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Introduction: from Stirling to Bendersky and beyond

The story of the constants known today as the Bendersky-Adamchik constants begins with the famous Stirling formula for the factorial:

n! ∼ √ 2π n n+ 1 2 e -n as n → ∞ which dates back from the middle of the 18th century. In fact, Stirling never explicitly stated this formula. The first appearance of this result occurs in a letter from Euler to Goldbach dated June 1744. The constant √ 2π is commonly referred to as the Stirling constant.

A similar but less well-known formula, due to Glaisher, also applies to the hyperfactorial:

n ν=1 ν ν = 1 1 2 2 • • • n n ∼ A n n 2 2 + n 2 + 1 12 e -n 2 4
as n → ∞ , * Corresponding author. Email address: coppo@unice.fr where the constant A = 1.282427 . . . is the Glaisher-Kinkelin constant [START_REF] Kellner | On asymptotic constants related to products of Bernoulli numbers[END_REF]Prop. 11].

In an important article published in 1933, Bendersky [START_REF] Bendersky | Sur la function gamma généralisée[END_REF] studied the product n ν=1 ν ν k for k = 0, 1, 2, . . . which reduces to the classical factorial when k = 0, and to the hyperfactorial when k = 1. For his purpose, Bendersky introduced a natural generalization Γ k of the classical Γ-function, defined on the positive real axis, whose fundamental properties are Γ k (1) = 1 and

Γ k (x + 1) = x x k Γ k (x) for all x > 0.
In particular, for each positive integer n,

Γ k (n + 1) = n ν=1 ν ν k for k = 0, 1, 2, . . .
Note that Γ 0 = Γ, and Γ 1 is the Kinkelin hyperfactorial K-function [START_REF] Sondow | The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant[END_REF].

Bendersky showed, for any integer k ≥ 0, the existence of a constant A k and a couple of polynomials P k and Our initial interest in these constants comes from their interesting interpretation in terms of the Ramanujan summation of certain divergent series, as explained in Section 4. Thanks to the properties of the function ln Γ k , we are in a position to completely elucidate the link between the logarithm of the constant A k and the sum of the divergent series n≥1 n k ln n in the sense of Ramanujan's summation method, following the exposition in [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. More precisely, using the notations of [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF], we show (see Theorem 1) that for all k ≥ 0,

Q k of degree k + 1 such that Γ k (x + 1) ∼ A k x P k (x) e -Q k (x) as x → +∞ .
ln A k = R n≥1 n k ln n + H k B k+1 k + 1 + 1 (k + 1) 2 ,
where, in this expression, H k and B k denote respectively the kth harmonic number and the kth Bernoulli number.

Bendersky-Adamchik constants

Definition 1. The sequence of real numbers {A k } k≥0 can be defined as follows [START_REF] Wang | Some asymptotic expansions of hyperfactorial functions and generalized Glaisher-Kinkelin constants[END_REF]Eq. (1.1)-(1.6)]: for all k ≥ 0,

ln A k := lim n→∞ n ν=1 ν k ln ν -P k (n) ln n + Q k (n) , (1) 
where (P k , Q k ) is a couple of polynomials of degree k + 1 with rational coefficients such that

(P 0 , Q 0 ) = (x + 1 2 , x) , (P 1 , Q 1 ) = ( x 2 2 + x 2 + 1 12 , x 2 4 ) ,
and whose general expression is given for k ≥ 2 by

P k (x) = x k+1 k + 1 + x k 2 + [ k+1 2 ] r=1 B 2r (2r)!   2r-1 j=1 (k -j + 1)   x k+1-2r ,
and

