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Using the Ramanujan summation method, we derive some unusual formulas for a class of Euler sums (including divergent Euler sums) similar to the classical relations due to Euler.

Introduction

The study of Euler sums has a fairly long history dating back to the middle of the 18th century. In response to a letter from Goldbach dated from december 1742, Euler considered infinite sums of the form

S p,q = ∞ n=1 H (p) n n q ,
where p and q are positive integers, and H (p) n = n k=1 1 k p are generalized harmonic numbers. For p = 1, the generalized harmonic numbers reduce to classical harmonic numbers H n = H (1) n . The importance of harmonic numbers comes from the fact that they appear (sometimes quite unexpectedly) in different branches of number theory and combinatorics. In our times, the sums S p,q are called the linear Euler sums. Euler discovered that for all pairs (p, q) with p = 1, or p = q, or p + q odd, these sums have expressions in terms of zeta values (i.e. the values of the Riemann zeta function ζ(s) = n≥1 n -s at positive integers), a remarkable result that will be also found and completed later by Nielsen [11, pp. 47-51]. Among the beautiful formulas discovered by Euler [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF], the following two are particularly noteworthy:

• Euler's reciprocity formula: S p,q + S q,p = ζ(p)ζ(q) + ζ(p + q) (p, q ≥ 2), called "prima methodus", that allows to express S q,p as a function of S p,q and vice versa. In the particular case p = q, it results from this formula that

S p,p = 1 2 (ζ(p)) 2 + ζ(2p) ; • Euler's formula: S 1,2 = 2ζ(3), and 
2S 1,p = (p + 2)ζ(p + 1) - p-2 j=1 ζ(p -j)ζ(j + 1) (p > 2),
that Euler derives from his "secunda methodus", this famous formula will be several times rediscovered throughout the 20th century (see [START_REF] Sitaramachandrarao | A formula of S[END_REF]Remark 3.1] for historical details).

Ramanujan's method of summation of series appears in Chapter VI of Ramanujan's second notebook [START_REF] Ramanujan | Manuscript Book 2 of Srinivasa Ramanujan[END_REF]. Because of the ambiguities (observed by Hardy in Chapter XIII of his classical treatise on divergent series) contained in the definition of the "constant of a series" that made its use very tricky, Ramanujan's method, based on the Euler-Maclaurin summation formula, had fallen into neglect. This method has known a revival of interest at the end of the 20th century when a clear and rigorous definition of the sum of a series in the sense of Ramanujan summation was given by Candelpergher et al. [START_REF] Candelpergher | La sommation de Ramanujan[END_REF] at the same time as the link with the usual summation was completely clarified. The reader will find in the recent monograph [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] a masterful synthesis of main definitions, fundamental properties, and scope of application of the Ramanujan summation.

Ramanujan's method is particulary well suited to linear Euler sums because it allows to easily handle both the convergence case and the divergence case; however this process of regularization is unusual and remains little known. In the remainder of this article, we consider the sum in the sense of Ramanujan summation corresponding to S p,q . To avoid confusion, this sum is noted R p,q , where the letter R is reminiscent of Ramanujan summation (see Definition 1). A complete evaluation of the sums R 1,p , R p,1 , and R p,p is then given for each positive integer p. This allows us to provide a number of relations similar (though more complicated) to the classical relations mentioned above (see Propositions 1 to 4). Several interesting applications of these formulas are given in [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF] and [START_REF] Coppo | New identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF].

Ramanujan summation of Euler sums

Let us recall that the generalized harmonic numbers H (p) n are defined for integers n ≥ 1 and p ≥ 1 by

H (p) n = n k=1 1 k p .
When p = 1, they reduce to classical harmonic numbers denoted H n = H (1) n . It is convenient to express them in the following form:

H (p) n = (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) + ζ(p) (p ≥ 2) ,
and

H n = ψ(n + 1) + γ ,
where

ψ(z) = Γ (z) Γ(z) is the digamma function and γ = -ψ(1) is the Euler constant [6, p. 95].
Definition 1. For any positive integer p, the function s → Z(p, s) is defined as the analytic continuation of the function defined in the half-plane Re(s) > 1 by

Z(p, s) = ∞ n=1 H (p) n n -s - ∞ 1 ψ p (x) x -s dx ,
where ψ 1 (x) = ψ(x + 1) + γ, and

