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Abstract In this article, we present several series identities linking together Cauchy
numbers (also known as Bernoulli numbers of the second kind), special values of
the Riemann zeta function and its derivative, and a generalization of the Roman
harmonic numbers.

Keywords Cauchy numbers, Roman harmonic numbers, binomial identities, series
with zeta values.

Mathematics Subject Classification (2020) 11B75, 11M06, 40G99.

1 Introduction
Several years ago, we proposed a method based on the Ramanujan summation of
series which enabled us to generate a number of identities involving the Cauchy
numbers together with the harmonic numbers and the values of the Riemann zeta
function at positive integers [4]. Thanks to new formulas recently proved in our
last paper [6], we are now in a position to complete these results by giving new
closed form evaluations of the same kind (see Propositions 1 and 2). In order
to do this, we make use of a quite natural generalization of Roman harmonic
numbers (see Definition 2) which have been introduced in [5]. A notable novelty is
the involvement in our formulas of certain alternating series with zeta values (see
Definition 3) that also appear in [1, 6, 7]. In the aim to help the reader to find his
way among these various formulas, a summary of the most noteworthy identities
is given in the last section of the article.
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2 Preliminaries : reminder of the main defini-
tions and results

We first recall various definitions and results that appeared in previous work,
refering to the indicated references for the proof of these results.

2.1 Harmonic numbers and harmonic sums
Definition 1. The generalized harmonic numbersH(r)

n are defined for non-negative
integers n and r by

H
(r)
0 = 0 and H(r)

n =
n∑

j=1

1
jr

for n ≥ 1 . (1)

For r = 1, they reduce to classical harmonic numbers Hn = H(1)
n . The sums

Sr,p =
∞∑

n=1

H(r)
n

np

for positive integers p ≥ 2 are called linear Euler sums. We recall Euler’s classical
formula for S1,p [9, Eq. (3.6)]:

2S1,p = (p+ 2)ζ(p+ 1)−
p−2∑
j=1

ζ(p− j)ζ(j + 1) (p ≥ 2) .

Definition 2 ([5]). The harmonic sums H(r)
n,k are defined for non-negative integers

n, r and k with n ≥ 1, r ≥ 1 and k ≥ 0 by

H
(r)
n,0 = 1

nr−1 and H
(r)
n,k =

∑
n≥j1≥···≥jk≥1

1
j1 j2 · · · jr

k

for k ≥ 1 . (2)

In particular, for k = 1, they reduce to classical generalized harmonic numbers

H
(r)
n,1 = H(r)

n ,

and for k = 2, they admit the expression

H
(r)
n,2 =

n∑
j=1

H
(r)
j

j
.
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Remark 1. For r = 1, the harmonic sums H(1)
n,k, that will be noted Hn,k in the

remainder of the article, are nothing else than the ordinary Roman harmonic
numbers [8]. In particular, for the first ones, we have

Hn,0 = 1 , Hn,1 = Hn , Hn,2 =
n∑

j=1

Hj

j
, etc.

In the general case, it can be shown [4, Eq. (18)], [8, Eq. (29)] that

Hn,k = Pk

(
Hn, . . . , H

(k)
n

)
,

where Pk(x1, . . . , xk) are the modified Bell polynomials [4, Definition 2].

Example 1.

Hn,2 =
n∑

j=1

Hj

j
= 1

2(Hn)2 + 1
2H

(2)
n . (3)

The harmonic sums H(r)
n,k verify the following identity [5, Eq. (4.7)]:

H
(r)
n,k =

n∑
j=1

(−1)j−1
(
n

j

)
Hj,r−1

jk
(k ≥ 1) . (4)

Example 2. For r = 1, formula (4) reduces to

Hn,k =
n∑

j=1
(−1)j−1

(
n

j

)
1
jk

(5)

which is a classical property of Roman harmonic numbers [8, Eq. (20)]. For r = 2,
formula (4) translates into

H
(2)
n,k =

n∑
j=1

(−1)j−1
(
n

j

)
Hj

jk
. (6)

By inverse binomial transform1, formula (4) also admits a reciprocal:

Hn,r−1

nk
=

n∑
j=1

(−1)j−1
(
n

j

)
H

(r)
j,k (k ≥ 1) . (7)