Q k (x) = x k+1 (k + 1) 2 - [ k+1 2 ]+ (-1) k -1 2 r=1 B 2r (2r)!    2r-1 j=1 (k -j + 1) 2r-1 j=1 1 k -j + 1    x k+1-2r ,
where {B 2r } r≥0 is the sequence of (even) Bernoulli numbers. The numbers A k (for k = 0, 1, 2, . . .) are called the Bendersky-Adamchik constants because Bendersky introduced these constants for the first time in 1933 [START_REF] Bendersky | Sur la function gamma généralisée[END_REF], and Adamchik [START_REF] Adamchik | Polygamma functions of negative order[END_REF] rediscovered them more than 60 years later, giving a nice expression of ln A k in terms of the derivatives of the Riemann zeta function [START_REF] Adamchik | Polygamma functions of negative order[END_REF]Prop. 4]. More precisely, this expression (called Adamchik's formula in the remainder of this article) is the following:

ln A k = H k B k+1 k + 1 -ζ (-k) , ( 2 
)
where H k and B k denote respectively the kth harmonic number (with the usual convention H 0 = 0) and the kth Bernoulli number. In particular, A 0 is the Stirling constant, and A 1 = A is the Glaisher-Kinkelin constant [START_REF] Adamchik | Polygamma functions of negative order[END_REF][START_REF] Kellner | On asymptotic constants related to products of Bernoulli numbers[END_REF][START_REF] Perkins | Closed-form calculation of infinite products of Glaisher-type related to Dirichlet series[END_REF][START_REF] Wang | Some asymptotic expansions of hyperfactorial functions and generalized Glaisher-Kinkelin constants[END_REF].

Adamchik's formula revisited

The following identities:

ζ (-2k) = (-1) k (2k)! 2(2π) 2k ζ(2k + 1) (k ≥ 1) ,
and

ζ (1 -2k) = (-1) k+1 (2k)! k(2π) 2k ζ (2k) + B 2k 2k (H 2k-1 -γ -ln 2π) (k ≥ 1) ,
where γ = 0.577215 

ζ(2k) = (-1) k+1 (2π) 2k 2(2k)! B 2k (k ≥ 1),
these identities allow us to rephrase formula (2) as follows:

ln A 2k = B 2k 4 
ζ(2k + 1) ζ(2k) (k ≥ 1) , (3) 
and 

ln A 2k-1 = B 2k 2k γ + ln 2π - ζ (2k) ζ(2k) (k ≥ 1) . ( 4 

Link with the Ramanujan summmation of series

Formula (1) strongly suggests that the constant ln A k is closely related to the Rsum of the divergent series n≥1 n k ln n (i.e. the sum of the series in the sense of Ramanujan's summation method, following the notations and exposition in [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]).

More precisely, we have the following nice result:

Theorem 1. For all k ≥ 0, ln A k = R n≥1 n k ln n + H k B k+1 k + 1 + 1 (k + 1) 2 .
(5)

Proof. For any real number x with x > -1 and integer k ≥ 0, let us consider the function

ϕ k (x) := ln Γ k (x + 1) = ζ (-k, x + 1) -ζ (-k).
The function ϕ k satisfies both ϕ k (0) = 0 and the difference equation

ϕ k (x) -ϕ k (x -1) = x k ln x (x > 0) .
Thus, from [4, Eq. (1.30)], we can write the identity

R n≥1 n k ln n = 1 0 ϕ k (x) dx = 1 0 ln Γ k (x + 1) dx .
We then make use of the following identity [2, Eq. (V' k ), p. 280]:

1 0 ln Γ k (x + 1) dx = ln A k - H k B k+1 k + 1 - 1 (k + 1) 2
which allows us to deduce formula [START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF].

We also derive from (5) and Adamchik's formula (2) the following elegant corollary:

Corollary 1. R n≥1 n k ln n = -ζ (-k) - 1 (k + 1) 2 (k ≥ 0) . ( 6 
) Example 1. R n≥1 ln n = 1 2 ln 2π -1 = -ζ (0) -1 , R n≥1 n ln n = ln A - 1 3 = 1 12 γ + ln 2π - ζ (2) ζ(2) -4 , R n≥1 n 2 ln n = ln A 2 - 1 9 = 1 24 ζ(3) ζ(2) - 1 9 .

New expansion of ln A k in convergent series

In his seminal work, Bendersky [2, pp. 295-299] presented two different (cumbersome) expansions of the logarithm L k = ln A k in convergent series. In this section, we give a new one, of a completely different kind, involving a convergent series with only rational terms.

