
HAL Id: hal-03197403
https://hal.univ-cotedazur.fr/hal-03197403v16

Preprint submitted on 1 Mar 2022 (v16), last revised 3 Jun 2024 (v23)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Glaisher-Kinkelin constants and
Blagouchine’s integrals

Marc-Antoine Coppo

To cite this version:
Marc-Antoine Coppo. Generalized Glaisher-Kinkelin constants and Blagouchine’s integrals. 2022.
�hal-03197403v16�

https://hal.univ-cotedazur.fr/hal-03197403v16
https://hal.archives-ouvertes.fr


On generalized Glaisher-Kinkelin’s constants and
Blagouchine’s integrals

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract The main purpose of this article is to establish a close connection be-
tween a sequence of complex integrals introduced by Blagouchine and some impor-
tant mathematical constants, namely the generalized Glaisher-Kinkelin constants
(also known as the Bendersky constants) which occur quite naturally in analysis
and number theory.
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1 Introduction
The main purpose of this article is to highlight the link between the sequence of
complex integrals {Jk,p} (for integers k ≥ 0 and p ≥ 1 with p odd) defined by

Jk,p =
∫ +∞

−∞

ζ(p2 + ix)
(2k + p+ 2ix) cosh(πx) dx ,

and some important mathematical constants, namely the generalized Glaisher-
Kinkelin constants (also known as the Bendersky constants) which occur quite
naturally in analysis and number theory [1, 9, 11]. Blagouchine [3] introduced
these integrals in the cases p = 1 and p = 3. To establish this close connection,
we make use of a relation between the integral Jk,p and the alternating series

∞∑
n=Np

(−1)n ζ(n)
n+ k

with Np = max(2, p+ 1
2 )

that we deduce from the residue theorem (see Proposition 1). Previously, these
series were studied in detail in [7]. In particular, this enables us to give a general
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expression of the integrals Jk,1 and Jk,3 in terms of the generalized Glaisher-
Kinkelin constants for all positive integers k (see Corollary 1).

Recently, the relation between Jk,1 and Jk,3 has been generalized by Can-
delpergher [5] (see Proposition 2). This allows us to give, as a corollary, a repre-
sentation of the Dirichlet series

∞∑
n=2

(−1)n ζ(n)
ns

which is valid for any complex number s with Re(s) > 1
2 (see Corollary 2).

2 Generalized Glaisher-Kinkelin constants
Definition 1 ([9, 11]). For any integer k ≥ 0, the constant Ak are usually defined
by

lnA0 = lim
N→∞

{
N∑
n=1

lnn−
(
N + 1

2

)
lnN +N

}
,

lnA1 = lim
N→∞

{
N∑
n=1

n lnn−
(
N2

2 + N

2 + 1
12

)
lnN + N2

4

}
,

lnA2 = lim
N→∞

{
N∑
n=1

n2 lnn−
(
N3

3 + N2

2 + N

6

)
lnN + N3

9 −
N

12

}
,

and more generally

lnAk = lim
N→∞

{
N∑
n=1

nk lnn− Pk(N) lnN +Qk(N)
}
,

where Pk and Qk are polynomials of degree k+ 1 that can be explicitely computed
(see e.g. [11, Eq. (1.1)]). The numbers Ak for k = 0, 1, 2, . . . are called the gen-
eralized Glaisher-Kinkelin constants (sometimes called the Bendersky constants).
Adamchik [1, Proposition 4] has given an alternative expression of the constants
Ak in terms of the derivatives of the Riemann zeta function. More precisely, we
have the expression

lnAk = HkBk+1

k + 1 − ζ ′(−k) , (1)

where Hk =
k∑
j=1

1
j
is the k-th harmonic number with the usual convention H0 = 0.
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Example 1. The constant A0 is the Stirling constant:

A0 = exp(−ζ ′(0)) =
√

2π ,

the constant A1 is the classical Glaisher-Kinkelin constant:

A1 = exp
{ 1

12 − ζ
′(−1)

}
= exp

{
1
12(γ + ln 2π)− ζ ′(2)

2π2

}
,

and, for k = 2, we have

A2 = exp (−ζ ′(−2)) = exp
{
ζ(3)
4π2

}
.

More generally, the following relations :

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k ζ(2k + 1) (k ≥ 1) ,

and

ζ ′(1− 2k) = (−1)k+1 (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (H2k−1 − γ − ln 2π) (k ≥ 1)

which are easily derived by differentiation of the Riemann functional equation for
the zeta function enable to deduce from Adamchik’s formula (1) the expressions

lnA2k−1 = (−1)k (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (γ + ln 2π) (k ≥ 1) , (2)

and

lnA2k = (−1)k+1 (2k)!
2(2π)2k ζ(2k + 1) (k ≥ 1) . (3)

Remark 1. Bendersky [2] introduced for the first time the sequence of numbers Ak
without any consideration of their relation with the ζ-function. From the point
of view of the summation of divergent series, the constants Ak can be interpreted
as follows: let ∑Rn≥1 n

k lnn denotes the R-sum of the divergent series ∑n≥1 n
k lnn

(i.e. the sum of the series in the sense of Ramanujan’s summation method [4]),
then, for any integer k ≥ 0, we have (see [4, p. 68] and [2, p. 280]):

R∑
n≥1

nk lnn = −ζ ′(−k)− 1
(k + 1)2

= lnAk −
HkBk+1

k + 1 − 1
(k + 1)2

=
∫ 1

0
ln Γk(x+ 1) dx ,
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where Γk is the Bendersky generalized gamma function [2, p. 279]. This function
verifies

Γk(n+ 1) = 11k22k · · ·nnk for any integer n ≥ 1 .