1. If b(n) = 1
n

∑n
j=1(−1)j−1(n

j

)
j a(j), then a(n) = 1

n

∑n
j=1(−1)j−1(n

j

)
j b(j) [5, Definition 5

and Corollary 1].
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2.2 Alternating series with zeta values
Definition 3 ([1, 6, 7]). The numbers τp are defined for all positive integers p by
the series representation

τp =
∞∑

k=1
(−1)k+p ζ(k + p)

k
. (8)

For p ≥ 2, they verify the following identity [1, Proposition 7], [6, Lemma 1]:
∞∑

n=1

ln(n+ 1)
np

= −ζ ′(p)− (−1)p τp . (9)

For p = 1, we have
τ1 =

∫ 1

0

ψ(x+ 1) + γ

x
dx , (10)

where ψ is the digamma function and γ = −ψ(1) is Euler’s constant.

2.3 Cauchy numbers
Definition 4 ([2, 4]). The Cauchy numbers cn are defined for n ≥ 1 by

cn =
∫ 1

0
x(x− 1) · · · (x− n+ 1) dx .

The Cauchy numbers alternate in sign. As in [4], we introduce the sequence {λn}n

of non-alternating Cauchy numbers defined by

λn = (−1)n−1cn (n ≥ 1) .

The first terms of the sequence are the following:

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.

We recall the transformation formula [3, Theorem 18] that links Cauchy num-
bers to the Ramanujan summation of series: if a is a function analytic in the
half-plane P = {Re(z) > 0} such that there exists a constant C > 0 with

|a(z)| < C 2|z| for all z ∈ P ,

then
∞∑

n=1

λn

n!n

n∑
j=1

(−1)j−1
(
n

j

)
j a(j) =

R∑
n≥1

a(n) (11)

where ∑Rn≥1 denotes the R-sum of the series i.e. the sum of the series in the sense
of Ramanujan’s summation method [3, 4].
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3 Series with Cauchy numbers and harmonic sums
A reinterpretation of [6, Propositions 1 and 2] via the transformation formula (11)
now allows us to establish the following propositions:

Proposition 1. For any integer p ≥ 1, we have

a)
∞∑

n=1

λn

n!nHn,p−1 =

γ , if p = 1;
ζ(p)− 1

p−1 , otherwise.
(12)

b)

∞∑
n=1

λn

n!nH
(2)
n,p−1 =


1
2γ

2 − 1
2ζ(2) + γ1 + τ1 , if p = 1;

S1,p −
∑p−2

j=1
(−1)p−j

j
ζ(p− j) + (−1)pζ ′(p) + τp , otherwise

(13)
with γ1 the first Stieltjes constant.

Proof. It follows from formulas (4) and (11) that
∞∑

n=1

λn

n!nH
(r)
n,k =

R∑
n≥1

Hn,r−1

nk+1 (k ≥ 0, r ≥ 1).

Specializing this identity with k = p− 1, we obtain

a) for r = 1,
∞∑

n=1

λn

n!nHn,p−1 =
R∑

n≥1

1
np
,

b) for r = 2,
∞∑

n=1

λn

n!nH
(2)
n,p−1 =

R∑
n≥1

Hn

np
.

Hence, formula (12) results from [3, Eqs. (1.22) and (1.24)]) while formula (13)
results from [6, Proposition 1 and Eq. (13)].

Example 3. Applied to small values of p, formulas (12) and (13) translate into
the following identities:

1) For p = 1,
∞∑

n=1

λn

n!n = γ , (14)
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and
∞∑

n=1

λn

n!n2 = 1
2γ

2 − 1
2ζ(2) + γ1 + τ1 . (15)

2) For p = 2,
∞∑

n=1

λn

n!nHn = ζ(2)− 1 , (16)

and
∞∑

n=1

λn

n!nH
(2)
n = 2ζ(3) + ζ ′(2) + τ2 . (17)

3) For p = 3,
∞∑

n=1

λn

n!n

n∑
j=1

Hj

j
= ζ(3)− 1

2 , (18)

and
∞∑

n=1

λn

n!n

n∑
j=1

H
(2)
j

j
= 5

4ζ(4)− ζ(2)− ζ ′(3) + τ3 . (19)