For convenience, we first introduce the sequence of positive rational numbers {λ n } n≥1 (called non-alternating Cauchy numbers in [START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF]) defined by

λ n := n k=1 s(n, k) k + 1 (n ≥ 1) ,
where s(n, k) denotes the (signed) Stirling numbers of the first kind. The first ones are the following:

λ 1 = 1 2 , λ 2 = 1 6 , λ 3 = 1 4 , λ 4 = 19 30 , λ 5 = 9 4 , λ 6 = 863 84 , etc.
The numbers λ n are closely related to the Bernoulli numbers of the second kind b n [START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF] through the simple relation

λ n = (-1) n-1 n! b n = n! |b n | (n ≥ 1) .
The following identity is already known (see e.g. [8, Prop. 2]):

ln A 0 = 1 2 ln(2π) = ∞ n=2 λ n n! (n -1) + 1 2 γ + 1 2 .
Combining Adamchik's formula with a result previously given in [START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF] enables us to considerabely expand the scope of this formula through the following theorem:

Theorem 2. Let S(k, r) be the Stirling numbers of the second kind

S(k, r) = 1 r! r j=0 (-1) r-j r j j k (0 ≤ r ≤ k) ,
and σ r the shifted Mascheroni series

σ r := ∞ n=r+1 λ n n! (n -r) (r ≥ 0) .
Then, for all integers k ≥ 1, we have

ln A k = (-1) k k r=1 (-1) r r! S(k, r) σ r+1 + B k+1 k + 1 (H k+1 + γ) . ( 7 
)
Proof. Formula ( 7) results from the decomposition of ζ (-k) given by [START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF]Prop. 3] and from Adamchik's formula (2).

Corollary 2. For all integers k ≥ 1, we have

ln A 2k = ∞ n=2k+2 λ n n! 2k r=1 (-1) r r! S(2k, r) n -1 -r + C 2k , (8) 
and

ln A 2k-1 = ∞ n=2k+1 λ n n! 2k-1 r=1 (-1) r-1 r! S(2k -1, r) n -1 -r + B 2k 2k (H 2k + γ) + C 2k-1 , (9) 
where the constants C k are given by C 1 = 0, and

C k = (-1) k k-1 r=1 (-1) r r! S(k, r) k+1 j=r+2 λ j j! (j -1 -r) (k ≥ 2) . Example 2. ln A = ∞ n=3 λ n n!(n -2) + 1 12 γ + 1 8 , ln A 2 = ∞ n=4 λ n (n -1) n! (n -2)(n -3) - 1 24 , ln A 3 = ∞ n=5 λ n n(n -1) n! (n -2)(n -3)(n -4) - 1 120 γ - 29 240 , ln A 4 = ∞ n=6 λ n (n -1) 2 (n + 4) n! (n -2)(n -3)(n -4)(n -5) - 113 480 , ln A 5 = ∞ n=7 λ n n(n -1)(n 2 + 13n -18) n! (n -2)(n -3)(n -4)(n -5)(n -6) + 1 252 γ - 55087 80640 .
The relation between ln A k and the R-sum R n≥1 n k ln n provided by Theorem 1 allows us to derive from Corollary 2 above the corresponding formulas:

Corollary 3. For all integers k ≥ 1, R n≥1 n 2k ln n = ∞ n=2k+2 λ n n! 2k r=1 (-1) r r! S(2k, r) n -1 -r - 1 (2k + 1) 2 + C 2k , (10) 
and [START_REF] Sondow | The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant[END_REF] with

R n≥1 n 2k-1 ln n = ∞ n=2k+1 λ n n! 2k-1 r=1 (-1) r-1 r! S(2k -1, r) n -1 -r + B 2k 2k γ + D 2k ,
D 2k = B 2k -1 (2k) 2 + C 2k-1 (k ≥ 1) .

Appendix: Bendersky-Adamchik constants and Blagouchine's integral

In this additional section, we complete an unpublished short note of Blagouchine [START_REF] Blagouchine | A complement to a recent paper on some infinite sums with the zeta values[END_REF] by establishing a link with the Bendersky-Adamchik constants through a binomial sum.

Theorem 3. For any integer k ≥ 0, let J k be the complex integral ("Blagouchine's integral")

J k := +∞ -∞ ζ( 1 2 + ix) (2k + 1 + 2ix) cosh(πx)
dx .

