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Generalized Glaisher-Kinkelin constants and
Ramanujan summation of series

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract We study a sequence of constants known as the Bendersky-Adamchik
constants which appear quite naturally in number theory and generalize the clas-
sical Glaisher-Kinkelin constant. Our main initial purpose is to elucidate the close
relation between the logarithm of these constants and the Ramanujan summation
of certain divergent series. In addition, we also present a remarkable, and previ-
ously unknown, expansion of the logarithm of these constants in convergent series
involving the Bernoulli numbers of the second kind.

Keywords Bendersky-Adamchik constants; Bendersky’s generalized gamma func-
tions; Hurwitz zeta function; Bernoulli numbers of the second kind; Ramanujan
summation of series.

1 Introduction: from Stirling to Bendersky and
beyond

The story of the constants known today as the Bendersky-Adamchik constants
begins with the famous Stirling formula for the factorial:

n! ∼
√

2π nn+ 1
2 e−n as n→∞

which dates back from the middle of the 18th century. In fact, Stirling never
explicitly stated this formula. The first appearance of this result occurs in a letter
from Euler to Goldbach dated June 1744. The constant

√
2π is commonly referred

to as the Stirling constant.
A similar but less well-known formula, due to Glaisher, also applies to the

hyperfactorial:
n∏
ν=1

νν = 1122 · · ·nn ∼ An
n2
2 + n

2 + 1
12 e−

n2
4 as n→∞ ,
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where the constant A = 1.282427 . . . is the Glaisher-Kinkelin constant [9, Prop.
11].

In an important article published in 1933, Bendersky [2] studied the product∏n
ν=1 ν

νk for k = 0, 1, 2, . . . which reduces to the classical factorial when k = 0,
and to the hyperfactorial when k = 1. For his purpose, Bendersky introduced a
natural generalization Γk of the classical Γ-function, defined on the positive real
axis, whose fundamental properties are Γk(1) = 1 and

Γk(x+ 1) = xx
kΓk(x) for all x > 0.

In particular, for each positive integer n,

Γk(n+ 1) =
n∏
ν=1

νν
k for k = 0, 1, 2, . . .

Note that Γ0 = Γ, and Γ1 is the Kinkelin hyperfactorial K-function [11].
Bendersky showed, for any integer k ≥ 0, the existence of a constant Ak and a

couple of polynomials Pk and Qk of degree k + 1 such that

Γk(x+ 1) ∼ Ak x
Pk(x)e−Qk(x) as x→ +∞ .

Using the Euler-Maclaurin summation formula, Bendersky managed to evaluate
the constants Ak and the polynomials Pk and Qk for k ≤ 4.

Unaware of Bendersky’s work and following an idea of Milnor, Kurokawa and
Ochiai [10, Thm. 2] rediscovered much more later the function Γk and expressed
appropriately this function in terms of the derivative of the Hurwitz zeta function
ζ(s, x) at s = −k. More precisely, they established the following representation1

ln Γk(x) = ζ ′(−k, x)− ζ ′(−k) for x > 0 and k ≥ 0 ,

which extends a classical representation of ln Γ in the case k = 0 [6, p. 78].
Our initial interest in these constants comes from their interesting interpreta-

tion in terms of the Ramanujan summation of certain divergent series, as explained
in Section 4. Thanks to the properties of the function ln Γk, we are in a position
to completely elucidate the link between the logarithm of the constant Ak and the
sum of the divergent series ∑n≥1 n

k lnn in the sense of Ramanujan’s summation
method, following the exposition in [4]. More precisely, using the notations of [4],
we show (see Theorem 1) that for all k ≥ 0,

lnAk =
R∑
n≥1

nk lnn+ HkBk+1

k + 1 + 1
(k + 1)2 ,

1. According to Kellner [9, Rem. 27], this expression of ln Γk is due to Alexeiewsky in the
special case where x = n + 1 is an integer.
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where, in this expression, Hk and Bk denote respectively the kth harmonic number
and the kth Bernoulli number.

2 Bendersky-Adamchik constants
Definition 1. The sequence of real numbers {Ak}k≥0 can be defined as follows
[13, Eq. (1.1)–(1.6)]: for all k ≥ 0,

lnAk := lim
n→∞

{
n∑
ν=1

νk ln ν − Pk(n) lnn+Qk(n)
}
, (1)

where (Pk, Qk) is a couple of polynomials of degree k+ 1 with rational coefficients
such that

(P0, Q0) = (x+ 1
2 , x) ,

(P1, Q1) = (x
2

2 + x

2 + 1
12 ,

x2

4 ) ,

and whose general expression is given for k ≥ 2 by

Pk(x) = xk+1

k + 1 + xk

2 +
[ k+1

2 ]∑
r=1

B2r

(2r)!