ψ p (x) = (-1) p-1 (p -1)! ∂ p-1 ψ(x + 1) + ζ(p) (p ≥ 2) .
It follows from [2, Thm. 9] that this function can be analytically continued as an entire function in the whole C. For each integer q ∈ Z, R p,q is defined by

R p,q := Z(p, q) .
The value R p,q is thus well-defined and may be interpreted as the R-sum (i.e. the sum in the sense of Ramanujan summation) of the (possibly divergent) series n≥1 H (p) n n -q . Therefore, with the notations of [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF], R p,q is nothing else than

R n≥1 H (p) n n q . Example 1 (values of R p,q at q = 0). It results from [2, p. 44] that R p,0 =        3 2 γ -1 2 ln(2π) + 1 2 if p = 1 , 3 2 ζ(2) -2 if p = 2 , 3 2 ζ(p) -p-2 p-1 ζ(p -1) -1 p-1 if p > 2 .
2 Evaluation of the sum R 1,p Let ζ H be the harmonic zeta function [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF][START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF] defined for Re(s) > 1 by

ζ H (s) = ∞ n=1 H n n -s .
According to Definition 1, Z(1, s) is closely linked to ζ H (s) through the relation

Z(1, s) = ζ H (s) - ∞ 1 x -s (ψ(x + 1) + γ) dx (Re(s) > 1) .
In particular, since

ζ H (p) = S 1,p (p ≥ 2) , it follows that R 1,p := Z(1, p) = S 1,p - ∞ 1 ψ(x + 1) + γ x p dx (p ≥ 2) . ( 1 
)
Definition 2. For any positive integer p, let τ p be the real constant defined by the series representation

τ p := ∞ k=1 (-1) k+p ζ(k + p) k . ( 2 
)
Remark 1. The sequence {τ p } p appears in [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF] and [START_REF] Dil | On values of the Riemann zeta function at positive integers[END_REF]. The constant τ 1 has been thoroughly studied by Boyadzhiev [START_REF] Boyadzhiev | A special constant and series with zeta values and harmonic numbers[END_REF] (see also [6, Ex. 92, p. 142]).

To give a better expression of the R-sum R 1,p , we first prove the following lemma:

Lemma 1. For p > 2, we have the relation

(-1) p ∞ 1 ψ(x + 1) + γ x p dx = p-2 j=1 (-1) j j ζ(p -j) -ζ (p) -(-1) p τ p . ( 3 
)
For p = 2, this relation reduces to

∞ 1 ψ(x + 1) + γ x 2 dx = -ζ (2) -τ 2 . ( 4 
)
For p = 1, we have the identity

1 0 ψ(x + 1) + γ x dx = τ 1 .
Proof. For p ≥ 2, the convergent series n≥1 ln(n+1) n p may be splitted into the two series

∞ n=1 ln(n + 1) n p = ∞ n=1 ln(n) n p + ∞ n=1 1 n p ln 1 + 1 n .
The well-known expansion of ln(1 + 1/n) in power series leads to the identity

∞ n=1 1 n p ln 1 + 1 n = ∞ n=1 1 n p ∞ k=1 (-1) k-1 k 1 n k = (-1) p-1 τ p , then it follows that ∞ n=1 ln(n + 1) n p = -ζ (p) -(-1) p τ p . ( 5 
)
On the other side, the partial fraction expansion

(-1) p x p-1 (x + y) = p-2 j=0 (-1) j x j+1 y p-1-j - 1 y p-1 (x + y) (p ≥ 2),
leads, after integration, to the formula

(-1) p ∞ 1 dx x p-1 (x + n) = p-2 j=1 (-1) j j n p-1-j + ln(n + 1) n p-1 (p > 2) ,
valid for any positive integer n. After division by n, it can be rewritten as ln(n + 1)

n p = p-2 j=1 (-1) j-1 j n p-j + (-1) p ∞ 1 x x p n(x + n) dx .
By summing this identity, we then obtain

∞ n=1 ln(n + 1) n p = p-2 j=1 (-1) j-1 j ζ(p-j)+(-1) p ∞ 1 ψ(x + 1) + γ x p dx (p > 2) . (6)
Hence, formula (3) follows from ( 5) and ( 6) by substitution. For p = 2, it reduces to

