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Remarks on a formula of Blagouchine

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract We provide a proof and give some applications of an amazing formula
discovered by Blagouchine.

Keywords Complex integration, generalized Glaisher-Kinkelin constants, infinite
series with zeta values.

1 Introduction
The purpose of this short note is twofold: first, we provide a complete proof of a
complex valued integral formula recently discovered by Blagouchine [2, Theorem
2], and then we relate this integral to some important mathematical constants:
the Euler-Mascheroni constant, the Cohen-Boyadzhiev constant, the generalized
Glaisher-Kinkelin constants (also known as the Bendersky constants) which occur
quite naturally both in mathematical physics [8] and number theory [9, 10]. Let
us note in passing that a special case of Blagouchine’s formula has already been
mentioned (without proof) on page 1836 of [7].

2 Blagouchine’s integral
Proposition 1. For any integer k ≥ 0, let µk be the infinite sum

µk :=
∞∑
n=1

(−1)n+1 ζ(n+ 1)
n+ k

and Ik be the complex valued integral

Ik :=
∫ +∞

−∞

ζ(3
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx .

Then we have the identity
µk = Ik . (1)
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Proof. For k ≥ 0, let us consider the function

fk(z) =
ζ(3

2 + iz)
(1

2 + k + iz) cosh(πz) .

We have cosh(πz) = 0 if and only if z = i/2 + in with n ∈ Z. For n ≥ 1, the
residue of fk at z = i/2− in is

ζ(1 + n)
(n+ k)π sinh(iπ(1

2 − n)) = ζ(1 + n)
(n+ k)iπ sin(π(1

2 − n)) = (−1)nζ(1 + n)
(n+ k)iπ .

We integrate on a closed contour composed of the interval DR = [−R,R] and
the lower semicircle CR of radius R with center at 0. Using the Cauchy residue
theorem, we can then write the following relation:

1
2iπ

∫
CR

fk(z) dz + 1
2iπ

∫
DR

fk(z) dz = −
NR∑
n=1

Res(fk;
i

2 − in) ,

which, from the foregoing, translates into the identity∫
CR

fk(z) dz +
∫
DR

fk(z) dz = 2
NR∑
n=1

(−1)n+1 ζ(1 + n)
(n+ k) . (2)

For z ∈ CR, the parameterization iz = Reit with −π/2 < t < π/2, enables us to
write∣∣∣∣∫

CR

fk(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ +π/2

−π/2

ζ(3
2 +Reit)

(1
2 + k +Reit) cosh(iπReit)Re

it dt

∣∣∣∣∣
≤
∫ +π/2

−π/2

∣∣∣∣∣ ζ(3
2 +Reit)

(1
2 + k +Reit) cosh(iπReit)

∣∣∣∣∣Rdt .
Since 3

2 + Reit is in the half-plane Re(z) > 3/2, its absolute value is bounded by
ζ(3

2), i.e. ∣∣∣∣ζ(3
2 +Reit)

∣∣∣∣ ≤ ζ(3
2) .

Hence, when R increases towards infinity, we have the following limits:

lim
R→∞

∫
CR

fk(z) dz = 0 ,

lim
R→∞

∫
DR

fk(z) dz =
∫ +∞

−∞

ζ(3
2 + ix)

(1
2 + k + ix) cosh(πx) dx = 2 Ik ,

and
lim
R→∞

NR∑
n=1

(−1)n+1 ζ(1 + n)
(n+ k) =

∞∑
n=1

(−1)n+1 ζ(1 + n)
(n+ k) = µk .

This allows us to deduce formula (1) by passing to the limit in (2).
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Remark 1. The constant

µ0 =
∞∑
n=1

(−1)n+1 ζ(n+ 1)
n

=
∞∑
n=1

1
n

ln
(

1 + 1
n

)
= 1.257746 . . .

has been thoroughly studied by Boyadzhiev [4] (see also [6, p. 142]). This constant
is noted M in [4], K in [6], and it also appears as ν−1 in [7]. By a well-known
series representation of Euler’s constant γ, we also have

µ1 =
∞∑
n=2

(−1)n ζ(n)
n

= γ = 0.577215 . . .

Example 1. For k = 0 and 1, formula (1) gives

∫ +∞

−∞

ζ(3
2 + ix)

(1 + 2ix) cosh(πx) dx =
∞∑
n=1

1
n

ln
(

1 + 1
n

)
(3)

and
∫ +∞

−∞

ζ(3
2 + ix)

(3 + 2ix) cosh(πx) dx = γ =
∞∑
n=1

( 1
n
− ln

(
1 + 1

n

))
. (4)

3 Link with the generalized Glaisher-Kinkelin
constants

Definition 1 ([1, 9, 10]). For any integer k ≥ 0, the constant Ak is defined by

ln(Ak) = lim
n→∞

(
n∑

m=1
mk lnm− Pk(n)

)
,

where Pk(n) is given by P0(n) =
(
n+ 1

2

)
lnn− n, and

Pk(n) =
 nk+1

k + 1 + nk

2 + k!
k∑
j=1

nk−jBj+1

(j + 1)!(k − j)!

 lnn

− nk+1

(k + 1)2 + k!
k∑
j=1

nk−jBj+1

(j + 1)!(k − j)!

