QoE) rather
than just capturing the network Quality of Service (QoS). But,
video QoE is dependent on the content itself (the video bitrate
and resolution) and on the application-level QoS metrics such
as start-up delay, duration of stalls and resolution switches [6]—
[8]. It also depends on the resolution of the viewport on
which the video is played out [9]. All this information is
unfortunately hard to obtain from encrypted video traffic,
making its inference an important challenge to surmount.

In this paper, we present a data-driven methodology unveil-
ing the end user viewport resolution from YouTube encrypted
video traces. To that aim, we leverage video chunk sizes and
inband network-level traffic features such as throughput and
download/upload packet inter-arrival times to train machine
learning models able to distinguish between HD and SD
viewports and infer the resolution of the viewport. More
specifically, our contributions are the following:

o We present a controlled experimental framework to per-
form video streaming experiments at large scale and
collect YouTube video metadata. We leverage the Chrome
Web Request API to read the clear HTTP text mes-
sages [10] and obtain ground truth on the video streams
and the dynamics of their chunks.

e We provide a descriptive analysis of a large YouTube
video catalog, highlighting the diversity of its video
content, with a focus on the encoding bitrate w.r.t. video
category and format (i.e., mp4 versus webm).

e We stream up to 5000 unique YouTube videos, collect
encrypted traces and clear HTTP messages, and show
that chunk sizes and inband network-level traffic features
carry an interesting signature of the viewport resolution.

« We propose a novel approach to separate video and audio
chunks from encrypted video traces based on a Gaussian
Mixture Model (GMM). Then, we validate our work on
inferring video chunk sizes by comparing similarities and
differences with respect to the real video chunk size
distribution derived from the clear HTTP messages.

o We train different machine learning algorithms to classify
the viewport resolution. We prove the pertinence of this
classification taking as input video chunk statistics and
inband network-level traffic features that can be derived
from passive captures of encrypted video traffic.

Overall, the paper is organized as follows. In the second
section, we discuss video streaming development throughout
the years and motivate our study. Later, in the third section, we
summarize the mainstream contributions related to deep packet
inspection, video QoE modeling and inference from encrypted
traffic. In Section IV, we present our experimental framework,
followed by a descriptive study of today’s video content
based on an open source YouTube catalog. In Section V, we
present our methodology to extract video chunk sizes from
YouTube encrypted traces. Later, in Sections VI and VII, we
highlight the viewport signature carried by a set of inband
network traffic features and chunk size statistics, and train and
evaluate a classifier able to classify the viewport resolution
from encrypted traces. Last, we conclude and present our
future work in Section VIIL

II. BACKGROUND AND MOTIVATION

Video transmission over HTTP has changed over the years.
It started with videos downloaded completely by the clients
before being played out, to videos progressively streamed to
the clients at a fixed resolution. Recently, adaptive streaming
over HTTP has been widely adopted to automatically tune
the streamed video resolution as a function of the available
network resources. For instance, Dynamic Adaptive Streaming
over HTTP (DASH) protocol [11], [12] allows adapting the
video quality to the available bandwidth and the client terminal
characteristics (e.g., viewport resolution). In plain, DASH
divides the video into segments (e.g., 2 - 10 seconds) with
each segment available in different quality versions. Details
on the video availability at the server are stored in the Media
Presentation Description (MPD) template which describes the
video segments in terms of coding standard and bitrate and is
shared with the client at the beginning of every video session.
The choice between the different video representations is done
by the DASH client taking into consideration the network
state and the terminal capacity with as objective the smoothest
possible playout without excess bandwidth usage.

In parallel, previous studies highlight key video QoE metrics
such as stalls, average resolution, and quality fluctuations from
measurements of the encrypted traffic and by using machine
learning [13]. As a matter of fact, statistics show that up to

90% of end-users abandon their operator after experiencing
network quality degradation without giving any feedback,
resulting in huge economic losses. Moreover, users watching
videos start abandoning the session after 2 seconds of join
time, while 80% of them leave the session when the join
time exceeds 60 seconds. As result, both operators and service
providers feel more pressure to be proactive and enhance their
services as much as possible by assessing the end-user QoE.

Therefore, when it comes to video streaming and user
experience, studies mainly rely on the fact that application-
level metrics are proved to be tightly correlated to the network-
level QoS [14]-[16]. However, they overlook an important
information regarding the resolution of the viewport on which
the video is played out and its impact on the user QoE.
Cermak et al. [9] answered partially the question concerning
the bandwidth needs for acceptable video experience on a
set of screen resolutions. Authors in [17] argue that any
representation exceeding the resolution of the viewport brings
the maximum level of QoE. Moreover, in a previous work [18],
we also observed that the DASH transmission process may
result in download resolutions exceeding the screen resolution
(i.e., a viewport in full-screen mode), hence resulting in a
waste of bandwidth. Such waste can be of particular concern
to end-users paying their subscription at the byte level and to
operators who can invest it on other flows in need of it. In
fact, the literature is missing a solution to infer the viewport
resolution from passive captures of encrypted video traffic,
which is the main focus of our paper.

III. STATE OF THE ART

When assessing the user experience, also known as QoE,
different approaches exist in the literature to target specific
services or aspects. For instance, authors in [19] describe
YoMoApp, a video streaming crowdsourcing application, that
aims at the collection of Youtube’s QoS metrics and users’
feedback. Besides, Meteor [20] links network measurements to
multiple services’ QoE, while RTR-NetTest [21] provides user-
friendly meters per each network QoS metric. Researchers
in [22] address QoE from the hardware perspective, paying
more attention to performance issues and their impact on QoE.
Meanwhile, social media applications also embed QoE feed-
back related to network conditions (e.g., Messenger, Skype)

For video QoE in particular, researchers aim at linking the
QoE to application-level Quality of Service (QoS) measure-
ments, such as the initial join time (time for video to start
playing out), the number of video interruptions (stalls) and the
playout quality variations (resolution switches) [14]. Mean-
while, recent studies hinted at a strong correlation between
the network-level and application-level QoS metrics opening
up the door for a stream of approaches linking the network
conditions (e.g., throughput, delay and jitter) directly to the
QoE. For instance, authors in [16] perform QoE forecasting
using machine learning models taking as input network-level
QoS metrics (e.g., throughput and delay) collected by end-
users’ devices with the help of active measurements. The
same trend is depicted in [23], [24] with mobile applications

inferring the QoE from passive measurements performed on
the end-users’ devices. Aggarwal et al. [25] use TCP-level
flow features collected from a mobile core network to produce
models able to detect video stalls (interruptions) for adaptive
video streaming over HTTP. The Mean Opinion Score (MOS)
is also used to estimate the subjective measure of user satis-
faction, while modern standards (e.g., ITU) focus on protocols
or general class of applications without being specific to any
Internet service [26], [27].