∞ 1 ψ(x + 1) + γ x 2 dx = ∞ n=1 ln(n + 1) n 2 = -ζ (2) -τ 2 .
In the case p = 1, the well-known Taylor expansion

ψ(x + 1) + γ = ∞ n=1 (-1) n-1 ζ(n + 1)x n (|x| < 1)
gives (after division of both sides by x and integration from 0 to 1)

1 0 ψ(x + 1) + γ x dx = ∞ n=1 (-1) n-1 ζ(n + 1) n = τ 1 .
Proposition 1. For any positive integer p > 2, we have

R 1,p = S 1,p - p-2 j=1 (-1) p-j j ζ(p -j) + (-1) p ζ (p) + τ p , ( 7 
)
where τ p is defined by formula [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. For p = 2, it reduces to

R 1,2 = S 1,2 + ζ (2) + τ 2 = 2ζ(3) + ζ (2) + τ 2 .
Moreover, for p ≥ 2, we have the formula

R 1,2p = (p+1)ζ(2p+1)- p-1 j=1 ζ(2p-j)ζ(j+1)- 2p-2 j=1 (-1) j j ζ(2p-j)+ζ (2p)+τ 2p . ( 8 
)
Proof. On one side, by formula (1), we have the relation

R 1,p = S 1,p - ∞ 1 ψ(x + 1) + γ x p dx ,
and, on the other side, by Lemma 1, we have

∞ 1 ψ(x + 1) + γ x p dx = -(-1) p ζ (p) -τ p + p-2 j=1 (-1) p-j j ζ(p -j) .
Hence, formula ( 7) is immediately deduced from (1) and (3) by substitution, and (8) results from [START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF] and the following expression of S 1,2p given by Euler's formula [13, Thm. 3.1]:

S 1,2p = (p + 1)ζ(2p + 1) - p-1 j=1 ζ(2p -j)ζ(j + 1) (p > 1) . ( 9 
) Example 2. R 1,2 = 2ζ(3) + ζ (2) + τ 2 , R 1,4 = 3ζ(5) -ζ(3)ζ(2) + ζ(3) - 1 2 ζ(2) + ζ (4) + τ 4 , R 1,6 = 4ζ(7) -ζ(3)ζ(4) -ζ(2)ζ(5) + ζ(5) - 1 2 ζ(4) + 1 3 ζ(3) - 1 4 ζ(2) + ζ (6) + τ 6 .
Remark 2. We point out here the analogy between our formula for R 1,2p and the "dual" formula

R 1,-2p = 1 -2p 2 ζ(1 -2p) + ζ (-2p) + ν 2p (p ≥ 1)
given in [7, Eq. ( 8)], where ν p is defined by the series representation

ν p = ∞ k=2 (-1) k ζ(k) k + p (p ≥ 1) .

Evaluation of the sum R p,1

We now give an evaluation of the "reciprocal" sum R p,1 corresponding to the divergent Euler sum S p,1 .

Definition 3. Let σ p defined by σ 2 = 1, and

σ p = 1 + (-1) p p + p-2 j=1 (-1) j ζ(p -j) (j -1)!(p -1 -j)! (p -1)! - 1 j (p > 2) . ( 10 
)
Example 3. The first values of σ p are

σ 2 = 1 , σ 3 = 1 2 ζ(2) , σ 4 = 2 3 ζ(3) - 1 3 ζ(2) + 1 2 , σ 5 = 3 4 ζ(4) - 5 12 ζ(3) + 1 4 ζ(2) , σ 6 = 4 5 ζ(5) - 9 20 ζ(4) + 9 10 ζ(3) - 1 5 ζ(2) + 1 3 .
Remark 3. Another interesting expression of σ p is given by [3, Eq. ( 27)]. Let

Z(i, j) = ∞ n=1 1 n i (n + 1) j (i, j ≥ 1) .
The partial fraction expansion of

1 n i (n+1) j shows that Z(i, j
) is a Z-linear combination of zeta values and integers, and it results from [3, Eq. ( 27)] that

σ p = i+j=p 1 j Z(i, j) (p ≥ 2) .
Proposition 2. For any positive integer p ≥ 2, we have

