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Generalized Glaisher-Kinkelin constants,
Blagouchine’s integrals, and Ramanujan

summation of series

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract The main motivation for this article is to establish a connection be-
tween a sequence of constants of Glaisher-Kinkelin type (known as the Bendersky-
Adamchik constants) which appear quite naturally in number theory, and a family
of complex integrals recently introduced by Blagouchine. Furthermore, we also
elucidate the close relation between these constants and the Ramanujan summa-
tion of certain divergent series, and we give a new convergent series expansion for
the logarithm of these constants.

Keywords Generalized Glaisher-Kinkelin constants; generalized gamma func-
tions; infinite series with zeta values; Blagouchine’s integrals; Ramanujan sum-
mation of series.

1 Introduction
Introduced in 1933 by Bendersky [2], the sequence of mathematical constants
called generalized Glaisher-Kinkelin constants or Bendersky-Adamchik constants
(see Definition 1) arises quite naturally in number theory [10, 12, 14]. The initial
purpose of this article is to link this sequence of real numbers {Ak} to the family
of complex integrals {Jk,p} defined (for nonnegative integers k and p, with p odd)
by

Jk,p :=
∫ +∞

−∞

ζ(p2 + ix)
(2k + p+ 2ix) cosh(πx) dx .

In an unpublished note, Blagouchine [3] introduced these integrals in the cases
p = 1 and p = 3 only. This connection is deduced from the results of a previous
study [8] on one hand (see Lemma 1), and from the residue theorem on the other

∗Corresponding author. Email address: coppo@unice.fr



hand (see Proposition 1). In particular, we obtain a nice expression of the integral
Jk = Jk,1 in terms of the generalized Glaisher-Kinkelin constants Aj for 0 ≤ j ≤
k − 1 (see Corollary 1). More precisely, we show that for all k ≥ 1,

Jk =
∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx =
k−1∑
j=0

(−1)j
(
k

j

)
lnAj −

1
k
− 1

(k + 1)2 .

Furthermore, we completely elucidate the close relation between the logarithm
of the generalized Glaisher-Kinkelin constant Ak and the sum of the divergent
series ∑n≥1 n

k lnn in the sense of Ramanujan’s summation method, following the
exposition in [4]. More precisely, using the notations of [4], we show that for all
k ≥ 0,

lnAk =
R∑
n≥1

nk lnn+ HkBk+1

k + 1 + 1
(k + 1)2 ,

where, in this expression, Hk and Bk denote respectively the kth harmonic number
and the kth Bernoulli number.

Finally, we present, in the last section, a new convergent series expansion for the
constant lnAk involving the Bernoulli numbers of the second kind (see Corollary
2).

2 Constants of Glaisher-Kinkelin type and Ra-
manujan summation

Definition 1. Let {B2r}r≥0 be the sequence of (even) Bernoulli numbers. The
sequence of numbers {Ak}k≥0 can be defined as follows [14, Eq. (1.1)–(1.6)]: for
all k ≥ 0,

lnAk := lim
n→∞

{
n∑
ν=1

νk ln ν − Pk(n) lnn+Qk(n)
}
,

where Pk and Qk are polynomials of degree k + 1 whose expressions are given by

P0(x) = x+ 1
2 , Q0(x) = x ,

and for k ≥ 1,

Pk(x) = xk+1

k + 1 + xk

2 +
[ k+1

2 ]∑
r=1

B2r

(2r)!

2r−1∏
j=1

(k − j + 1)
xk+1−2r ,

Qk(x) = xk+1

(k + 1)2 −
[ k+1

2 ]+ (−1)k−1
2∑

r=1

B2r

(2r)!


2r−1∏
j=1

(k − j + 1)
2r−1∑
j=1

1
k − j + 1

xk+1−2r .
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The numbers Ak (for k = 0, 1, 2, . . .) are called the generalized Glaisher-Kinkelin
constants or the Bendersky-Adamchik constants. Adamchik [1, Prop. 4] has given
a nice expression of these constants Ak in terms of the derivatives of the Riemann
zeta function. More precisely, this expression (called Adamchik’s formula in the
remainder of this article) is the following:

lnAk = HkBk+1

k + 1 − ζ ′(−k) , (1)

where Hk and Bk denote respectively the kth harmonic number (with the usual
convention H0 = 0) and the kth Bernoulli number.