On another related topic, traffic identification from en-
crypted traces is an active field of study. Methods based on
Deep Packet Inspection (DPI) offer solutions to inspect and
take actions based on the payload of the packets rather than
just the packet header. Machine Learning (ML) is widely
exploited in the DPI field, as multiple ML based solutions
have been proposed over the last years [28]-[30]. ML al-
gorithms proved their efficiency, learning from big data and
statistical properties of the traffic flow. However, these algo-
rithms pass by a heavy training phase and might struggle in
terms of processing complexity if run in real-time. Another
well-known DPI technology is OpenDPI, which is freely
available and includes the latest DPI technology combined
with other techniques making it one of the most accurate
classifiers nowadays [31]. Khalife et al. [32] attempt to reduce
the OpenDPI computational overhead by examining different
sampling techniques. Two sampling techniques are proposed
and compared (i) per-packet payload sampling, and (ii) per-
flow packet sampling. Enhancing DPI performance is as active
as inventing new DPI technologies, so several approaches
have been proposed including behavioural [33], statistical [34],
port based [35] and DFI (Deep Flow Identification) based
approaches [36]. Other approaches apply either software based
optimization focused on enhancing DPI algorithms, e.g., [37],
or rely on hardware based optimisation [38].

In this context of end-to-end encryption, and knowing
the reality behind video QoE, researchers leverage encrypted
traffic by passively monitoring the network and capturing
traffic statistics that are then transformed onto video QoE
indicators using machine learning. For instance, one can find
work on inferring video interruptions, video quality and quality
variations by observing network-level traffic statistics [13].
Others use a large number of video clips to identify specific
Netflix videos leveraging only the information provided by the
TCP/IP headers [39]. Dimopoulos et al. [13] propose to use the
size of video chunks as input to machine learning, however,
their method requires access to the end-user device to collect
real values about these chunks, instead of inferring them
from the encrypted packet traces. They also provide the first
heuristic to automatically extract chunk size information from
encrypted traffic based on identifying long inactivity periods
along the video streaming session. Silhouette [40], a video
classification method, uses Application Data Units (ADUs)
and network statistics to detect and infer properties about
video flows. Their method leverages downlink/uplink packet
characteristics to identify chunk requests and corresponding
information sent by the server (chunk size), however, it only

incorporates static thresholds making it unable to differentiate
between video and audio chunks.

Previous studies incorporate techniques targeting video flow
identification and the inference of application-level quality of
service. In the light of advanced and diverse equipment, their
limitation is in overlooking the impact of the end-user display
which is an important factor to determine the end-user QoE.
In a previous contribution [41], we take into consideration
the relationship that exists between screen resolution, video
resolution and end-user QoE, and propose a resource allocation
problem that maximizes the overall QoE over a set of users
sharing the same bottleneck link. In the present work, we
complete the puzzle by proposing techniques to infer the
end-user viewport characteristics from the encrypted traffic,
which together with the information on the video flow such
as the streaming resolution and the application level QoS, can
provide the ISP with a fine-grained estimation of the user QoE
for a more efficient video traffic management. To the best
of our knowledge, this is the first attempt to infer the end-
user viewport resolution and viewport class (SD or HD) using
inband network traffic features and chunk sizes inferred from
encrypted video traces. Further, our approach to separate video
and audio chunks from encrypted traces is novel and proves
its efficiency when compared to ground truth collected from
clear HTTP messages through the Chrome Web API [10].

IV. EXPERIMENTAL SETUP

We play different YouTube videos using different viewports,
and under different network conditions emulated using Linux
traffic control (zc). Each experiment consists of a unique
YouTube video, browser viewport, and enforced network
bandwidth. For every video session, we leverage the Chrome
Web Request API to read the clear HTTP text messages
and establish ground truth on the requested chunks and the
application-level quality of service. Moreover, we dump the
encrypted client-server traffic to pcap files using tcpdump.

A. Overall experimental framework

Our overall experimental setup, described in Fig. 1, consists
of a local mainController running on MacBook Air machine
of 8 GB RAM. Videos are visualized on a Dell screen 27" of
2560 x 1440 resolution. The local mainController stores the
YouTube video catalog and the viewport list, and provides a
random combination of video ID and viewport for every new
experiment as illustrated in Fig. 1. We consider a list of default
standard viewports such as the current YouTube small media
player mode (400x225) along with other default SD viewports
(e.g., 240x144, 640x360 and 850x480). These latter viewports
represent the current player dimensions adopted by streaming
platforms for several watching modes. We also account for
larger viewports by considering the standard 1280x720 and
1920x1080 (HD). In fact, as of march 2021, stats show that
up to 70% of desktop screens worldwide are of resolution
less than or equal to 1920x1080 [42]. Since video resolution
pattern is a function of both network conditions and terminal
display capacity, we study the viewport importance while

Store HTTP clear texts
(Chrome web request API)

ﬁéiup player and start
YouTube video

Video
catalogue

TC

DATABASE =~ Sampler >

tepdump

Viewport list

Cliant chrome browser

Local mainController

Store pcap

Fig. 1: Experimental framework description

degrading the network bandwidth. To that aim, we use Linux
traffic control 7c and enforce different bandwidth settings such
as 3, 6,9, 15 and 20 Mbps. We also stream with no bandwidth
limitation on Ethernet to emulate the best case scenario.

B. YouTube catalogue

We use the open source YouTube catalogue proposed in [43]
to identify the videos to stream. The catalog was built using
the YouTube API where YouTube was searched with specific
keywords obtained from the Google Top Trends website. Later,
the authors in [44] rely on Google’s getvideoinfo API to
return the video metadata for each video identifier in the
catalog. The catalogue includes around 1 Million unique video
identifiers, each of which is characterized by an encoding
bitrate that differs from one video to another depending on its
content (e.g., high motion, slow motion, static, music video).
Overall, 99% of the videos featured by the YouTube catalog
support resolutions up to 1080p, the remaining 1% support
higher resolutions (e.g., 2160p and 2880p). Due to the small
proportion of the latter resolutions, we limit our study to
videos available in multiple resolutions up to 1080p.

1) Catalog overview: In Fig. 2(a), we highlight the cumula-
tive unique videos per category. The Entertainment and People
& Blogs categories are the largest ones with 203,530 and
198,029 unique videos, respectively, followed by the sports
category with almost 150K unique videos. On the other hand,
the least represented categories in the catalogue are Movies
and Trailers with 86 and 472 unique videos, respectively. In
terms of average video duration (Fig. 2(b)), the Music videos
are the longest with an average duration of 166 seconds,
followed by videos classified by YouTube as Movies with an
average of 165 seconds (only 86 unique videos). At the bottom
of the list, we find the Pets & Animals and People & Blogs
categories with 104 and 113 seconds, respectively.