R p,1 = γζ(p) + ζ(p + 1) -S 1,p -σ p -ζ (p) -(-1) p τ p , ( 11 
)
where τ p and σ p are respectively defined by formulas (2) and [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF]. Moreover, for p ≥ 2, we have the formula

R 2p,1 = γζ(2p) -p ζ(2p + 1) + p-1 j=1 ζ(2p -j)ζ(j + 1) -σ 2p -ζ (2p) -τ 2p . ( 12 
)
Proof. By summing (in the sense of Ramanujan summation) the following equations :

H (p) n n - 1 n ζ(p) = - 1 n ∞ m=n+1 1 m p = 1 n (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) , we get R n≥1 H (p) n n - ζ(p) n = - R n≥1 1 n ∞ m=n+1 1 m p = R n≥1 1 n (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) = - +∞ n=1 1 n +∞ m=n+1 1 m p + (-1) p (p -1)! ∞ 1 ∂ p-1 ψ(x + 1) x dx ,
where the symbol R n≥1 denotes the R-sum of the series (see [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] for a precise definition). Since

∞ n=1 1 n ∞ m=n+1 1 m p = ∞ n=1 H n n p -ζ(p + 1) , this can be rewritten R n≥1 H (p) n n - ζ(p) n = ζ(p + 1) - ∞ n=1 H n n p + (-1) p (p -1)! ∞ 1 ∂ p-1 ψ(x + 1) x dx .
Thus we have

R n≥1 H (p) n n = γζ(p) + ζ(p + 1) - ∞ n=1 H n n p + (-1) p (p -1)! ∞ 1 ∂ p-1 ψ(x + 1) x dx ,
which, with our notations, translates into

R p,1 = γζ(p) + ζ(p + 1) -S 1,p + (-1) p (p -1)! ∞ 1 ∂ p-1 ψ(x + 1) x dx . ( 13 
)
The integral in the right member of ( 13) is evaluated by performing p-1 successive integrations by parts. When p = 2, this is just

∞ 1 ∂ψ(x + 1) x dx = ∞ 1 ψ(x + 1) + γ x 2 dx -1 , which, by (4), is -ζ (2) -τ 2 -1.
Hence, by [START_REF] Sitaramachandrarao | A formula of S[END_REF], we have

R 2,1 = γζ(2) + ζ(3) -S 1,2 -σ 2 -ζ (2) -τ 2 .
We now assume that p > 2. Under this assumption, we have the identity

∂ p-k ψ(2) = (-1) p-k (p -k)! + (-1) p-k+1 (p -k)!ζ(p -k + 1) (p -k ≥ 1)
[6, Prop. 9.6.41] from which results the relation

(-1) p (p -1)! ∞ 1 ∂ p-1 ψ(x + 1) x dx = (-1) p ∞ 1 ψ(x + 1) + γ x p dx + 1 (p -1)! p-3 k=0 (-1) k k!(p -k -2)! ζ(p -k -1) - 1 (p -1)! p-2 k=0 (-1) k k!(p -k -2)! .
In this expression, the last term can be simplified by means of the formula

1 (p -1)! p-2 k=0 (-1) k k!(p -k -2)! = 1 p -1 p-2 k=0 (-1) k p-2 k = 1 + (-1) p p
[14, Eq. ( 14)]. After reindexation, we can also write

1 (p -1)! p-3 k=0 (-1) k k!(p-k-2)! ζ(p-k-1) = - p-2 j=1 (-1) j (j -1)!(p -j -1)! (p -1)! ζ(p-j) .
Moreover, by (3), we have

(-1) p ∞ 1 ψ(x + 1) + γ x p dx = p-2 j=1 (-1) j j ζ(p -j) -ζ (p) -(-1) p τ p .
Thanks to these simplifications, formula [START_REF] Sitaramachandrarao | A formula of S[END_REF] can then be rewritten

R p,1 = γζ(p) + ζ(p + 1) -S 1,p -ζ (p) -(-1) p τ p -σ p , with σ p = 1 + (-1) p p + p-2 j=1 (-1) j (j -1)!(p -j -1)! (p -1)! ζ(p -j) - p-2 j=1 (-1) j j ζ(p -j) .
This completes the demonstration of the expected formula [START_REF] Nielsen | Handbuch der Theorie der Gamma Funktion[END_REF]. Formula ( 12) is immediately deduced from (11) and Euler's formula [START_REF] Dil | On values of the Riemann zeta function at positive integers[END_REF]. Since (ψ(x) + γ)

1 x + 1 x 2 = ψ(x + 1) + γ x ,
we deduce the relation

2 1 0 ψ(x + 1) + γ x dx = 2R 1,1 + ζ(2) -γ 2 -2γ 1 .
Applying Lemma 1 with p = 1, we obtain formula ( 14) after division by 2.