(1− δk,j)
j∑
i=1

1
k − i+ 1

 (k ≥ 1) ,

where Bj is the jth Bernoulli number and δk,j the Kronecker symbol. The numbers
Ak for k ≥ 0 are the generalized Glaisher-Kinkelin constants (sometimes called
the Bendersky constants). Adamchik [1, Proposition 4] has shown that theses
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constants admit a nice expression in terms of the derivatives of the Riemann zeta
function; we have

Ak = exp
(
HkBk+1

k + 1 − ζ ′(−k)
)

(k ≥ 0) , (5)

where Hk denotes the kth harmonic number

H0 = 0 , Hk =
k∑
j=1

1
j

(k ≥ 1) .

Remark 2. Bendersky [3] introduced for the first time the sequence of numbers
Lk := ln(Ak) without any consideration of their relation with the ζ-function. From
the point of view of the summation of divergent series, the constants Lk should be
interpreted as follows: we have

ln(Ak)−
HkBk+1

k + 1 − 1
(k + 1)2 =

∫ 1

0
ln Γk(x+ 1) dx =

R∑
n≥1

nk lnn (k ≥ 0) ,

where Γk is Bendersky’s generalized gamma function [3], and ∑Rn≥1 n
k lnn is the

sum (in the sense of Ramanujan’s summation method) of the divergent series∑
n≥1 n

k lnn [5].
Remark 3. The following relations are easily deduced by differentiation of Rie-
mann’s functional equation for the zeta function: we have

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k ζ(2k + 1) (k ≥ 1),

and

ζ ′(1− 2k) = (−1)k+1 (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (H2k−1 − γ − ln 2π) (k ≥ 1) .

Hence, it follows from Adamchik’s formula (5) that

A2k−1 = exp
{

(−1)k (2k)!
k(2π)2k ζ

′(2k) + B2k

2k (γ + ln 2π)
}

(k ≥ 1) (6)

and

A2k = exp
{

(−1)k+1 (2k)!
2(2π)2k ζ(2k + 1)

}
(k ≥ 1) . (7)
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Example 2. The constant A0 = exp(−ζ ′(0)) =
√

2π is the Stirling constant,

A1 = exp
( 1

12 − ζ
′(−1)

)
= exp

(
−ζ
′(2)
2π2 + ln(2π) + γ

12

)
is the Glaisher-Kinkelin constant, and

A2 = exp (−ζ ′(−2)) = exp
(
ζ(3)
4π2

)
.

Proposition 2. For any integer k ≥ 1, we have the following identity:

Ik+1 = γ

k + 1 + 1
k
−

k−1∑
j=0

(−1)j
(
k

j

)
ln(Aj) . (8)

Proof. Setting νk = µk+1, we have shown [7, Proposition 1] that

νk = γ

k + 1 +
k−1∑
j=0

(−1)j
(
k

j

)
ζ ′(−j) + Ck

with
Ck = 1

k
+

k−1∑
j=1

(
k

j

)
Bj+1 Hj

j + 1 .

Thus, formula (8) is easily deduced from this relation by means of formula (5) and
Proposition 1.
Example 3. For small values of k, formula (8) translates into the following iden-
tities:

I2 =
∫ +∞

−∞

ζ(3
2 + ix)

(5 + 2ix) cosh(πx) dx = 1
2γ + 1− 1

2 ln(2π) (9)

I3 =
∫ +∞

−∞

ζ(3
2 + ix)

(7 + 2ix) cosh(πx) dx = 1
2γ + 1

2 −
1
3 ln(2π)− ζ ′(2)

π2 (10)

I4 =
∫ +∞

−∞

ζ(3
2 + ix)

(9 + 2ix) cosh(πx) dx = 1
2γ + 1

3 −
1
4 ln(2π)− 3ζ ′(2)

2π2 −
3ζ(3)
4π2 (11)

In the general case, we obtain the following expression which, by means of
formulas (6)–(7), is equivalent to (8):
Corollary 1. For any integer k ≥ 4, we have

Ik =
∫ +∞

−∞

ζ(3
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx = 1
2γ + 1

k − 1 −
1
k

ln(2π)

+
[ k−1

2 ]∑
j=1

(−1)j
(
k − 1
2j − 1

)
(2j)!
j(2π)2j ζ

′(2j) +
[ k

2 ]−1∑
j=1

(−1)j
(
k − 1

2j

)
(2j)!

2(2π)2j ζ(2j + 1) . (12)
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Remark 4. Blagouchine [2] also established the relation

Ik+1 = γ

k + 1 −
1

(k + 1)2 −
∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx (k ≥ 0).

This allows us to deduce from (8) the following identity:
k−1∑
j=0

(−1)j
(
k

j

)
ln(Aj) = 1

k
+ 1

(k + 1)2 +
∫ +∞

−∞

ζ(1
2 + ix)

(2k + 1 + 2ix) cosh(πx) dx (k ≥ 1).

(13)
In particular,

ln(
√

2π) = 5
4 +

∫ +∞

−∞

ζ(1
2 + ix)

(3 + 2ix) cosh(πx) dx .
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