2) Encoding bitrate: We now zoom in on the encoding
bitrate per category and coding standard. In Fig. 3(a), we
plot the distribution of encoding bitrate per video category
using box-plots ranked by median value. As illustrated, the
Trailers category is the one highlighting the highest median
encoding bitrate up to 0.4 Mbps. The Trailers category is
further characterized by the largest span in the video bitrate.
This makes sense as movie trailers feature the latest video
resolution technology for attracting more viewers. In a second
place, one can find Travel & Events videos with a median
encoding bitrate slightly less than the first category. At the

Movies
Trailers

N hows
Nonprofits & Activism
Pets & Animals
Travel & Events
omedy

Science & Technology
ucation

Howto & Style
Gaming

Autos & Vehicles

Film & Animation
Music

News & Politics
Sémrls

People & Blogs
Entertainment

84695.00
106590.00
143854.00

Video Category

198029.00
203530.01

(8}
N o 8}
& B 0
Video ID count

(a) Total number of unique videos

Pets & Animals
People & Blogs u3.7

ports

_News & Politics

Film & Animation

Autos & Vehicles
Entertainment 119.9

. Trailers
Nonprofits & Activism 120.7
Come

Travel & Events

ni
Science & Technologg
cation
Howto & Style
Shows
Movies 1652
Music

° © L R T R~
PR @ PP R S
Average video duration (s)

Video Category

(b) Average video duration

Fig. 2: YouTube catalogue overview per video category

bottom, we find the Music, Education and Science & Tech-
nology videos with almost the same bitrate distribution and a
median around 0.2 Mbps.

Next, we study the encoding standard and its implication
on the bitrate. A video encoding standard is a description of
a bit stream structure and a decoding method to enable video
compression. It highlights a set of tools for compression and
defines the output structure that an encoder should produce. In
this scope, we study the YouTube catalog so as to understand
the video formats and therefore the encoding standards that
are supported by YouTube. Overall, YouTube videos are
available in two major video formats encoded by the H.264
and Google’s VP9 standards. The individual video formats are
“mp4” and "webm”, respectively. In our YouTube catalogue,
82% of the videos are available in both mp4 and webm. The
remaining 18% of videos are only available in mp4.

We plot in Fig. 3(b) the bitrate distribution for the main
video resolutions, ranging from 144p to 1080p, and for both
video formats. The two formats have slightly different bitrates
for the same resolution with a noticeable advantage for the
“"webm” format on the “mp4” one, making it the preferred
format by Google to handle the video content bulk. In plain,
for the highest video resolution of 1080p we consider, the
“mp4” format is characterized by a median bitrate of 2.6
Mbps compared to 2.2 Mbps for the "webm” videos and a
75th percentile of 3.3 Mbps compared to 2.5 Mbps. The figure
also highlights a clear positive correlation between the video
resolution and the bitrate, as expected.

Our observations on the bitrate are in line with the prior
study in [45] on the correlation between the two formats
for encoding multimedia content and the user experience.
Indeed, the authors in [45] compare the two formats from the

Music

. Education
Science & Technology
News & Po\lwtlcs

1
Nonprofits & Activism
Comedy

Shows
Entertainment
Gaming

Video Category

Movies

Autos & Vehicles
Sports

Pets & Animals

Travel & Events
Trailers

00 05 10 15 20 25 30
Bitrate (Mbps)

(a) Video bitrate per category

5{ Format
== webm
'E_ 4 | mm mp4
o
Z3
[)
® 2
=]
@]
ol— = +%
R R R R R R
'\P .-LD‘ o &' AV D

Video resolution

(b) Bitrate vs Resolution w.r.t. video
format

Fig. 3: YouTube video bitrate insights

perspective of the Mean Opinion Score (MOS), highlighting
an advantage of the H.264 (mp4) when the network conditions
are favorable, while the VP8 codec (webm) behaves better in
highly error-prone networks.

V. ANALYSIS OF VIDEO STREAMING TRAFFIC

In adaptive video streaming, the client decides on the
resolution of the next chunk to download based on underly-
ing network conditions and viewport characteristics. So each
viewport is supposed to exhibit a different video resolution
pattern depending on the available network resources; the
pattern of chunk sizes is the main illustration of such specific
behavior. However, as most of the video traffic is encrypted,
the information on the viewport resolution is not visible to
any entity between the client and the server. Our intuition is
to exploit the specificity of the chunk size pattern to infer
the viewport resolution from encrypted traffic. The problem
is that when the bandwidth starts getting scarce either due to
congestion or to in-network shaping, clients are automatically
forced by DASH to request lower video resolutions, thus
reducing the effect of the viewport and increasing the difficulty
to infer its resolution. To highlight these aspects, we therefore
investigate the extent to which screens impact the video
transmission pattern while varying the network bandwidth.

A. Inferring video chunk sizes

Overall, we stream up to 5K YouTube unique videos in
series randomly selected from the 1 Million catalogue in [43].
In general, chunks of a video are fetched using separate HTTP
requests. So on one hand, we infer the chunk sizes from
the encrypted YouTube traces. In parallel, we extract the real
chunk sizes from the clear text HTTP messages accessed from

within the Chrome browser using the Chrome Web Request
API [10]. Our chunk size inference method is inspired by [40],
[44] and works as follows. At first, we use the source IP of
our host and the list of destination IPs to isolate the different
flows corresponding to the video sessions (CDNs identified by
the URLs ending with googlevideo.com). The CDN identifiers
can be collected from the clear HTTP text messages and
their corresponding IP addresses can be resolved. Then, for
each video streaming session (source and destination already
known), we look at the size of uplink packets. Large sized
uplink packets correspond to chunk requests while small
packets correspond to transport level acknowledgments by
TCP/QUIC. Instead of using thresholds as depicted in [29],
we use K-means clustering to segregate the uplink packet
sizes into two clusters; the first cluster represents the request
packets and the second cluster represents the acknowledgment
packets. Once the uplink request packets are identified, we
sum up the data downloaded between any two consecutive
request packets, and consider it equal to the downloaded chunk
size following the first request between the two. Overall, we
leverage clustering for the sake of generality and to make sure
our approach can be reused with other type of ACKs mainly
in the context of other transport protocols.

Up to this point, and as the case for other existing method-
ologies, the calculated chunk sizes mix between audio and
video chunks, whereas we are only interested in video chunks.
In fact, the chunks located between consecutive request pack-
ets can be of either of the two types, audio or video, and
so need to be separated. To overcome this limitation, we
leverage Gaussian Mixture Models (GMM) applied to the
chunk size. The GMM clustering method is based on the
maximum likelihood principle, able to find clusters of points
in a dataset that share some common characteristics. Unlike
K-means, GMM belongs to the soft clustering subset of
unsupervised algorithms, it provides probabilities that tell how
much a data point is associated with a specific cluster. Another
key property of GMM is that clusters do not need to be
topologically separated as with K-means, they can overlap
and still be identified as long as they follow some Gaussian
property for the distribution of their points. In general, video
chunks should have larger sizes than audio chunks, we rely
on this property to identify the two Gaussian distributions and
classify the chunks between audio and video. Each distribution
has three unique values, mean ~, covariance Y, modeling the
spread around the mean, and a probability 7 defining how big
or small one cluster is compared to the other one, the sum of
probabilities of the two clusters is naturally equal to 1.

For our case, we fit a GMM of two components with the
chunk sizes inferred according to K-means. For a clear visual
illustration, we plot in Fig. 4 the two clusters rendered by
the GMM method, over a 2D space of chunk sizes (MB) and
download time (s). In plain, the audio cluster (in blue) shows
chunks smaller than 750 KBytes with no more than 2 seconds
of download time. Video chunks however (in orange) can be
of larger sizes and download times compared to audio ones.