Example 1. a) The constant A0 is the Stirling constant

A0 =
√

2π = lim
n→∞

{
n!

nn+ 1
2 e−n

}
= exp(−ζ ′(0)) .

b) The constant A1 is the classical Glaisher-Kinkelin constant [1, 10, 14]. We
have

A1 = lim
n→∞

{ ∏n
ν=1 ν

ν

n
n2
2 + n

2 + 1
12 e−

n2
4

}
= exp

{ 1
12 − ζ

′(−1)
}
.

c) For k = 2, we have

A2 = lim
n→∞

{ ∏n
ν=1 ν

ν2

n
n3
3 + n2

2 + n
6 e−

n3
9 + n

12

}
= exp (−ζ ′(−2)) .

Remark 1. Bendersky [2] introduced for the first time the sequence of numbers Ak
without any consideration of their relation with the ζ-function. From the point of
view of the summation of divergent series, the constants lnAk can be interpreted
as follows: for any non-negative integer k, if∑Rn≥1 n

k lnn denotes the R-sum of the
divergent series∑n≥1 n

k lnn (i.e. the sum of the series in the sense of Ramanujan’s
summation method, following the notations of [4]), then lnAk and

∑R
n≥1 n

k lnn are
linked by the simple relation:

lnAk =
R∑
n≥1

nk lnn+ HkBk+1

k + 1 + 1
(k + 1)2 (k ≥ 0) . (2)

This relation results both from [4, p. 68] and from Adamchik’s formula (1). By [2,
Eq. (V’k), p. 280], we also deduce the equivalent relation

R∑
n≥1

nk lnn = lnAk −
HkBk+1

k + 1 − 1
(k + 1)2 =

∫ 1

0
ln Γk(x+ 1) dx , (2 b)
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where Γk is the Bendersky generalized gamma function [2, pp. 279–280]. This
function verifies

Γk(n+ 1) =
n∏
ν=1

νν
k for any integer n ≥ 1 ,

and
Γk(n+ 1) ∼ Ak n

Pk(n)e−Qk(n) as n→∞ .

In particular, Γ0 = Γ, and Γ1 is the Kinkelin-Bendersky hyperfactorial function [13,
Def. 3]. Unaware of Bendersky’s work and following an idea of Milnor, Kurokawa
and Ochiai [11, Thm. 2] provided an expression of the function Γk in terms of
the derivative of the Hurwitz zeta function ζ(s, x) at s = −k. Precisely, they
established the relation1

ln Γk(x) = ζ ′(−k, x)− ζ ′(−k) (x > 0, k ≥ 0) ,

which is a generalization of the classical formula for Γ [7, Def. 9.6.13]

ln Γ(x) = ζ ′(0, x)− ζ ′(0) (x > 0) .

Remark 2. The following identities:

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k ζ(2k + 1) (k ≥ 1) ,

and

ζ ′(1− 2k) = (−1)k+1 (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (H2k−1 − γ − ln 2π) (k ≥ 1) ,

where γ denotes the Euler-Mascheroni constant, are easily derived (by differenti-
ation) from the functional equation of the zeta function. Thanks to Adamchik’s
formula (1) and the celebrated Euler formula

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!B2k (k ≥ 1),

we can deduce the following two ones:

lnA2k−1 = B2k

2k

(
γ + ln 2π − ζ ′(2k)

ζ(2k)

)
(k ≥ 1) , (3)

1. According to Kellner [10, Rem. 27], in the special case where x = n + 1 is an integer, this
expression of ln Γk is due to Alexeiewsky.
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and

lnA2k = B2k

4

(
ζ(2k + 1)
ζ(2k)

)
(k ≥ 1) . (4)

These identities will be useful in the remainder (see Example 3 below).

Example 2. The simplest cases of these identities are the following:

lnA1 = 1
12

(
γ + ln 2π − ζ ′(2)

ζ(2)

)
and lnA2 = 1

24

(
ζ(3)
ζ(2)

)
.

In particular, for small values of k, formula (2 b) translates into
R∑
n≥1

lnn = 1
2 ln 2π − 1 ,

R∑
n≥1

n lnn = 1
12

(
γ + ln 2π − ζ ′(2)

ζ(2)

)
− 1

3 ,

R∑
n≥1

n2 lnn = 1
24

(
ζ(3)
ζ(2)

)
− 1

9 .

3 Generalized Glaisher-Kinkelin constants and
Blagouchine’s integrals

Definition 2. For non-negative integers k and p, with p odd, the integral Jk,p and
the series Sk,p are defined respectively by

Jk,p :=
∫ +∞

−∞

ζ(p2 + ix)
(2k + p+ 2ix) cosh(πx) dx ,

and
Sk,p :=

∞∑
n=Np

(−1)n ζ(n)
n+ k

with Np = max(2, p+ 1
2 ) .