2r−1∏
j=1

(k − j + 1)
xk+1−2r ,

and

Qk(x) = xk+1

(k + 1)2 −
[ k+1

2 ]+ (−1)k−1
2∑

r=1

B2r

(2r)!


2r−1∏
j=1

(k − j + 1)
2r−1∑
j=1

1
k − j + 1

xk+1−2r ,

where {B2r}r≥0 is the sequence of (even) Bernoulli numbers. The numbers Ak
(for k = 0, 1, 2, . . .) are called the Bendersky-Adamchik constants because Ben-
dersky introduced these constants for the first time in 1933 [2], and Adamchik [1]
rediscovered them more than 60 years later, giving a nice expression of lnAk in
terms of the derivatives of the Riemann zeta function [1, Prop. 4]. More precisely,
this expression (called Adamchik’s formula in the remainder of this article) is the
following:

lnAk = HkBk+1

k + 1 − ζ ′(−k) , (2)

where Hk and Bk denote respectively the kth harmonic number (with the usual
convention H0 = 0) and the kth Bernoulli number. In particular, A0 is the Stirling
constant, and A1 = A is the Glaisher-Kinkelin constant [1, 9, 12, 13].
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3 Adamchik’s formula revisited
The following identities:

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k ζ(2k + 1) (k ≥ 1) ,

and

ζ ′(1− 2k) = (−1)k+1 (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (H2k−1 − γ − ln 2π) (k ≥ 1) ,

where γ = 0.577215 · · · is Euler’s constant, are easily derived from differentiation
of the functional equation of the zeta function [12, p. 384]. Furthermore, combined
with the famous Euler formula [6, p. 17]

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!B2k (k ≥ 1),

these identities allow us to rephrase formula (2) as follows:

lnA2k = B2k

4

(
ζ(2k + 1)
ζ(2k)

)
(k ≥ 1) , (3)

and

lnA2k−1 = B2k

2k

(
γ + ln 2π − ζ ′(2k)

ζ(2k)

)
(k ≥ 1) . (4)

Thus, Adamchik’s formula means that lnAk is closely related to ζ(k+1)/ζ(k) when
k is positive and even, and to ζ ′(k + 1)/ζ(k + 1) in the odd case. For example,

lnA = 1
12

(
γ + ln 2π − ζ ′(2)

ζ(2)

)
and lnA2 = 1

24

(
ζ(3)
ζ(2)

)
.

4 Link with the Ramanujan summmation of se-
ries

Formula (1) strongly suggests that the constant lnAk is closely related to the R-
sum of the divergent series ∑n≥1 n

k lnn (i.e. the sum of the series in the sense of
Ramanujan’s summation method, following the notations and exposition in [4]).
More precisely, we have the following nice result:

4



Theorem 1. For all k ≥ 0,

lnAk =
R∑
n≥1

nk lnn+ HkBk+1

k + 1 + 1
(k + 1)2 . (5)

Proof. For any real number x with x > −1 and integer k ≥ 0, let us consider the
function

ϕk(x) := ln Γk(x+ 1) = ζ ′(−k, x+ 1)− ζ ′(−k).

The function ϕk satisfies both ϕk(0) = 0 and the difference equation

ϕk(x)− ϕk(x− 1) = xk ln x (x > 0) .

Thus, from [4, Eq. (1.30)], we can write the identity

R∑
n≥1

nk lnn =
∫ 1

0
ϕk(x) dx =

∫ 1

0
ln Γk(x+ 1) dx .

We then make use of the following identity [2, Eq. (V’k), p. 280]:∫ 1

0
ln Γk(x+ 1) dx = lnAk −

HkBk+1

k + 1 − 1
(k + 1)2

which allows us to deduce formula (5).

We also derive from (5) and Adamchik’s formula (2) the following elegant
corollary:

Corollary 1.

R∑
n≥1

nk lnn = −ζ ′(−k)− 1
(k + 1)2 (k ≥ 0) . (6)

Example 1.