Now we test the accuracy of our method by comparing its

e Audio cluster

20000 Video cluster
15000
10000

5000

Download time (ms)

04
0.0 0.5 1.0 15 2.0
Chunk size (MB)

Fig. 4: Audio/video clusters as produced by GMM

1.0 —— Audio chunks (HTTP requests)
Audio chunks (Encrypted traces)

0.8 Video chunks (HTTP requests)

0.6 —— Video chunks (Encrypted traces)
E i overall chunks (HTTP requests)
(W) 0.4 —— overall chunks (Encrypted traces)

0.2

0.0

Chunk size (MB)

Fig. 5: Chunk size CDF

output to the ground truth collected directly from within the
browser by analyzing the clear HTTP requests. These requests
include the itag, range and mime (Multi-purpose Internet Mail
Extensions) parameters, which can be then used to infer the
corresponding resolution, the codec and the size of the chunk
using open source documentation [46], [47]. We use this
ground truth to check whether our GMM method provides
video chunk sizes that respect the distribution of the size of
real video chunks as seen in the browser. Fig. 5 compares the
chunk sizes as estimated by our method from the encrypted
traffic traces and the chunk sizes obtained from the clear
text HTTP traces for the same video sessions. The overall
distribution of the encrypted chunk sizes extracted using our
method exhibits the same shape as the one obtained with
HTTP requests. Further, the two distributions produced by our
method for audio and video chunks are very close to those of
the HTTP requests. We can also notice how the video chunks,
understandably, have larger sizes than the audio chunks. This
helps better characterizing the video chunks within a trace of
encrypted video traffic, with this result particularly useful in
our case to further understand the interplay between viewport,
network resources and chunk resolution pattern.

B. Audio chunk size distribution

We illustrate in Fig. 6 the audio chunk sizes accessed
from within the Chrome browser using the Chrome Web
Request API [10] w.r.t. the viewport size considered in the
experiments. Overall, we notice that regardless of the viewport
size, the audio chunk size distribution is almost the same,
which discards any impact of the viewport and confirm the
use of a standard audio quality. In plain, the audio chunk size
distribution is characterized by a median encoding bitrate of
200 Kbytes. Moreover, the variation of the audio chunk size is

240x144
400x225
£
9 640x360
_5 850x480
>
1280x720
1920x1080
Audio Chunk sizes (Byte)
Fig. 6: Audio bitrate distribution
10 25th percentile
50th percentile
0.8 75th percentile
0.6 —— GMM clustering
E . —— HTTP requests
Q
0.4
0.2
0.0

PN S T S 42
Chunk size (MB)

Fig. 7: Threshold/ GMM/HTTP inference of video chunks

almost the same through all viewports, with the 25th percentile
and 75th percentile equal to 100 and 400 Kbytes, respectively.

C. Threshold based audio/video chunk separation

Above, we leveraged the GMM clustering to separate audio
and video chunks from each other. Another feasible solution
easier to deploy would be to use static thresholds applied to
chunk size. Here, we compare, clustering and threshold based
techniques for the sake of chunk segregation efficiency.

We leverage the audio chunk size distribution illustrated in
Fig. 6 to derive threshold values able to separate the two types
of chunks based on their sizes. In plain, we use three threshold
values representing the 25th, 50th and 75th percentiles of
audio chunk sizes. For each threshold, the set of audio chunks
include every chunk with a size less than the threshold while
the others are considered to be video chunks. In Fig. 7, we
plot the video chunk size distribution per different separation
methods; (i) the three variants of the threshold based method,
(ii) the video chunk sizes inferred using the GMM clustering,
(iii) and the real video chunk size distribution as inferred from
the HTTP requests. We can observe that the overall distribution
of the video chunk sizes is well captured by both the threshold
based and the clustering based methods, with as expected the
higher the threshold the more the shift of the distribution
towards larger video chunks. In plain, the 75th percentile
threshold provides the closest distribution to the real one, yet,
the GMM method by using the maximum likelihood principle
is able to capture the real video chunk size distribution in a
close manner. To note here that a main advantage of the GMM
clustering method is in its automatic learning property, which
avoids one from tuning manually the threshold value.

D. Video resolution pattern

The DASH client automatically switches between video
resolutions according to the viewport and underlying network
performance. The video resolution pattern as requested from
the server is thus determined by the network conditions,
and normally has to take into consideration the viewport
size, which is defined as the number of pixels, both verti-
cally and horizontally, on which the video is displayed. It
is indisputable that the network conditions, for instance the
bandwidth, reduces the impact of the screen in scenarios of
bandwidth shortage as DASH will end up downloading chunks
of lower resolution than the viewport capacity. In this section,
we present experimental results supporting these statements
and highlight in particular the reduction of the effect of the
viewport as the available bandwidth decreases.

We artificially change the available bandwidth (as high-
lighted in Sec. IV), and stream for each bandwidth setting
hundreds of YouTube videos using different viewports. Each
time, we use random sampling to select the video ID and the
viewport. We plot in Fig. 8 the CDF of the video chunk size
per viewport for three bandwidth settings: 3 Mbps, 15 Mbps,
and no control. As expected, the video resolution pattern is
driven by the network bandwidth and the viewport size. In
Fig. 8(a), the bandwidth is limited to 3 Mbps, all viewports
thus exhibit the same pattern by streaming the same video
resolution, which therefore results in the same cumulative
distribution of chunk sizes. However in Fig. 8(b), we set
the bandwidth to 15Mbps, the effect of the viewport starts
appearing as the distribution of chunk sizes differs from one
screen to another. However, and even at this high bandwidth,
the two large viewports 1280x720 and 1920x1080 illustrate
close distributions, which can be explained by the same reason
of bandwidth shortage. Finally, when no restriction is imposed
on the bandwidth, full high definition viewport (1920x1080)
starts differentiating itself from the others. We further notice
in Fig. 8(c) that 40% of chunk requests on small screens (e.g.,
240x144, 400x225 and 640x360) correspond to a chunk size
smaller than 200 KBytes compared to 300 KBytes for medium
screens. For 1280x720 viewports (HD), chunk sizes are bigger
with 40% of them smaller than 1 MBytes (resp. smaller than
1.6 MBytes for 1920x1080 Full HD viewports).

To illustrate further this result, we plot the network through-
put as measured over the encrypted traces and compare it
to the available bandwidth for different viewports. For each
video, we get the CDN URL from the HTTP logs and
use the DNS Lookup of CDN URL to identify the video
flow corresponding to using the CDN IP. Then, we leverage
the downlink packet timestamps and a time bin of 1s to
return a vector of throughput values per video session. The
vector is used to derive throughput statistics (e.g., average,
percentiles) per video session. In Fig. 9, we plot the CDF of the
throughput values of the video sessions for different viewports
with different bandwidth settings. We notice that with an
enforced bandwidth of 3 Mbps (Fig. 9(a)), all viewports end up
experiencing the same throughput which correlates with chunk

—— 240x144
400x225
640x360

—— 850x480
1280x720

—— 1920x1080

Chunk size (MB)

(a) Chunk size per viewport with a
3Mbps bandwidth

1.0
0.8
/
L 06 —— 240x144
8 400x225
0.4 640x360
—— 850x480
0.2 1280x720
—— 1920x1080
0.0
~ Q > Vv]

Chunk size (MB)

(b) Chunk size per viewport with a
15Mbps bandwidth

— 240x144
400x225
640x360

—— 850x480
1280x720

—— 1920x1080

] v » &

N
Chunk size (MB)

(c) Chunk sizes per viewport with
unlimited bandwidth

Fig. 8: Network and viewport impact on chunk sizes

size results. Moreover, regardless of the available bandwidth,
a subset of viewports form one cluster exhibiting the same
throughput pattern (e.g., 240x144, 400x225 and 640x360).

