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Generalized Glaisher-Kinkelin constants and
Blagouchine’s integrals

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract. The main purpose of this short article is to highlight the existence of
a close connection between a family of complex integrals introduced by Blagouch-
ine and some notable mathematical constants, namely the generalized Glaisher-
Kinkelin constants (also known as the Bendersky-Adamchik constants) which oc-
cur quite naturally in number theory and analysis. Incidentely, we also point out
the connection between these constants and the Ramanujan summation of certain
divergent series.
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1 Introduction
The aim of this article is to establish a link between the family of complex integrals
{Jk,p} defined (for integers k ≥ 0 and p ≥ 1 with p odd) by

Jk,p :=
∫ +∞

−∞

ζ(p
2 + ix)

(2k + p+ 2ix) cosh(πx) dx ,

and a famous sequence of mathematical constants, namely the generalized Glaisher-
Kinkelin constants (which are also known as the Bendersky-Adamchik constants)
arising quite naturally in the theory of special functions and number theory (see
Definition 1 and Remark 1). Blagouchine [3] introduced these integrals in the cases
p = 1 and p = 3. To show this close connection, we make use of a relation between
the integral Jk,p and the alternating series

Sk,p :=
∞∑

n=Np

(−1)n ζ(n)
n+ k

with Np = max(2, p+ 1
2 )
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which can be deduced from the residue theorem (see Proposition 1). These alter-
nating series have been studied in detail in our previous article [7]. In particular,
this study allows us to provide a general expression of the integrals Jk,1 and Jk,3
in terms of the generalized Glaisher-Kinkelin constants for all positive integers k
(see Corollary 1).

Recently, using another method, Candelpergher [5] has generalized the rela-
tion between the integral Jk,1 and the alternating series Sk,1 by introducing a
complex parameter s (see Proposition 3). As a corollary, this leads to an integral
representation of the Dirichlet series

∞∑
n=2

(−1)n ζ(n)
ns

which is valid for any complex number s with Re(s) > 1
2 (see Corollary 2).

2 Generalized Glaisher-Kinkelin constants
Definition 1. For any integer k ≥ 0, the constant Ak are usually defined by

lnA0 = lim
N→∞

{
N∑

n=1
lnn−

(
N + 1

2

)
lnN +N

}
,

lnA1 = lim
N→∞

{
N∑

n=1
n lnn−

(
N2

2 + N

2 + 1
12

)
lnN + N2

4

}
,

lnA2 = lim
N→∞

{
N∑

n=1
n2 lnn−

(
N3

3 + N2

2 + N

6

)
lnN + N3

9 −
N

12

}
,

and more generally

lnAk = lim
N→∞

{
N∑

n=1
nk lnn− Uk+1(N) lnN + Vk+1(N)

}
,

where Uk+1 and Vk+1 are polynomials of degree k + 1 that can be explicitely com-
puted [12, Eq. (1.6)]. The numbers Ak for k = 0, 1, 2, . . . are called the general-
ized Glaisher-Kinkelin constants or the Bendersky-Adamchik constants [9, 10, 12].
Adamchik [1, Prop. 4] has given a nice expression of the constants Ak in terms of
the derivatives of the Riemann zeta function. More precisely, this expression (that
we will call Adamchik’s formula) is the following:

lnAk = HkBk+1

k + 1 − ζ ′(−k) , (1)

where Hn are the harmonic numbers (with the usual convention H0 = 0) and Bn

are the Bernoulli numbers.
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Example 1. The constant A0 is the Stirling constant:
A0 = exp(−ζ ′(0)) =

√
2π ,

the constant A1 is the classical Glaisher-Kinkelin constant [9, 12]:

A1 = exp
{ 1

12 − ζ
′(−1)

}
= exp

{
1
12(γ + ln 2π)− ζ ′(2)

2π2

}
,

where γ denotes the Euler constant, and the constant A2 is

A2 = exp (−ζ ′(−2)) = exp
{
ζ(3)
4π2

}
.

More generally, from the following identities:

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k

ζ(2k + 1) (k ≥ 1) ,

and

ζ ′(1− 2k) = (−1)k+1 (2k)!
k(2π)2k

ζ ′(2k) + B2k

2k (H2k−1 − γ − ln 2π) (k ≥ 1) ,

which are easily derived by differentiation of the functional equation for the zeta
function, we can deduce, using Adamchik’s formula (1), the expressions

lnA2k−1 = (−1)k (2k)!
k(2π)2k

ζ ′(2k) + B2k

2k (γ + ln 2π) (k ≥ 1) , (2)

and

lnA2k = (−1)k+1 (2k)!
2(2π)2k

ζ(2k + 1) (k ≥ 1) . (3)

Remark 1. Bendersky [2] introduced for the first time the sequence of numbers Ak

without any consideration of their relation with the ζ-function. From the point of
view of the summation of divergent series, the constants lnAk can be interpreted
as follows: if ∑Rn≥1 n

k lnn denotes the R-sum of the divergent series ∑n≥1 n
k lnn

(i.e. the sum of the series in the sense of Ramanujan’s summation method as
outlined in [4]), then, for any integer k ≥ 0, we have the equivalent expressions [4,
p. 68], [2, Eq. (V’k) p. 280]:

R∑
n≥1

nk lnn = −ζ ′(−k)− 1
(k + 1)2

= lnAk −
HkBk+1

k + 1 − 1
(k + 1)2

=
∫ 1

0
ln Γk(x+ 1) dx ,
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where Γk is the Bendersky generalized gamma function [2, p. 279]. This function
verifies

Γk(n+ 1) = 11k22k · · ·nnk for any integer n ≥ 1 .
In particular, we have Γ = Γ0, and K = Γ1, where K is the Kinkelin-Bendersky
hyperfactorial function which can be defined as follows [2, Eq. (28’) p. 302], [11,
Def. 3]:

lnK(x) =
∫ x

0
ln Γ(u) du + x2 − x

2 − x

2 ln 2π (x ≥ 0) .