In particular, we have Γ0 = Γ, and Γ1 = K, where K denotes the Kinkelin-
Bendersky hyperfactorial function which can be defined (see e.g. [10, Definition
3]) by the relation

lnK(x) = x2 − x
2 − x

2 ln 2π +
∫ x

0
ln Γ(u) du (x ≥ 0) .

Unaware of Bendersky’s work and following an idea of Milnor, Kurokawa and
Ochiai [8, Theorem 2] have given an expression of the function Γk in terms of the
derivative of the Hurwitz zeta function ζ(s, x) at s = −k. Precisely, they show
that

ln Γk(x) = ζ ′(−k, x)− ζ ′(−k) for x > 0 and k ≥ 0 ,

a formula that generalizes a classical formula for Γ (see [6, Definition 9.6.13]) and
can be seen as the analogue of Adamchik’s formula for Ak.

3 Blagouchine’s integrals and series with zeta
values

Definition 2. For any non-negative integer k and positive odd integer p, the
integral Jk,p is defined by

Jk,p =
∫ +∞

−∞

ζ(p2 + ix)
(2k + p+ 2ix) cosh(πx) dx .

Proposition 1. We have the following relations:

Jk,1 = γ

k + 1 −
1

(k + 1)2 −
∞∑
n=2

(−1)n ζ(n)
n+ k

, (4)

and
Jk,p = (−1)

p+1
2

∞∑
n= p+1

2

(−1)n ζ(n)
n+ k

for p = 3, 5, 7, · · · (5)

Proof. For k ≥ 0, let us consider the function

fk(z) = ζ(z)
(k + z) sin(πz) .
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The function fk has poles at integers n ∈ Z. For n ≥ 2, the residue of fk at z = n
is

Res(fk;n) = (−1)nζ(n)
(n+ k)π .

For n = 1, fk has a double pole and

Res(fk; 1) = − 1
π

(
γ

k + 1 −
1

(k + 1)2

)
.

Applying the residue theorem, we get

− 1
2iπ

∫
Re(z)=p/2

fk(z) dz =
∑
n> p

2

Res(fk;n) .

This leads to formulas (4) and (5).
Corollary 1. We have

Jk,1 =
k−1∑
j=0

(−1)j
(
k

j

)
lnAj −

1
k
− 1

(k + 1)2 (k ≥ 1) , (6)

and

Jk,3 = γ

k + 1 −
1

(k + 1)2 − Jk,1 = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j
(
k

j

)
lnAj (k ≥ 1) .

(7)

Proof. From [7, Proposition 1], we have
∞∑
n=2

(−1)n ζ(n)
n+ k

= γ

k + 1 +
k−1∑
j=0

(−1)j
(
k

j

)
ζ ′(−j) + 1

k
+
k−1∑
j=0

(
k

j

)
Bj+1 Hj

j + 1 (k ≥ 1) .

By Adamchik’s formula (1), this expression may be rewritten as follows:
∞∑
n=2

(−1)n ζ(n)
n+ k

= γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j
(
k

j

)
lnAj (k ≥ 1) .

Then, using the relation (4) and (5), we get the expressions (6) and (7) .
Example 2. We have

J0,1 = −1 ,

J1,1 = 1
2 ln 2π − 5

4 ,

J2,1 = 1
3 ln 2π − 1

6γ −
11
18 + ζ ′(2)

π2 ,

J3,1 = 1
4 ln 2π − 1

4γ −
19
48 + 3

4π2 (ζ(3) + 2ζ ′(2)) .
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4 Further generalization
Using a Fourier transform method, Candelpergher [5, Eq. (7)] recently proved the
following beautiful relation which is a natural generalization of (4).

Proposition 2. for k ≥ 0 and Re(s) > 1
2 , we have

2s−1Jk,1(s) = γ

(k + 1)s −
s

(k + 1)s+1 −
∞∑
n=2

(−1)n ζ(n)
(n+ k)s . (8)

with
Jk,1(s) :=

∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix)s cosh(πx) dx

Applying (8) with k = 0 allows us to deduce the following identity:

Corollary 2.
∞∑
n=2

(−1)n ζ(n)
ns

= γ − s− 1
2

∫ +∞

−∞

ζ(1
2 + ix)

(1
2 + ix)s cosh(πx) dx (Re(s) > 1

2) . (9)

Example 3. For s = 1, the representation ∑∞n=2(−1)n ζ(n)
n

= γ is regained (since
J0,1(1) = −1), and for s = 2, formula (9) gives the relation

∞∑
n=2

(−1)n ζ(n)
n2 = γ − 2− 1

2

∫ +∞

−∞

ζ(1
2 + ix)

(1
2 + ix)2 cosh(πx) dx . (10)
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