VI. TRAFFIC CORRELATION TO VIEWPORT

For each video session, we get an array of video chunk sizes
over which we calculate different statistical features that we
use for viewport classification. We study here the correlation
between this array and the viewport. Our feature set contains
the maximum, the average and the standard deviation along
with the 10th to 90th percentiles (in steps of 10) of the
chunk size array. This forms a set of 12 features describing
statistically the evolution of chunk sizes over a video session.
In addition to chunk size related statistics, we also consider
the same statistical features, but this time for the downlink
throughput (in bps, averaged over time bins of 1s), and the
uplink and downlink packet interarrival times (in seconds).
With these features, we believe that we get a fine-grained
description of the DASH transmission process and capture
any effect of viewport resolution. Overall, according to feature
analysis, viewports such as 240x144, 640x360 and 850x480

—— 240x144
400x225
— 640x360
—— 850x480
1280x720
—— 1920x1080

S I S S
Throughput (Mbps)

(a) Throughput per viewport for a 3Mbps
bandwidth

240x144
400x225
— 640x360
—— 850x480
1280x720
—— 1920x1080

o % ™ © > DO
Throughput (Mbps)

(b) Throughput per viewport for a
15Mbps bandwidth

— 240x144
400x225
— 640x360
—— 850x480
1280x720
—— 1920x1080

£ e S @
Throughput (Mbps)

(c) Throughput per viewport for a
unlimited bandwidth

Fig. 9: Throughput per viewport for multiple network settings

are more likely to exhibit close chunk size and throughput
distributions forming one viewport class (SD). On the other
hand, the 1280x720 and 1920x1080 represent another cluster,
called HD showing similar properties. To take advantage of
this overlapping, we equally consider a relaxed definition of
the viewport classification problem to either SD or HD.

Before building our classifier, we start by illustrating the
correlation between our feature set and the viewport class.
Fig. 10 points to most relevant features by ranking them
according to their Pearson correlation coefficient with the
viewport class. The figure shows only those features having
a correlation coefficient at least equal to 0.4. The x_th_csize
represents the x_th percentile of the video chunk size over a
video session and the y_th_dltp stands for the y_th percentile
of the downlink throughput. Overall, the chunk size percentiles
show a more important correlation with the viewport capacity,
especially when it comes to lower percentiles. This is because
the video resolution pattern is not only influenced by the
available network resources, but also by the user display
capacity. Downlink throughput percentiles come in second
place with a correlation coefficient of more than 0.4.

20th_csize
30th_csize
10th_csize
40th_csize
50th_csize
P 60th_csize
5 70th_ditp
% 60th_ditp
& 70th_csize
50th_ditp
max_csize
80th_csize
80th_ditp
90th_csize
0.0 0.1 0.2 0.3 0.4 0.5
Correlation to viewport class

Fig. 10: Features correlation to viewport class, SD (0), HD (1)

1751 — 0:SD
150 — 1:HD
1.25
1.00
0.75
0.50
0.00

0 1

Viewport

20th percentile chunk size (MB)

Fig. 11: 20th chunk size percentile (most relevant chunk size
percentile in Fig. 10), SD (0), HD (1)

To shed further light on the previous results, we show
boxplots of the most important traffic features w.r.t. the two
viewport classes. We plot in Fig. 11 the distribution of the
20th chunk size percentile for all video sessions and for
both viewport classes. Overall, we notice a small overlapping
portion, the smaller the overlap the easier to differentiate
between SD and HD viewports. In plain, 50% of video
sessions have their 20th chunk size percentile less than or
equal to 230 KBytes, whereas high definition viewports score
almost twice the value for the same percentile. In terms of
downlink throughput, we plot in Fig. 12 the distribution of
the 70th download throughput percentile for all video sessions
as it scores 0.46 in terms of the correlation coefficient. In
general, and as expected, larger screens are characterized by
larger throughput values. Moreover, the boxplots show that
half of our video sessions have a 70th download throughput
percentile around 7 Mbps compared to 4 Mbps for small
definition viewports. All these results point to the presence
of a correlation pattern between encrypted traffic features and
viewport resolution at the client, a pattern that we exploit next
to build our classifier of viewport resolution.

VII. VIEWPORT CLASSIFICATION BY MACHINE LEARNING

In this section, we discuss the performance of the ML model
built using our dataset. We start by predicting the viewport
class (SD or HD) using inband network features and chunk size
stats (Fynband+chunk) €xtracted from the YouTube encrypted
traces. Later, we highlight the performance of our method-
ology in the context of multi-label classification where the

m

[+

Qa

=

=

3

o8 —_—
= .

E,ZO — 0:5D

=] — 1:HD

215

£

o™

=

= 10

=

=

[=]

T s

o

=

c oo

[0 1
g Viewport
£

£

o

~

Fig. 12: 70th downlink throughput percentile (most relevant
throughput percentile in Fig. 10), SD (0), HD (1)

viewport resolution precisely is targeted. Our goal is to provide
the ISP with a mean to infer viewport resolution insights
despite the end-to-end encryption of the video flows. Such
inference can help the ISP to get an idea about the bandwidth
requirements of her customers and their level of Quality of Ex-
perience (QoE) with the obtained network service, which can
also help taking network management decisions (e.g., resource
allocation, priority queuing) to improve such QoE [41].

We build a dataset matching Fippand+chunk tO viewport
capacity and use it to train different supervised ML classifi-
cation algorithms. We randomly pick videos from the catalog
available in [43], then stream them under different network
conditions emulated locally using the Linux fc utility. Each
experiment consists of enforcing the bandwidth, playing out
the selected video under the enforced QoS, collecting clear
HTTP messages using the Chrome Web Request API and
dumping the traffic in pcap files using tcpdump. The pcap
files are used to calculate the feature set Fyppand+chunk-

A. Viewport class classification

As we have seen before, the effect of the viewport is
maximum in a bandwidth unlimited scenario. As bandwidth
decreases, the different viewports converge to the same video
resolution pattern, therefore we expect any viewport inference
model to become less accurate as both classes (SD/HD) start
overlapping. To assess the extent of such limitation, we test
our model in different scenarios each featuring a different
bandwidth configuration. We use Random Forest (available in
python Scikit-Learn library [48]) because of its observed out-
performance in our case compared to other classifiers such
as Support Vector Machine, Decision Tree and Multi-Layer
Perceptron (see later for comparison). To find the best tuning
of the Random Forest algorithm, we apply at first a random
search of best hyper-parameters values, then after reducing the
space of search, we apply a grid search to get a fine-grained
fitting of major parameters [49].

