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New identities involving Cauchy numbers,
harmonic numbers and zeta values

Marc-Antoine Coppo∗

Université Côte d’Azur, CNRS, LJAD (UMR 7351), Nice, France

Abstract. In this article, we present a number of series identities involving Cauchy
numbers (also known as Bernoulli numbers of the second kind) and certain har-
monic sums which generalize Roman harmonic numbers.

Introduction
Several years ago, we proposed in [3] a method based on the Ramanujan summa-
tion of series which enabled us to generate a large number of identities involving
Cauchy numbers, harmonic numbers and zeta values. By means of new formulas
recently proved in our last paper [6], we complete these results by showing new
identities of the same kind while, at the same time, reinterpreting those already
known (see Propositions 1 and 2). A noteworthy novelty is the appearance in our
closed form evaluations of certain interesting alternating series with zeta values
(see Definition 3) which were recently introduced in [5] and thoroughly studied in
[7]. We also introduce a rather natural generalization of Roman harmonic numbers
(see Definition 2).

1 Preliminaries : reminder of the main defini-
tions and results

We first recall a number of definitions and results that appear in previous work.
∗Corresponding author. Email address: coppo@unice.fr



1.1 Harmonic numbers and harmonic sums
Definition 1. The generalized harmonic numbers H(r)

n are defined for all natural
numbers n and r by

H
(r)
0 = 0 and H(r)

n =
n∑

j=1

1
jr

for n ≥ 1 . (1)

For r = 1, they reduce to classical harmonic numbers Hn = H(1)
n . The sums

Sp,q =
∞∑

n=1

H(p)
n

nq

for positive integers p and q with q ≥ 2 are called linear Euler sums. We have the
classical Euler’s formula (cf. [6, 9]):

2S1,p = (p+ 2)ζ(p+ 1)−
p−2∑
j=1

ζ(p− j)ζ(j + 1) (p ≥ 2) .

Definition 2 (cf. [4]). The harmonic sumsH(r)
n,k are defined for all natural numbers

n, r and k with n ≥ 1, r ≥ 1 and k ≥ 0 by

H
(r)
n,0 = 1

nr−1 and H
(r)
n,k =

∑
n≥j1≥···≥jk≥1

1
j1 j2 · · · jr

k

for k ≥ 1 . (2)

In particular, for k = 1, they reduce to classical generalized harmonic numbers

H
(r)
n,1 = H(r)

n ,

and for k = 2, we have

H
(r)
n,2 =

n∑
j=1

H
(r)
j

j
.

Remark 1. For r = 1, the harmonic sums Hn,k := H
(1)
n,k are nothing else than the

ordinary Roman harmonic numbers c(k)
n (cf. [8]). In particular, we have

Hn,0 = 1 , Hn,1 = Hn , Hn,2 =
n∑

j=1

Hj

j
, etc.

In the general case, it can be shown (cf. [3, Eq. (18)] and [8, Eq. (29)]) that

Hn,k = Pk

(
Hn, . . . , H

(k)
n

)
where Pk(x1, . . . , xk) are the modified Bell polynomials (cf. [3, Definition 2]).
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The harmonic sums H(r)
n,k verify the following fundamental property (cf. [4,

Corollary 8]):

H
(r)
n,k =

n∑
j=1

(−1)j−1
(
n

j

)
Hj,r−1

jk
(k ≥ 1) . (3)

For r = 1, formula (3) reduces to

Hn,k =
n∑

j=1
(−1)j−1

(
n

j

)
1
jk

(4)

which is a classical property of Roman harmonic numbers (cf. [8, Eq. (20)]), and
for r = 2, formula (3) translates into

H
(2)
n,k =

n∑
j=1

(−1)j−1
(
n

j

)
Hj

jk
. (5)

Formula (3) also admits a kind of reciprocal:

Hn,r−1

nk
=

n∑
j=1

(−1)j−1
(
n

j

)
H

(r)
j,k (k ≥ 1) . (6)

1.2 Alternating series with zeta values
Definition 3 (cf. [5, 6, 7]). the conditionally convergent series τp are defined for
any positive integer p by

τp =
∞∑

k=1
(−1)k+p ζ(k + p)

k
. (7)

For p ≥ 2, they verify the relation
∞∑

n=1

ln(n+ 1)
np

= −ζ ′(p)− (−1)p τp , (8)

and for p = 1, we have
τ1 =

∫ 1

0

ψ(x+ 1) + γ

x
dx (9)

where ψ is the digamma function.

Remark 2. The series τp defined above are linked to the series σp introduced and
studied in [7] by the elementary relation

τp = (−1)p−1σp .
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1.3 Cauchy numbers
Definition 4 (cf. [1, 2, 3]). The non-alternating Cauchy numbers λn are defined
for all integers n ≥ 1 by the recurrence relation

n−1∑
k=1

λk

k! (n− k) = 1
n

for n ≥ 2 .

The first values are

λ1 = 1
2 , λ2 = 1

6 , λ3 = 1
4 , λ4 = 19

30 , λ5 = 9
4 , λ6 = 863

84 , etc.

Remark 3. The λn are linked to the classical Cauchy numbers cn considered in
[1] by the relation

λn = (−1)n−1cn for n ≥ 1.
Similarly, they are linked by the same relation to the Bernoulli numbers of the
second kind βn considered in [2, § 4.2]:

λn = (−1)n−1βn = (−1)n−1
∫ 1

0
x(x− 1) · · · (x− n+ 1) dx (n ≥ 1) .