For all k ≥ 1, we have

J k = k-1 j=0 (-1) j k j ln A j - 1 k - 1 (k + 1) 2 . ( 12 
)
Proof. Theorem 3 results directly from the following two lemmas.

Lemma 1. For any integer k ≥ 0, let S k be the infinite alternating series

S k := ∞ n=2 (-1) n ζ(n) n + k .
For all k ≥ 0, we have the relation:

J k = γ k + 1 - 1 (k + 1) 2 -S k . ( 13 
)
In particular, J 0 = -1.

Proof. Formula ( 13) is a special case of [START_REF] Blagouchine | A complement to a recent paper on some infinite sums with the zeta values[END_REF]Thm. 1] in the case where ω = k is an integer. We give a new direct proof. For k ≥ 0, let us consider the function

f k (z) = ζ(z) (k + z) sin(πz) .
This function f k has poles at integers n ∈ Z. For n ≥ 2, the residue of

f k at z = n is Res(f k ; n) = (-1) n ζ(n) (n + k)π .
For n = 1, f k has a double pole and

Res(f k ; 1) = - 1 π γ k + 1 - 1 (k + 1) 2 .
If q is a positive odd integer with 1 < q, then, by the residue theorem, we have

Re(z)=1/2 f k (z) dz - Re(z)=q/2 f k (z) dz = -2iπ 1 2 <n< q 2 Res(f k ; n) . ( * )
Moreover, there is a positive constant C such that f k (z) dz → 0 as q → +∞ .

Re(z)=q/2 f k (z) dz ≤ C +∞ -∞ 1 (k + q 2 ) 2 + t 2
Therefore, taking the limit in ( * ), we obtain

Re(z)=1/2 f k (z) dz = -2iπ n> 1 2 Res(f k ; n) .
This last identity allows us to deduce formula [START_REF] Wang | Some asymptotic expansions of hyperfactorial functions and generalized Glaisher-Kinkelin constants[END_REF]. Since S 0 = γ (a classical formula due to Euler), we deduce in particular J 0 = -1.

Lemma 2. For all k ≥ 1, we have the identity

S k = γ k + 1 + 1 k - k-1 j=0 (-1) j k j ln A j . ( 14 
)
Proof. From [7, Prop. 1], we know that

S k = γ k + 1 + k-1 j=0 (-1) j k j ζ (-j) + 1 k + k-1 j=0 k j B j+1 H j j + 1 (k ≥ 1) .
Rephrasing this later expression thanks to Adamchik's formula (2) leads to the equivalent formula (14).

Remark 1. Since J 0 = -1, we can also rewrite [START_REF] Perkins | Closed-form calculation of infinite products of Glaisher-type related to Dirichlet series[END_REF] in a slightly different manner:

k-1 j=0 (-1) j k j ln A j = J k - k 2 + 3k + 1 k(k + 1) 2 J 0 (k ≥ 1) . ( 15 
)
Example 3. For small positive values of k, we derive from [START_REF] Perkins | Closed-form calculation of infinite products of Glaisher-type related to Dirichlet series[END_REF] the following identities: 

J 1 = 1 2 ln 2π - 5 

  Using the Euler-Maclaurin summation formula, Bendersky managed to evaluate the constants A k and the polynomials P k and Q k for k ≤ 4. Unaware of Bendersky's work and following an idea of Milnor, Kurokawa and Ochiai [10, Thm. 2] rediscovered much more later the function Γ k and expressed appropriately this function in terms of the derivative of the Hurwitz zeta function ζ(s, x) at s = -k. More precisely, they established the following representation 1 ln Γ k (x) = ζ (-k, x) -ζ (-k) for x > 0 and k ≥ 0 , which extends a classical representation of ln Γ in the case k = 0 [6, p. 78].

1 2

 1 (e πt + e -πt ) dt , and thus, by the dominated convergence theorem, we have Re(z)=q/2

  • • • is Euler's constant, are easily derived from differentiation of the functional equation of the zeta function [12, p. 384]. Furthermore, combined with the famous Euler formula [6, p. 17]