Fig. 13 highlights the accuracy of two classification models
trained with our dataset. In plain, for each bandwidth setting
on the x-axis, we highlight two Random Forest models trained
on two different datasets, the blue model is trained with video

samples conducted with one specific enforced bandwidth (the
corresponding x-axis value), the orange one is a model trained
with the aggregate set of video sessions obtained over all en-
forced bandwidth values. It follows that the blue model varies
from one x-axis value to another one, whereas the orange
model is the same over all x-axis values. We validate both
models on a test set of 200 videos specific to each bandwidth
scenario. In general, and regardless of the training set, the
model accuracy is coherent with our intuition and increases
w.r.t. the enforced bandwidth. For example, in case of enforced
bandwidth of 3Mbps, both models show a low performance
with a median accuracy of 62%. This is expected as for such
low bandwidth, viewports show similar distributions for most
important features (see Fig. 8). One can expect an even lower
accuracy if the exact viewport resolution is to be predicted
for such a low bandwidth value. Starting from 6 Mbps, both
models show a median accuracy exceeding 80%, with the
model based on mixed conditions showing better accuracy (in
terms of both average and variance) than the model specific
to the enforced bandwidth value, which is a good property of
the orange model given its generality over different bandwidth
scenarios. We recall that the best performance for both models
is reached when no limitation is imposed on the network
bandwidth with 92% median accuracy.

The previous results present a general evaluation of the
model, yet, we need to evaluate the model per viewport class.
Here, one can use metrics like precision and recall or simply
the Fl-score which is an average of both. To that aim, we
benchmark a set of well known supervised machine learning
algorithms, fit them with our dataset (for the no bandwidth lim-
itation case) and compare them per class using the Fl-score.
We plot in Fig. 14 the k-fold (k =10) validation results for the
set of machine learning algorithms we consider. According to
this validation, the dataset is split into k folds, and at each of
the k iterations, a new fold is used as a validation set while the
k - 1 remaining folds form the training set. Average results
are then calculated over the k iterations. In plain, Random
Forest seems to be the most relevant algorithm, as it shows
an average Fl-score of 85%, while the other classification
algorithms such as Linear Discriminant Analysis and Decision
Tree come second and third with average Fl-scores of 80%
and 78% respectively. The lowest performance is recorded for
the Multi-Layer Perceptron and Linear Regression classifiers
with 72% and 68% F1-scores respectively. Moreover, we show
in Table I the precision and recall values of a tree sample
produced by our Random Forest model. The model classifies
correctly 85% of the total video sessions issued from HD
viewports and 93% of the sessions related to SD viewports.
When our model labels a video session as HD, it is correct in
87% of the cases and in 89% of the cases for SD.

B. Viewport resolution classification

The previous analysis highlights the performance of our
model in a binary scenario of SD/HD viewport classes. In
this subsection, we illustrate the performance of our model
in a multi-class scenario, where we aim at predicting the

D peFET

= 0.70
3 0.65
Taining data
0.60 ﬁ = TC~Bandwidth
0.55 B Mixed conditions
& & o o &
F & F LSS
> Q & ,LQ &L

Enforced bandwidth

Fig. 13: Model accuracy vs enforced bandwidth

RFC: Random Forest

LDA: Linear Discriminant Analysis
CART: Decision Tree Classifier
NB: Gaussian NB

KNN: K Neighbors Classifier
SVM: Support Vecotr Classifier
MLP: Multilayer Perceptron

LR: Logistic Regression

HIlH
-
> il
HiH
HIH
il
o |
HIl
HAEREREN

ML algorithm

Fig. 14: ML algorithm comparison (no bandwidth limitation)

exact viewport resolution as used in the experimental setup
(ee Fig. 1). We show results for the Random Forest model
trained with video sessions conducted in the no bandwidth
limitation scenario. We leverage a heatmap to highlight the
prediction accuracy of our model per viewport size.

We plot in Fig. 15 the confusion matrix of the predicted
viewport sizes. The y-axis (rows) corresponds to the ground
truth on viewport sizes, while the x-axis (columns) represents
the predict ones. The value in case (i,j) represents the per-
centage of viewports of size ¢ that are classified as of size j, the
sum of elements in a row is equal to 100%. The color intensity
of a case increases with its value. According to this heatmap,
one can identify two regions (i) small viewports mainly from
240x144 up to 850x480, and (ii) high definition viewports
of sizes 1280x720 and 1920x1080. The heatmap shows the
difficulty to classify video sessions on small viewports, for
instance, 44% and 37% of the video sessions on 400x240
and 640x360 viewports are labeled as 240x144. On the other
hand, for large viewports, the majority of video sessions can be
classified correctly with our set of features, as 54% and 60%
of video sessions on 1280x720 and 1920x1080 viewports are
correctly labeled. In the middle, the 850x480 viewport is the
one with the largest uncertainty in the classification between
the two viewport classes, with 28% of its video sessions
labeled with inferior viewport sizes and 12% with superior
viewport sizes. It is for this reason that we decided to consider
viewports of this size as belonging to the SD class.

Following the same analysis for binary classification, we
highlight in Table II the classification performance per class
using the Precision/Recall and Fl-score metrics. In plain,
for the 400x225 and 640x360 viewports, the Fl-score is the
lowest with 25% and 27% respectively, hence highlighting

Precision Recall F1
HD 0.87 0.85 0.86
SD 0.89 0.93 0.91

TABLE I: Random Forest case (precision/recall)

7
2. %0, 840, %5p.28020)
Oy 20~ 70y 50, 90, S5
7 qf«’eg*@&'o*ﬁ’& 1 <0 ?’0‘90
: : : : : ' 60
240x144 EXd) 2000 1500 400 100 000 @)
5 8
400x225 2500 200 800 000 100 @
0 2
640x360 m 200 500 100 100 -
30 @
850x480 900 1wo0 Q00 m Q00 200 %
0 =
1280x720 400 100 300 1500 [0 Z3.00 %
103
1920x1080 700 100 200 1200 17.00@ E
0

Fig. 15: Viewport resolution classification

the confusion of the model when it comes to video sessions
on small screens. On the other hand, for large screens, the
model is able to perform better with an Fl-score of 55%
for the 1280x720 viewport and 61% for the 1920x1080 one.
This relatively low accuracy of the classification in the multi-
class scenario is expected, as our analysis has pointed to
two different subsets of viewports (SD and HD) presenting
close properties internally for their inband network features
and chunk size statistics. The result is a space of collision
inside each of the subsets and therefore confusion regions
where the model is of high uncertainty. Luckily the overlap
is of less importance between the subsets leading to the good
performance we have seen in the binary classification case.

C. Real time viewport classification

The statistics we used so far to train and test our model
take into consideration the entire video session. This requires
waiting until the end of the session to collect the features
and predict the viewport, which can limit the usability of
the method in practice by preventing from taking real time
traffic engineering actions. For that, one needs to perform
the classification as soon as the video starts playing out, thus
allowing for mechanisms such as weighted fair queuing and
load balancing to take place. So here we study the goodness of
our model for viewport classification on the fly, which instead
of using as input aggregated statistics on the entire video
session, calculates features on the early part of the session.