The case p > 1

For p ≥ 2, the R-sums R p,p may be easily evaluated by means of the relation

R p,p = S p,p - ∞ 1 ψ p (x) x p dx , with ψ p (x) = (-1) p-1 (p -1)! ∂ p-1 ψ(x + 1) + ζ(p)
which results from Definition 1, and the expression 

S p,p = 1 2 ζ(p)
R 2,2 = 7 4 ζ(4) + ζ(2) + 2ζ (3) -2τ 3 -1 , (15) 
and the general formula is given by Thus, for p > 1, formula (17) follows immediately by replacing σ 2p by its expression given by [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF] and is extendable to the case p = 1 by setting A 0 = 0.

R p,p = 1 2 ζ(p) 2 + 1 2 ζ(2p) - ζ(p) p -1 + (-1) p 2p -2 p -1   2p-3 j=1 ( - 
Example 5. We have the following relations: 

The odd case

1 ) j+1 j ζ(2p - 1 -Proposition 3 . 2 j=0(- 1 )

 11321 j) + ζ (2p -1) -τ 2p-1 k (p -k)!(p + k -3)! ζ(p + 1 -k) k (p -k)!(p + k -3)! (p ≥ 3) . (16) For any integer p ≥ 1, we have R 1,2p + R 2p,1 = γζ(2p) + ζ(2p + 1) -2pj A j,p ζ(2p -j) -1 p (17)with A 0,p = 0, andA j,p = (j -1)!(2p -1 -j)! (2p -1)! (j ≥ 1) .Proof. By adding identities (8) and (12), we get for p ≥ 2,R 1,2p + R 2p,1 = γζ(2p) + ζ(2p + 1) -2p-2j=1(-1) j j ζ(2p -j) -σ 2p .

R 1 , 2 +R 1 , 4 +R 1 , 6 +

 121416 R 2,1 = γζ(2) + ζ(3) -1 , R 4,1 = γζ(4) + ζ(5) R 6,1 = γζ(6) + ζ[START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF] 

Proposition 4 . 1 = 3 j=1(- 1 )

 4131 For any integer p ≥ 2, we haveR 1,2p-1 + R 2p-1,γζ(2p -1) + ζ(2p) -2pj C j,p ζ(2p -1 -j) -2ζ (2p -1) + 2τ 2p-1 (18) with C j,p = (j -1)!(2p -2 -j)! (2p -2)! -2 j (j ≥ 1) .

Remark 4. Formula (11) plays a crucial role in the proof of [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF]Prop. 6].

4 Values of R p,p

The case p = 1

The following formula [2, Eq. (3.23)] allows us to extend formula [START_REF] Nielsen | Handbuch der Theorie der Gamma Funktion[END_REF] to the case p = 1. We have

where γ 1 is the first Stieltjes constant and τ 1 is the constant defined by [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. A new direct proof of this formula is given below.

Proof of formula [START_REF] Sury | Identities involving reciprocals of binomial coefficients[END_REF]. The relation

Moreover, from [6, p. 145], we have

Subtracting these two expressions, we obtain the following

Proof. By adding identities ( 7) and ( 11), we get

Hence we have the following relation

from which formula ( 18) is derived by replacing σ 2p-1 by its expression given by [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF]. Note that, in the odd case, the constant term of σ 2p-1 is null.

Example 6. We have the following relations: -2ζ (7) + 2τ 7 .

Remark 5.

a) It should be noted that, in constrast to the even case, the reciprocity relation between R 1,p and R p,1 when p is odd involves the constants ζ (p) and τ p . b) Another type of reciprocity formula linking R p,q to R q,p is given by [2, Eq.

(2.10)]. If q = p + 1, we have the following nice formula:

Moreover, this relation extends to the case p = 1 for which the formula

is regained. Unfortunately, no general "simple" reciprocity formula, valid for any p and q, is known.