R∑
n≥1

lnn = 1
2 ln 2π − 1 = −ζ ′(0)− 1 ,

R∑
n≥1

n lnn = lnA− 1
3 = 1

12

(
γ + ln 2π − ζ ′(2)

ζ(2) − 4
)
,

R∑
n≥1

n2 lnn = lnA2 −
1
9 = 1

24

(
ζ(3)
ζ(2)

)
− 1

9 .
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5 New expansion of lnAk in convergent series
In his seminal work, Bendersky [2, pp. 295–299] presented two different (cumber-
some) expansions of the logarithm Lk = lnAk in convergent series. In this section,
we give a new one, of a completely different kind, involving a convergent series
with only rational terms.

For convenience, we first introduce the sequence of positive rational numbers
{λn}n≥1 (called non-alternating Cauchy numbers in [5]) defined by

λn :=
∣∣∣∣∣
n∑
k=1

s(n, k)
k + 1

∣∣∣∣∣ (n ≥ 1) ,

where s(n, k) denotes the (signed) Stirling numbers of the first kind. The first ones
are the following:

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.

The numbers λn are closely related to the Bernoulli numbers of the second kind
bn [8] through the simple relation

λn = (−1)n−1n! bn = n! |bn| (n ≥ 1) .

The following identity is already known (see e.g. [8, Prop. 2]):

lnA0 = 1
2 ln(2π) =

∞∑
n=2

λn
n! (n− 1) + 1

2γ + 1
2 .

Combining Adamchik’s formula with a result previously given in [8] enables us to
considerabely expand the scope of this formula through the following theorem:

Theorem 2. Let S(k, r) be the Stirling numbers of the second kind

S(k, r) = 1
r!

r∑
j=0

(−1)r−j
(
r

j

)
jk (0 ≤ r ≤ k) ,

and σr the shifted Mascheroni series

σr :=
∞∑

n=r+1

λn
n! (n− r) (r ≥ 0) .

Then, for all integers k ≥ 1, we have

lnAk = (−1)k
k∑
r=1

(−1)rr!S(k, r)σr+1 + Bk+1

k + 1 (Hk+1 + γ) . (7)
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Proof. Formula (7) results from the decomposition of ζ ′(−k) given by [8, Prop. 3]
and from Adamchik’s formula (2).

Corollary 2. For all integers k ≥ 1, we have

lnA2k =
∞∑

n=2k+2

λn
n!

{ 2k∑
r=1

(−1)rr!S(2k, r)
n− 1− r

}
+ C2k , (8)

and

lnA2k−1 =
∞∑

n=2k+1

λn
n!

{2k−1∑
r=1

(−1)r−1r!S(2k − 1, r)
n− 1− r

}
+ B2k

2k (H2k + γ) + C2k−1 ,

(9)

where the constants Ck are given by C1 = 0, and

Ck = (−1)k
k−1∑
r=1

(−1)rr!S(k, r)
k+1∑
j=r+2

λj
j! (j − 1− r) (k ≥ 2) .

Example 2.

lnA =
∞∑
n=3

λn
n!(n− 2) + 1

12γ + 1
8 ,

lnA2 =
∞∑
n=4

λn (n− 1)
n! (n− 2)(n− 3) −

1
24 ,

lnA3 =
∞∑
n=5

λn n(n− 1)
n! (n− 2)(n− 3)(n− 4) −

1
120γ −

29
240 ,

lnA4 =
∞∑
n=6

λn (n− 1)2(n+ 4)
n! (n− 2)(n− 3)(n− 4)(n− 5) −

113
480 ,

lnA5 =
∞∑
n=7

λn n(n− 1)(n2 + 13n− 18)
n! (n− 2)(n− 3)(n− 4)(n− 5)(n− 6) + 1

252γ −
55087
80640 .

The relation between lnAk and the R-sum ∑R
n≥1 n

k lnn provided by Theorem 1
allows us to derive from Corollary 2 above the corresponding formulas:

Corollary 3. For all integers k ≥ 1,

R∑
n≥1

n2k lnn =
∞∑

n=2k+2

λn
n!

{ 2k∑
r=1

(−1)rr!S(2k, r)
n− 1− r

}
− 1

(2k + 1)2 + C2k , (10)
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and

R∑
n≥1

n2k−1 lnn =
∞∑

n=2k+1

λn
n!