We stream a total of 104 hours (4 days) and 70 hours (almost
3 days) of random YouTube videos using different SD and
HD viewports respectively. We highlight in Fig. 16 the video
duration distribution per viewport class. As expected, the two
distributions look the same, with half of the videos requested
from SD and HD viewports having a median duration of 120
seconds. We split this dataset into training and test sets. In

Precision Recall F1
240x144 0.32 0.52 0.40
400x225 0.26 0.24 0.25
640x360 0.31 0.24 0.27
850x480 0.52 0.62 0.57
1280x720 0.59 0.52 0.55
1920x1080 0.70 0.54 0.61

TABLE II: Multi-class case: Precision/Recall & F1-score

w
=1
=1

— 0:SD

50 — 1:HD

NN

00

=
7]
(=]

=
o
=1

Video duration (s)

w
=]

il

Q ~
Viewport class

o

Fig. 16: Video duration distribution (seconds)

the training set, we compute the features by considering the
entire video session. On the other hand, for the test set, we use
a specific proportion of the video starting from its beginning
and test over it. For instance, an input on the first 20% will
consider a feature set Fj,pqnd+chunk calculated over the first
20% of the video, and so on. To represent the proportions
in seconds and give them a practical meaning, we consider
the median video duration (120s) as reference duration, so
proportions of 20% and 40% would correspond to the first 24
and 48 seconds of a video session, respectively.

We plot in Fig. 17 the Fl-score w.r.t. the proportion used as
input for the test. With no surprise, the larger the considered
proportion of video session is, the higher the accuracy of the
model becomes. This makes sense as the model gets more and
more relevant input as compared to those used for the training.
More importantly, the model still works with few seconds
as input and provides good classification accuracy exceeding
80% on average. This confirms that the first few seconds of
a video session do indeed carry an important signature of
viewport class, with for example the first 24 seconds (assuming
a median duration of 120 seconds) allowing a median F1-
score of 80% (more than 78% in 75% of the cases). We recall
that considering the full video data leads to 85% median F1-
score. We shall thus confirm the feasibility of our approach
for pseudo real-time viewport classification.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present our methodology for building
viewport classification models from YouTube encrypted video
traces using controlled experimentation and machine learning.
Our models infer the end-user viewport resolution from sta-
tistical features calculated over the encrypted video packets,
fully or partially. Such information on the viewport can help
the ISPs plan better traffic engineering actions for a more
efficient network management and QoE optimization. Our

078

090
088
© 086
Q
8I 0.84
o 082
24 48 72 %

120
video duration used for prediction (s)

Fig. 17: Model accuracy vs video proportion considered

methodology starts by inferring chunk sizes, then relies on
Gaussian Mixture Models (GMM) to separate video chunks
from audio chunks. Statistics on video chunks are then used
to train machine learning models for viewport classification.
In a binary scenario of SD and HD viewports, our models
show classification accuracy that improves with the available
network bandwidth, and can go up to 92% in its median. The
median Fl-score can go up to 85%. Limiting the classification
to the first few seconds of the video decreases its accuracy,
but still leads to acceptable levels of Fl-score. The inference
of the exact viewport size shows a lower accuracy, as a subset
of viewports presents similar statistical features, making the
prediction more difficult to realize.

As future work, we plan to extend our study to cover other
popular streaming platforms (e.g., Netflix) and viewport sizes
(e.g., UHD). Meanwhile, our approach remains applicable to
streaming platforms that provide video player API, data API
and open source documentation to read the HTTP text mes-
sages and derive chunk related information. Moreover, we aim
at reusing our results to perform optimal resource allocation at
the edge of the network leveraging terminal characteristics and
aiming at improving the Quality of Experience of end-users.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report, June 2018,” https://www.ericsson.
com/assets/local/mobility-report/documents/2018/ericsson-mobility-
report-june-2018.pdf, 2018.

[2] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The lockdown effect: Implications
of the covid-19 pandemic on internet traffic,” in Proceedings of the ACM
Internet Measurement Conference, 2020.

[3] E. Commission, “Commission and European regulators calls on
streaming services, operators and users to prevent network congestion.”
https://ec.europa.eu/digital-single- market/en/news/commission-and-
european-regulators-calls-streaming-services-/operators-and-users-
prevent-network, 2020.

[4] Forbes, “Netflix Starts To Lift Its Coronavirus Streaming Restrictions.”
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix- starts- to-
liftits-coronavirus-streaming-restrictions/#7bcba5bf4738, 2020.

[5] sandvine, “The Global Internet Phenomena Report, October
2018,” https://www.sandvine.com/hubfs/downloads/phenomena/2018-
phenomena-report.pdf, 2018.

[6] R. R. Pastrana-Vidal, J. C. Gicquel, C. Colomes, and H. Cherifi,
“Sporadic frame dropping impact on quality perception,” in Proc. SPIE
5292, Human Vision and Electronic Imaging IX, 2004.

[71 Y. Qi and M. Dai, “The effect of frame freezing and frame skipping
on video quality,” in Proc. IEEE Int. Conf. Intell. Inform. Hiding
Multimedia Signal Process., 2006.

https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix-starts-to-liftits-coronavirus-streaming-restrictions/#7bcba5bf4738
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix-starts-to-liftits-coronavirus-streaming-restrictions/#7bcba5bf4738
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

(291

(30]

[31]
[32]

A. K. Moorthy, L. K. Choi, A. C. Bovik, and G. D. Veciana, “Video
quality assessment on mobile devices: Subjective, behavioral and objec-
tive studies,,” in IEEE J. Sel. Topics Signal Process., 2012.

G. Cermak, M. Pinson, and S. Wolf, “The relationship among video
quality, screen resolution, and bit rate,” in IEEE Transactions on
Broadcasting, 2011.

Google, “Chrome Web Request Extension,”
com/extensions/webRequest, 2020.

T. Stockhammer, “Dynamic adaptive streaming over http —: Standards
and design principles,” in ACM conference on Multimedia systems
(MMSys), 2011.

C. Miiller and C. Timmerer, “A vlc media player plugin enabling
dynamic adaptive streaming over http,” in ACM international conference
on Multimedia, 2011.

G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki, “Mea-
suring video qoe from encrypted traffic,” in ACM Internet Measurement
Conference, 2016.

T. HoBfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz,
“Quantification of youtube qoe via crowdsourcing,” in IEEE Interna-
tional Symposium on Multimedia, 2011.

M. Khokhar, T. Ehlinger, and C. Barakat., “From network traffic mea-
surements to qoe for internet video,” in IFIP Networking Conference,
YouTube catalogue link, 2019.

O. Belmoukadam, T. Spetebroot, and C. Barakat, “Acqua: A user
friendly platform for lightweight network monitoring and qoe fore-
casting,” in 3rd International Workshop on Quality of Experience
Management, 2019.

A. Mansy, M. Fayed, and M. Ammar, “Network-layer fairness for
adaptive video streams,” in IFIP Networking Conference, 2015.