To lighten our notations, in the remainder of the text, we set

Jk :=
∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx = Jk,1 ,

and

Sk :=
∞∑
n=2

(−1)n ζ(n)
n+ k

= Sk,1 = Sk,3 .
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Lemma 1. For all k ≥ 1, we have

Sk = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j
(
k

j

)
lnAj . (5)

Proof. It results from [8, Prop. 1] that

Sk = γ

k + 1 +
k−1∑
j=0

(−1)j
(
k

j

)
ζ ′(−j) + 1

k
+

k−1∑
j=0

(
k

j

)
Bj+1 Hj

j + 1 (k ≥ 1) .

Using Adamchik’s formula (1), this later expression is equivalent to (5).

The following proposition includes and extends the results of [3].

Proposition 1. For all k ≥ 0, we have the following relations:

Jk = γ

k + 1 −
1

(k + 1)2 − Sk , (6)

and
Jk,p = (−1)

p+1
2 Sk,p (p = 3, 5, 7, · · · ). (7)

In particular, Jk,3 = Sk .

Proof. For k ≥ 0, let us consider the function

fk(z) = ζ(z)
(k + z) sin(πz) .

This function fk has poles at integers n ∈ Z. For n ≥ 2, the residue of fk at z = n
is

Res(fk;n) = (−1)nζ(n)
(n+ k)π .

For n = 1, fk has a double pole and

Res(fk; 1) = − 1
π

(
γ

k + 1 −
1

(k + 1)2

)
.

If p, q are positive odd integers with p < q, then, by the residue theorem, we have∫
Re(z)=p/2

fk(z) dz −
∫

Re(z)=q/2
fk(z) dz = −2iπ

∑
q
2>n>

p
2

Res(fk;n) . (∗)

Moreover, there is a positive constant C such that∣∣∣∣∣
∫

Re(z)=q/2
fk(z) dz

∣∣∣∣∣ ≤ C
∫ +∞

−∞

1(
(k + q

2)2 + t2
) 1

2 (eπt − e−πt)
dt ,
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and thus, by the dominated convergence theorem, we have∣∣∣∣∣
∫

Re(z)=q/2
fk(z) dz

∣∣∣∣∣→ 0 as q → +∞ .

Therefore, taking the limit in (∗), we obtain∫
Re(z)=p/2

fk(z) dz = −2iπ
∑
n> p

2

Res(fk;n) . (∗∗)

This last identity allows us to deduce formulas (6) and (7).

From Lemma 1 and Proposition 1 above, we derive the following corollary.

Corollary 1. For all k ≥ 1, we have

Jk =
k−1∑
j=0

(−1)j
(
k

j

)
lnAj −

1
k
− 1

(k + 1)2 . (8)

Proof. Formula (8) is a direct consequence of (5) and (6).

Example 3. For small positive values of k, we have

J1 = 1
2 ln 2π − 5

4 ,

J2 = 1
3 ln 2π − 1

6 γ −
11
18 + 1

6
ζ ′(2)
ζ(2) ,

J3 = 1
4 ln 2π − 1

4 γ −
19
48 + 1

4
ζ ′(2)
ζ(2) + 1

8
ζ(3)
ζ(2) .

Moreover, using formulas (3) and (4), we obtain the following general formula:

Jk = 1
k + 1 ln 2π − (k − 1)

2(k + 1) γ −
k2 + 3k + 1
k(k + 1)2

+
[ k

2 ]∑
j=1

(
k

2j − 1

)
B2j ζ

′(2j)
2j ζ(2j) + 1

4

[ k−1
2 ]∑

j=1

(
k

2j

)
B2j ζ(2j + 1)

ζ(2j) (k ≥ 3) . (9)

Remark 3. Since J0 = −1 (by (6)), we can write (8) in a slightly different manner:

k−1∑
j=0

(−1)j
(
k

j

)
lnAj = Jk −

k2 + 3k + 1
k(k + 1)2 J0 (k ≥ 1) .
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Remark 4. By means of a Fourier transform method, Candelpergher [5] has re-
cently established a beautiful relation which is a natural generalization of (6)
involving a complex parameter s. More precisely, for any non-negative integer k
and any complex number s such that Re(s) > 1

2 , we have the following relation [5,
Eq. (7)]:

2s−1Jk(s) = γ

(k + 1)s −
s

(k + 1)s+1 − Sk(s) . (10)

with
Jk(s) :=

∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix)s cosh(πx) dx ,

and
Sk(s) :=

∞∑
n=2

(−1)n ζ(n)
(n+ k)s .