{2k−1∑
r=1

(−1)r−1r!S(2k − 1, r)
n− 1− r

}
+ B2k

2k γ +D2k , (11)

with

D2k = B2k − 1
(2k)2 + C2k−1 (k ≥ 1) .

6 Appendix: Bendersky-Adamchik constants and
Blagouchine’s integral

In this additional section, we complete an unpublished short note of Blagouchine [3]
by establishing a link with the Bendersky-Adamchik constants through a binomial
sum.

Theorem 3. For any integer k ≥ 0, let Jk be the complex integral (“Blagouchine’s
integral”)

Jk :=
∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx .

For all k ≥ 1, we have

Jk =
k−1∑
j=0

(−1)j
(
k

j

)
lnAj −

1
k
− 1

(k + 1)2 . (12)

Proof. Theorem 3 results directly from the following two lemmas.

Lemma 1. For any integer k ≥ 0, let Sk be the infinite alternating series

Sk :=
∞∑
n=2

(−1)n ζ(n)
n+ k

.

For all k ≥ 0, we have the relation:

Jk = γ

k + 1 −
1

(k + 1)2 − Sk . (13)

In particular, J0 = −1.
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Proof. Formula (13) is a special case of [3, Thm. 1] in the case where ω = k is an
integer. We give a new direct proof. For k ≥ 0, let us consider the function

fk(z) = ζ(z)
(k + z) sin(πz) .

This function fk has poles at integers n ∈ Z. For n ≥ 2, the residue of fk at z = n
is

Res(fk;n) = (−1)nζ(n)
(n+ k)π .

For n = 1, fk has a double pole and

Res(fk; 1) = − 1
π

(
γ

k + 1 −
1

(k + 1)2

)
.

If q is a positive odd integer with 1 < q, then, by the residue theorem, we have∫
Re(z)=1/2

fk(z) dz −
∫

Re(z)=q/2
fk(z) dz = −2iπ

∑
1
2<n<

q
2

Res(fk;n) . (∗)

Moreover, there is a positive constant C such that∣∣∣∣∣
∫

Re(z)=q/2
fk(z) dz

∣∣∣∣∣ ≤ C
∫ +∞

−∞

1(
(k + q

2)2 + t2
) 1

2 (eπt + e−πt)
dt ,

and thus, by the dominated convergence theorem, we have∣∣∣∣∣
∫

Re(z)=q/2
fk(z) dz

∣∣∣∣∣→ 0 as q → +∞ .

Therefore, taking the limit in (∗), we obtain∫
Re(z)=1/2

fk(z) dz = −2iπ
∑
n> 1

2

Res(fk;n) .

This last identity allows us to deduce formula (13). Since S0 = γ (a classical
formula due to Euler), we deduce in particular J0 = −1.

Lemma 2. For all k ≥ 1, we have the identity

Sk = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j
(
k

j

)
lnAj . (14)
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Proof. From [7, Prop. 1], we know that

Sk = γ

k + 1 +
k−1∑
j=0

(−1)j
(
k

j

)
ζ ′(−j) + 1

k
+

k−1∑
j=0

(
k

j

)
Bj+1 Hj

j + 1 (k ≥ 1) .

Rephrasing this later expression thanks to Adamchik’s formula (2) leads to the
equivalent formula (14).

Remark 1. Since J0 = −1, we can also rewrite (12) in a slightly different manner:
k−1∑
j=0

(−1)j
(
k

j

)
lnAj = Jk −

k2 + 3k + 1
k(k + 1)2 J0 (k ≥ 1) . (15)

Example 3. For small positive values of k, we derive from (12) the following
identities:

J1 = 1
2 ln 2π − 5

4 ,

J2 = 1
3 ln 2π − 1

6 γ −
11
18 + 1

6
ζ ′(2)
ζ(2) ,

J3 = 1
4 ln 2π − 1

4 γ −
19
48 + 1

4
ζ ′(2)
ζ(2) + 1

8
ζ(3)
ζ(2) ,

and, for k ≥ 3, using (3) and (4), we get the general formula:

Jk = 1
k + 1 ln 2π − (k − 1)

2(k + 1) γ −
k2 + 3k + 1
k(k + 1)2

+
[ k

2 ]∑
j=1

(
k

2j − 1

)
B2j ζ

′(2j)
2j ζ(2j) + 1

4

[ k−1
2 ]∑

j=1

(
k

2j

)
B2j ζ(2j + 1)

ζ(2j) . (16)
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