We recall the transformation formula that links Cauchy numbers to the Ra-
manujan summation of series (cf. [2, Theorem 18]) : if a is a function analytic in
the half-plane P = {Re(z) > 0} such that there exists a constant C > 0 for which

|a(z)| < C 2|z| for all z ∈ P ,

then
∞∑

n=1

λn

n!n

n∑
j=1

(−1)j−1
(
n

j

)
j a(j) =

R∑
n≥1

a(n) (10)

where ∑Rn≥1 denotes the R-sum of the series (i.e. the sum of the series in the sense
of Ramanujan’s summation method).

2 Series with Cauchy numbers and harmonic sums
Proposition 1. Let p be an integer with p ≥ 1, then

a)
∞∑

n=1

λn

n!nHn,p−1 =

γ for p = 1
ζ(p)− 1

p−1 for p > 1
(11)

where γ = −ψ(1) is Euler’s constant.
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b)

∞∑
n=1

λn

n!nH
(2)
n,p−1 =


1
2γ

2 − 1
2ζ(2) + γ1 + τ1 for p = 1

S1,p −
∑p−2

j=1
(−1)p−j

j
ζ(p− j) + (−1)pζ ′(p) + τp for p > 1

(12)
where γ1 is the first Stieltjes constant.

Proof. It follows from formulas (3) and (10) that

∞∑
n=1

λn

n!nH
(r)
n,k =

R∑
n≥1

Hn,r−1

nk+1 (k ≥ 0, r ≥ 1).

Applying the above formula with k = p− 1, we obtain

a) for r = 1,
∞∑

n=1

λn

n!nHn,p−1 =
R∑

n≥1

1
np
,

b) for r = 2,
∞∑

n=1

λn

n!nH
(2)
n,p−1 =

R∑
n≥1

Hn

np
.

Hence, formula (11) results from [2, Eqs. (1.22) and (1.24)]) while formula (12)
results from [6, Proposition 1 and Eq. (13)].

Example 1. a) For p = 1, formulas (11)–(12) translate into
∞∑

n=1

λn

n!n = γ , (13)

and
∞∑

n=1

λn

n!n2 = 1
2γ

2 − 1
2ζ(2) + γ1 + τ1 . (14)

b) For p = 2, formulas (11)–(12) translate into
∞∑

n=1

λn

n!nHn = ζ(2)− 1 , (15)

and
∞∑

n=1

λn

n!nH
(2)
n = 2ζ(3) + ζ ′(2) + τ2 , (16)
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Remark 4. Formulas (13) and (15) are well-known classical series representations
for γ and ζ(2) (cf. [1, 2, 3]).

Example 2. For p = 3, formulas (11)–(12) translate into
∞∑

n=1

λn

n!n

n∑
j=1

Hj

j
= ζ(3)− 1

2 , (17)

and
∞∑

n=1

λn

n!n

n∑
j=1

H
(2)
j

j
= 5

4ζ(4)− ζ(2)− ζ ′(3) + τ3 . (18)

Remark 5. By means of [6, Eq. (14)], we can also easily prove the following
formula dual of (18):

∞∑
n=1

λn

n!n

n∑
j=1

Hj

j2 = 7
4ζ(4) + ζ(2) + 2ζ ′(3)− 2τ3 − 1 . (19)

Formula (14) admits the following generalization:

Proposition 2. Let p be an integer with p ≥ 2, then
∞∑

n=1

λn

n!n2Hn,p−1 = γζ(p) + ζ(p+ 1)− S1,p − ζ ′(p)− (−1)pτp − σp (20)

with σ2 = 1 and

σp = 1 + (−1)p

p
+

p−2∑
j=1

(−1)jζ(p− j)
[

(j − 1)!(p− 1− j)!
(p− 1)! − 1

j

]
for p ≥ 3.

Proof. It follows from formulas (6) and (10) that

∞∑
n=1

λn

n!nk+1Hn,r−1 =
R∑

n≥1

H
(r)
n,k

n
(k ≥ 0, r ≥ 1).

The above formula applied for k = 1 and r = p gives

∞∑
n=1

λn

n!n2Hn,p−1 =
R∑

n≥1

H(p)
n

n
.

Formula (20) then results from [6, Proposition 2].
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Example 3. Formula (20) applied with p = 2 leads to the following relation:
∞∑

n=1

λn

n!n2Hn = γζ(2)− ζ(3)− ζ ′(2)− τ2 − 1 . (21)

Example 4. Since
Hn,2 =

n∑
j=1

Hj

j
= 1

2(Hn)2 + 1
2H

(2)
n ,

formula (17) can be rewritten under the following form:
∞∑

n=1

λn

n!n(Hn)2 +
∞∑

n=1

λn

n!nH
(2)
n = 2ζ(3)− 1 .

By means of formula (16), this enables to deduce yet another interesting identity:
∞∑

n=1

λn

n!n(Hn)2 = −ζ ′(2)− τ2 − 1 . (22)

Subtracting (21) from (22) and writing Hn − 1
n

= Hn−1, we also obtain this nice
relation: ∞∑

n=1

λn

n!nHn Hn−1 = ζ(3)− γζ(2) . (23)

Example 5. Formula (20) applied with p = 3 gives the relation:

1
2

∞∑
n=1

λn

n!n2

{
(Hn)2 +H(2)

n

}
= γζ(3)− 1

4ζ(4)− 1
2ζ(2)− ζ ′(3) + τ3 . (24)
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