Unaware of Bendersky’s work and following an idea of Milnor, Kurokawa and
Ochiai [8, Thm. 2] provided an expression of the function Γk in terms of the deriva-
tive of the Hurwitz zeta function ζ(s, x) at s = −k. Precisely, they established the
formula

ln Γk(x) = ζ ′(−k, x)− ζ ′(−k) (x > 0, k ≥ 0) ,
which generalizes a classical formula for Γ [6, Def. 9.6.13], and can be seen as the
analogue of Adamchik’s formula for Ak.
Example 2. For k = 0 and k = 1, we have

R∑
n≥1

lnn =
∫ 1

0
ln Γ(x+ 1) dx = 1

2 ln 2π − 1 ,

R∑
n≥1

n lnn =
∫ 1

0
lnK(x+ 1) dx = lnA1 −

1
3 .

3 Blagouchine’s integrals and series with zeta
values

Definition 2. For any non-negative integer k and positive odd integer p, the
integral Jk,p is defined by

Jk,p =
∫ +∞

−∞

ζ(p
2 + ix)

(2k + p+ 2ix) cosh(πx) dx .

Proposition 1. We have the following relations:

Jk,1 = γ

k + 1 −
1

(k + 1)2 − Sk,1 , (4)

and
Jk,p = (−1)

p+1
2 Sk,p (p = 3, 5, 7, · · · ) (5)

with
Sk,p :=

∞∑
n=Np

(−1)n ζ(n)
n+ k

with Np = max(2, p+ 1
2 ) .
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Proof. For k ≥ 0, let us consider the function

fk(z) = ζ(z)
(k + z) sin(πz) .

The function fk has poles at integers n ∈ Z. For n ≥ 2, the residue of fk at z = n
is

Res(fk;n) = (−1)nζ(n)
(n+ k)π .

For n = 1, fk has a double pole and

Res(fk; 1) = − 1
π

(
γ

k + 1 −
1

(k + 1)2

)
.

Applying the residue theorem, we get

− 1
2iπ

∫
Re(z)=p/2

fk(z) dz =
∑
n> p

2

Res(fk;n) .

This leads to formulas (4) and (5).

Proposition 2. We have

Sk,1 = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j

(
k

j

)
lnAj (k ≥ 1) . (6)

Proof. It results from [7, Prop. 1] that

∞∑
n=2

(−1)n ζ(n)
n+ k

= γ

k + 1 +
k−1∑
j=0

(−1)j

(
k

j

)
ζ ′(−j) + 1

k
+

k−1∑
j=0

(
k

j

)
Bj+1 Hj

j + 1 (k ≥ 1) .

By Adamchik’s formula (1), this later expression is equivalent to (6).

Corollary 1. We have

Jk,1 =
k−1∑
j=0

(−1)j

(
k

j

)
lnAj −

1
k
− 1

(k + 1)2 (k ≥ 1) , (7)

and

Jk,3 = γ

k + 1 −
1

(k + 1)2 − Jk,1 = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j

(
k

j

)
lnAj (k ≥ 1) .

(8)
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Example 3. For p = 1 and the first values of k, we have

J0,1 = −1 ,

J1,1 = 1
2 ln 2π − 5

4 ,

J2,1 = 1
3 ln 2π − 1

6γ −
11
18 + ζ ′(2)

π2 ,

J3,1 = 1
4 ln 2π − 1

4γ −
19
48 + 3

2π2 ζ
′(2) + 3

4π2 ζ(3) .

More generally,

Jk,1 = ln 2π
k + 1 −

(k − 1) γ
2(k + 1) −

k2 + 3k + 1
k(k + 1)2

−
[ k

2 ]∑
j=1

(−1)j

(
k

2j − 1

)
(2j)!
j(2π)2j

ζ ′(2j)−
[ k−1

2 ]∑
j=1

(−1)j

(
k

2j

)
(2j)!

2(2π)2j
ζ(2j+1) (k ≥ 3) .

4 Further generalization
Using a Fourier transform method, Candelpergher [5, Eq. (7)] has recently estab-
lished the following beautiful relation which is a rather natural generalization of
(4).

Proposition 3. for k ≥ 0 and Re(s) > 1
2 , we have

2s−1Jk,1(s) = γ

(k + 1)s
− s

(k + 1)s+1 − Sk,1(s) , (9)

with
Jk,1(s) :=

∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix)s cosh(πx) dx ,

and
Sk,1(s) :=

∞∑
n=2

(−1)n ζ(n)
(n+ k)s

.

Applying (9) with k = 0 allows us to deduce the following identity:

Corollary 2.

∞∑
n=2

(−1)n ζ(n)
ns

= γ − s− 1
2

∫ +∞

−∞

ζ(1
2 + ix)

(1
2 + ix)s cosh(πx) dx (Re(s) > 1

2) . (10)
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Example 4. For s = 1, the representation
∞∑

n=2
(−1)n ζ(n)

n
= γ

is regained (since J0,1(1) = −1), and for s = 2, formula (10) translates into the
relation

∞∑
n=2

(−1)n ζ(n)
n2 = γ − 2− 1

2

∫ +∞

−∞

ζ(1
2 + ix)

(1
2 + ix)2 cosh(πx) dx . (11)
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