0. Belmoukadam, M. Khokhar, and C. Barakat., “On excess bandwidth
usage of video streaming: when video resolution mismatches browser
viewport,” in 11th IEEE International Conference on Networks of the
Future, 2020.

F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“Yomoapp: A tool for analyzing qoe of youtube http adaptive streaming
in mobile networks,” in European Conference on Networks and Com-
munications (EuCNC), 2015.

“Meteor: Free internet speed & app performance test,” 2018, https://
meteor.opensignal.com/.

“Rtr-nettest,” 2018, https://www.netztest.at/en/.

Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated ui
control and cross-layer analysis,” in Internet Measurement Conference
(IMC), 2014.

D. Joumblatt, J. Chandrashekar, B. Kveton, N. Taft, and R. Teixeira,
“Predicting user dissatisfaction with internet application performance at
end-hosts,” in 2013 Proceedings IEEE INFOCOM, 2013.

K. . Chen, C. . Tu, and W. . Xiao, “Oneclick: A framework for measuring
network quality of experience,” in /[EEE INFOCOM 2009, 2009.

V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” ser. HotMobile ’14, 2014.

W. Robitza, S. Goring, A. Raake, D. Lindegren, G. Heikkild, J. Gustafs-
son, P. List, B. Feiten, U. Wiistenhagen, M.-N. Garcia, K. Yamagishi,
and S. Broom, “HTTP Adaptive Streaming QoE Estimation with ITU-T
Rec. P.1203 — Open Databases and Software,” in 9th ACM Multimedia
Systems Conference, 2018.

A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Goring, and B. Feiten,
“A bitstream-based, scalable video-quality model for HTTP adaptive
streaming: ITU-T P.1203.1,” in 9th International Conference on Quality
of Multimedia Experience (QoMEX), 2017.

T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely
and continuous machine-learning-based classification for interactive ip
traffic,” in IEEE/ACM Transactions on Networking, 2012.

R. Thupae, B. Isong, N. Gasela, and A. Abu-Mahfouz, “Machine
learning techniques for traffic identification and classification in sdwsn:
A survey,” in IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, 2018.

J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic
classification by aggregating correlated naive bayes predictions,” in [EEE
Transactions on Information Forensics and Security, 2013.

Opendpi, “,” http://www.opendpi.org/, 2012.

J. Khalife, A. Hajjar, and J. E. Diaz-Verdejo, “Performance of opendpi
in identifying sampled network traffic,” in Journal of Networks, 2013.

https://developer.chrome.

[34]

(35]

(36]

(371

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

LiJuan Zhang, DongMing Li, Jing Shi, and JunNan Wang, “P2p-based
weighted behavioral characteristics of deep packet inspection algorithm,”
in International Conference on Computer, Mechatronics, Control and
Electronic Engineering, 2010.

F. Dehghani, N. Movahhedinia, M. R. Khayyambashi, and S. Kianian,
“Real-time traffic classification based on statistical and payload content
features,” in 2nd International Workshop on Intelligent Systems and
Applications, 2010.

G. Aceto, A. Dainotti, W. de Donato, and A. Pescape, ‘“Portload: Taking
the best of two worlds in traffic classification,” in INFOCOM IEEE
Conference on Computer Communications Workshops, 2010.

C. Wang, X. Zhou, F. You, and H. Chen, “Design of p2p traffic
identification based on dpi and dfi,” in International Symposium on
Computer Network and Multimedia Technology, 2009.

G. La Mantia, D. Rossi, A. Finamore, M. Mellia, and M. Meo,
“Stochastic packet inspection for tcp traffic,” in IEEE International
Conference on Communications, 2010.

A. Rao and P. Udupa, “A hardware accelerated system for deep packet
inspection,” in ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2010.

A. Reed and M. Kranch, “Identifying https-protected netflix videos in
real-time,” in Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, 2017.

F. Li, J. Chung, and M. Claypool, “Silhouette: Identifying youtube video
flows from encrypted traffic,” in 28th ACM SIGMM Workshop, 2018.
O. Belmoukadam, M. Khokhar, and C. Barakat, “On accounting for
screen resolution in adaptive video streaming: a qoe driven bandwidth
sharing framework,” in CNSM, 2019.

Statcounter, “Desktop screen resolution stats worldwide,” 2021, https:
//gs.statcounter.com/screen-resolution- stats/desktop/worldwide.
YouTube, “Video Catalogue,” https://drive.google.com/open?id=
1tu0sBInt8xJ9Zn32IDIh6DW_ju2FhEou, 2020.

M. Khokhar, T. Ehlinger, and C. Barakat., “From network traffic mea-
surements to qoe for internet video,” in IFIP Networking Conference,
YouTube catalogue link, 2019.

0. Nawaz, T. N. Minhas, and M. Fiedler, “Qoe based comparison of
h.264/avc and webm/vp8 in an error-prone wireless network,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management

(IM), 2017.

YouTube, “Itag documentation,” https://www.genyt.xyz/formats-
resolution-youtube-videos.html, 2020.

Git, “Itag catalogue,” https://gist.github.com/sidneys/

7095afe4dadae58694d128b1034e01e2, 2020.

Python, “Random Forest classifier,” https:/scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html,
2020.

M. blog, “Hyperparameter Tuning the Random Forest in Python,”
https://towardsdatascience.com/hyperparameter-tuning-the-random-
forest-in-python-using-scikit-learn-28d2aa77dd74, 2020.

AUTHOR BIOGRAPHY

Othmane Belmoukadam a 3rd year PhD
student at Inria Sophia Antipolis. He received
a computer science MSc from the university
of Coéte d’Azur, France, in 2018. His main
research interests are QoE driven resource
allocation, QoE modeling, Data science and
machine learning applied to networking.

Chadi Barakat is Senior Research Sci-
entist in the Diana project-team at Inria,
Sophia Antipolis Research Centre. He served
in the program committees of many inter-
national conferences as CoNEXT, Infocom,
IMC, ICNP, and PAM. His main research
interests are in Internet measurements and
. network data analytics, user quality of ex-

perience, and moblle wireless networking. Chadi Barakat is
senior member of the IEEE and of the ACM.

https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://meteor.opensignal.com/
https://meteor.opensignal.com/
https://www.netztest.at/en/
http://www.opendpi.org/
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://drive.google.com/open?id=1tu0sBInt8xJ9Zn32IDlh6DW_ju2FhEou
https://drive.google.com/open?id=1tu0sBInt8xJ9Zn32IDlh6DW_ju2FhEou
https://www.genyt.xyz/formats-resolution-youtube-videos.html
https://www.genyt.xyz/formats-resolution-youtube-videos.html
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

	Introduction
	background and motivation
	State of the art
	Experimental setup
	Overall experimental framework
	YouTube catalogue
	Catalog overview
	Encoding bitrate

	Analysis of video streaming traffic
	Inferring video chunk sizes
	Audio chunk size distribution
	Threshold based audio/video chunk separation
	Video resolution pattern

	Traffic correlation to viewport
	Viewport classification by machine learning
	Viewport class classification
	Viewport resolution classification
	Real time viewport classification

	Conclusion and future work
	References