In particular, applying (10) to the special case k = 0, allows us deduce the following
interesting identity:

∞∑
n=2

(−1)n ζ(n)
ns

= γ − s− 1
2

∫ +∞

−∞

ζ(1
2 + ix)

(1
2 + ix)s cosh(πx) dx (Re(s) > 1

2) . (11)

4 New series expansions for the logarithm of the
generalized Glaisher-Kinkelin constants

In his seminal work of 1933, Bendersky [2, p. 295–299] had presented two con-
vergent series expansions of the logarithm Lk = lnAk of the generalized Glaisher-
Kinkelin constants. In this last section, we give a new one, of a different kind,
involving the Bernoulli numbers of the second kind.
We first define a sequence of positive rational numbers {λn}n≥1 (called non-alternating
Cauchy numbers [6]) by

λn :=
∣∣∣∣∣
n∑
k=1

s(n, k)
k + 1

∣∣∣∣∣ (n ≥ 1) ,

where s(n, k) denotes the (signed) Stirling numbers of the first kind. Alternatively,
these numbers can also be defined recursively by means of the relation

n−1∑
k=1

λk
k! (n− k) = 1

n
(n ≥ 2) .

The first ones are the following:

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.
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The numbers λn are closely related to the Bernoulli numbers of the second kind
bn [9] through the relation

λn = (−1)n−1n! bn = n! |bn| (n ≥ 1) .

We now give another interesting application of Adamchik’s formula (1).

Proposition 2. Let S(k, r) be the Stirling numbers of the second kind

S(k, r) = 1
r!

r∑
j=0

(−1)r−j
(
r

j

)
jk (0 ≤ r ≤ k) ,

and σr the shifted Mascheroni series

σr :=
∞∑

n=r+1

λn
n! (n− r) (r ≥ 0) .

Then, for all integers k ≥ 1, we have

lnAk = (−1)k
k∑
r=1

(−1)rr!S(k, r)σr+1 + Bk+1

k + 1 (Hk+1 + γ) . (12)

Proof. Thanks to Adamchik’s formula (1), formula (12) can be easily deduced from
the decomposition of ζ ′(−k) given by [9, Prop. 3].

Remark 5. This formula (12) also extends to the case k = 0 through the identity:

lnA0 = 1
2 ln(2π) = σ1 + 1

2γ + 1
2 =

∞∑
n=2

λn
n! (n− 1) + 1

2(1 + γ) .

Corollary 2. For all integers k ≥ 1, we have

lnA2k =
∞∑

n=2k+2

λn
n!

{ 2k∑
r=1

(−1)rr!S(2k, r)
n− 1− r

}
+ C2k , (13)

and

lnA2k−1 =
∞∑

n=2k+1

λn
n!

{2k−1∑
r=1

(−1)r−1r!S(2k − 1, r)
n− 1− r

}
+ B2k

2k (H2k + γ) + C2k−1 ,

(14)

where the constants Ck are given by C1 = 0, and

Ck = (−1)k
k−1∑
r=1

(−1)rr!S(k, r)
k+1∑
j=r+2

λj
j! (j − 1− r) (k ≥ 2) .

9



Example 4.

lnA1 =
∞∑
n=3

λn
n!(n− 2) + 1

12γ + 1
8

lnA2 =
∞∑
n=4

λn (n− 1)
n! (n− 2)(n− 3) −

1
24

lnA3 =
∞∑
n=5

λn n(n− 1)
n! (n− 2)(n− 3)(n− 4) −

1
120γ −

29
240

lnA4 =
∞∑
n=6

λn (n− 1)2(n+ 4)
n! (n− 2)(n− 3)(n− 4)(n− 5) −

113
480

lnA5 =
∞∑
n=7

λn n(n− 1)(n2 + 13n− 18)
n! (n− 2)(n− 3)(n− 4)(n− 5)(n− 6) + 1

252γ −
55087
80640

Remark 6. Thanks to the simple relation linking lnAk to the R-sum ∑R
n≥1 n

k lnn
given by (2), we can also deduce from the previous corollary, the corresponding
formulas:

R∑
n≥1

n2k lnn =
∞∑

n=2k+2

λn
n!

{ 2k∑
r=1

(−1)rr!S(2k, r)
n− 1− r

}
− 1

(2k + 1)2 + C2k , (15)

R∑
n≥1

n2k−1 lnn =
∞∑

n=2k+1

λn
n!

{2k−1∑
r=1

(−1)r−1r!S(2k − 1, r)
n− 1− r

}
+ B2k

2k γ +D2k , (16)

with

D2k = B2k − 1
(2k)2 + C2k−1 (k ≥ 1) .
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