Remark 2. a) Formulas (14) and (16) are well-known classical series represen-
tations of γ and ζ(2) respectively (cf. [2, 3, 4]). Formula (15) appears in [3,
p. 133] by combining Eqs. (3.23) and (4.29).

b) Thanks to the relation (3), formula (18) can be rewritten under the following
equivalent form:

∞∑
n=1

λn

n!n(Hn)2 +
∞∑

n=1

λn

n!nH
(2)
n = 2ζ(3)− 1 (20)

which coincides with [2, Eq. (9)]. Subtracting (17) from (20) enables to
deduce yet another interesting identity:

∞∑
n=1

λn

n!n(Hn)2 = −ζ ′(2)− τ2 − 1 . (21)

c) By means of [6, Eq. (14)] we can also easily prove the following formula dual
of (19):

∞∑
n=1

λn

n!n

n∑
j=1

Hj

j2 = 7
4ζ(4) + ζ(2) + 2ζ ′(3)− 2τ3 − 1 . (22)
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The proposition below is a more convenient reformulation of [4, Theorem 10].

Proposition 2. For any integer p ≥ 2, we have
∞∑

n=1

λn

n!n2Hn,p−1 = γζ(p) + ζ(p+ 1)− S1,p − ζ ′(p)− (−1)pτp − σp (23)

with σ2 = 1, and

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)jζ(p− j)
[

(j − 1)!(p− 1− j)!
(p− 1)! − 1

j

]
for p ≥ 3.

Proof. It follows from formulas (7) and (11) that

∞∑
n=1

λn

n!nk+1Hn,r−1 =
R∑

n≥1

H
(r)
n,k

n
(k ≥ 0, r ≥ 1).

Specializing this identity with k = 1 and r = p, we get
∞∑

n=1

λn

n!n2Hn,p−1 =
R∑

n≥1

H(p)
n

n
.

Formula (23) then results from [6, Proposition 2].

Example 4. Applied to small values of p, formula (23) translates into the following
identities:

a) For p = 2,
∞∑

n=1

λn

n!n2Hn = γζ(2)− ζ(3)− ζ ′(2)− τ2 − 1 . (24)

Subtracting (24) from (21) and replacing Hn− 1
n
by Hn−1 inside the expres-

sion, we obtain the surprisingly simple relation
∞∑

n=1

λn

n!nHn Hn−1 = ζ(3)− γζ(2) . (25)

b) For p = 3,
∞∑

n=1

λn

n!n2

n∑
j=1

Hj

j
= γζ(3)− 1

4ζ(4)− 1
2ζ(2)− ζ ′(3) + τ3 . (26)

Remark 3. Replacing n2 by n(n− 1) in (24) leads to the simpler formula
∞∑

n=2

λn Hn

n!n(n− 1) = 1
2 ln(2π)− 3

2γ −
3
2ζ(2) + 5

2 .
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4 Summary of main formulas
The most noteworthy identities are listed below.

∞∑
n=1

λn

n!n = γ , (A)

∞∑
n=1

λn

n!nHn = π2

6 − 1 , (B)

∞∑
n=1

λn

n!nHn Hn−1 = ζ(3)− γπ
2

6 , (C)

∞∑
n=1

λn

n!n
{
(Hn)2 +H(2)

n

}
= 2ζ(3)− 1 , (D)

∞∑
n=1

λn

n!nH
(2)
n = 2ζ(3) + ζ ′(2) + τ2 , (E)

∞∑
n=1

λn

n!n(Hn)2 = −ζ ′(2)− τ2 − 1 , (F)

∞∑
n=1

λn

n!n2 = 1
2γ

2 − π2

12 + γ1 + τ1 , (G)

∞∑
n=1

λn

n!n2Hn = γ
π2

6 − ζ(3)− ζ ′(2)− τ2 − 1 , (H)

∞∑
n=1

λn

n!n2

{
(Hn)2 +H(2)

n

}
= 2γζ(3)− π4

180 −
π2

6 − 2ζ ′(3) + 2τ3 , (I)

∞∑
n=1

λn

n!n

n∑
j=1

H
(2)
j

j
= π4

72 −
π2

6 − ζ
′(3) + τ3 , (J)

∞∑
n=1

λn

n!n

n∑
j=1

Hj

j2 = 7π4

360 + π2

6 + 2ζ ′(3)− 2τ3 − 1 . (K)
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