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FREE KLEENE ALGEBRAS WITH DOMAIN

BRETT MCLEAN

Abstract

First we identify the free algebras of the class of algebras of binary relations equipped with the composition
and domain operations. Elements of the free algebras are pointed labelled finite rooted trees. Then we
extend to the analogous case when the signature includes all the Kleene algebra with domain operations;
that is, we add union and reflexive transitive closure to the signature. In this second case, elements of the
free algebras are ‘regular’ sets of the trees of the first case. As a corollary, the axioms of domain semirings
provide a finite quasiequational axiomatisation of the equational theory of algebras of binary relations for
the intermediate signature of composition, union, and domain. Next we note that our regular sets of trees
are not closed under complement, but prove that they are closed under intersection. Finally, we prove that
under relational semantics the equational validities of Kleene algebras with domain form a decidable set.

2020 Mathematics subject classification: primary 08B20; secondary 20M20.

Keywords and phrases: Kleene algebra, domain, binary relation, equational theory, decidable.

1. Introduction

Reasoning about binary relations, and ways of combining them, has an extensive
literature and a multitude of applications. Classically, in algebraic logic, binary relations
model logical formulas with two free variables [33]. In computer science, we can find
binary relations modelling the actions of programs [26, 21], and elsewhere representing
relationships between items of data that compose a tree [1], or a graph [22].

When an algebraic logician thinks of binary relations, the first signature to come to
mind will always be that of Tarski’s relation algebras. In computer science, the Kleene
algebra signature has the greatest prominence. In the latter case, the operations are
relational composition, union, and reflexive transitive closure, as well as constants for
the empty relation and the identity relation.

Any set of binary relations closed under the five Kleene algebra operations/constants
can be viewed as an algebra in the sense of universal algebra/model theory, that is, a
structure over a signature of function symbols (but no predicate symbols). It is well
known that this class of algebras contains its free algebras, and that the free algebra
generated by a given finite set X is precisely the set of all regular languages over the
alphabet . The importance of regular languages in theoretical computer science goes
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almost without saying [32]. The algebraic perspective on sets of regular languages
was employed to great effect by Eilenberg in his celebrated variety theorem [7], and
continues to yield valuable new insights to this day [13, 12].

In this paper, we identify the analogous free algebras in the case where the signature
is expanded with one extra operation on binary relations: the unary domain operation

D(R) = {(x,x) [ dy : (x,y) € R},

which provides a record of all points having at least one image under the given relation.
This expanded signature is that of Kleene algebra with domain, a certain finite set of
algebraic laws extending Kozen’s theory of Kleene algebras with a domain operation
and a small number of associated equations [6].

One intended model for this theory is indeed algebras of binary relations, and
there is a hope that the theory will prove useful for reasoning about the actions of
nondeterministic computer programs [4, 5]. In this programs-as-relations formalism,
a program P is modelled by a relation R on machine states, with R relating state x
to state y precisely if, whenever the machine is in state x and P is executed, y is a
possible resultant state. Hence relational composition models sequential composition
of programs, union models nondeterministic choice, and reflexive transitive closure
models the choice to iteratively execute a program any (finite) number of times. The
expression D(R) then models a program that when run from certain states—those from
which P would terminate—has no effect—and otherwise fails/does not terminate. Thus
domain makes provision within the syntax for expressing certain types of ‘tests’—an
important component of all programming languages.

In addition to identifying the free algebras, we also show that it is decidable whether
an equation in this Kleene algebra with domain signature is valid over all algebras of
binary relations. Of course, when reasoning about programs, the validity of an equation
s = t corresponds to the programs expressed by s and ¢ always having precisely the
same effect (independently of which ground programs the variables are instantiated
with).

Structure of the paper In Section 2 we give the necessary definitions and some context
regarding algebras of binary relations, and their free algebras.

In Section 3 we introduce the trees that we use for describing our free algebras, and
certain relations and operations on those trees.

In Section 4 we prove an intermediate result: we identify the free algebras for
the reduced signature that omits the ‘nondeterministic’ union and reflexive transitive
closure operators, and also the empty relation constant, that is, the signature with
the composition and domain operations and the identity constant. For this signature
the elements of the free algebras are ‘reduced’ pointed labelled finite rooted trees
(Theorem 4.6).

In Section 5 we extend the result of the previous section to identify the free algebras
for the full Kleene algebra with domain signature. In this case, elements of the free
algebras are certain sets of the trees of the previous case (Theorem 5.6). We term these
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sets ‘regular’ sets of trees, by analogy with the regular languages of the Kleene algebra
signature. By combining with an existing result, it follows as a corollary that the axioms
of domain semirings provide a finite quasiequational axiomatisation of the equational
theory of algebras of binary relations for the signature of composition, union, domain,
and the two constants (but not reflexive transitive closure).

Section 6 is devoted to closure properties of regular sets of trees. We use automata
to show the regular sets of trees are closed under intersection. We also note the regular
sets of trees are not closed under complement and pose the questions of whether they
are closed under implication or under residuation.

In Section 7 we again use automata to prove the decidability of validity for
equations in the signature of Kleene algebra with domain under relational semantics
(Theorem 7.2).

2. Algebras of binary relations

We begin by making precise what is meant by an algebra of binary relations.
Throughout, we consider that 0 € N.

Definition 2.1. An algebra of binary relations of the signature {;,+,*,0,1} is a
universal algebra A = (A, ;, +, *,0, 1) where the elements of the universe A are binary
relations on some (common) set X, the base, and the interpretations of the symbols are
given as follows:

e the binary operation ; is interpreted as composition of relations:

R:;S ={(x,y)eX?|zeX:(x,2)€RA(z,y) €S},

the binary operation + is interpreted as set-theoretic union:

R+S ={(x,y) € X*|(x,y) RV (x,y) €S},

the unary operation * is interpreted as reflexive transitive closure:

R¥:={(x,y) € X*|IneN Axy...x,:
(x0 = X) A (X = y) A (x0,X1) ERA ... A (X1, Xn) € R},

the constant 0 is interpreted as the empty relation:

0:=0,

the constant 1 is interpreted as the identity relation on X:

1= {(x,x) € X?}.

We let Rel(;, +, *, 0, 1) denote the isomorphic closure of the class of all algebras of
binary relations of the signature {;, +, *,0, 1}.
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To be clear: the universe of an algebra of binary relations is necessarily closed under
the given operations, since the definition of a universal algebra requires the symbols be
interpreted as total functions.

Remark 2.2.

(1) It is easy to see that Rel(;, +, *, 0, 1) is not a first-order axiomatisable class, not
even closed under elementary equivalence, by a simple argument showing that
Rel(;, +, *,0, 1) is not closed under ultrapowers. See the appendix for a proof of
this well-known fact.

(i) Despite Rel(;, +, *,0, 1) being far from a variety, it is easily seen to be closed
under subalgebras and products. (An element of a product of algebras of binary
relations is the disjoint union of all its component binary relations.) Hence, by a
basic theorem of universal algebra (see, for example, [3, Theorem 10.12]), the
class Rel(;, +, *, 0, 1) contains its free algebras.

(iii) It is a folk theorem that the free Rel(;, +, *, 0, 1)-algebra generated by a finite set
X is the set of all regular languages over the alphabet £ (with the operations of
language concatenation, union, and so on).

@iv) It is well known that the variety HS P Rel(;, +, *,0, 1) generated by Rel(;, +,
* 0, 1) has no finite equational axiomatisation [29].

(v) We do however have Kozen’s quasivariety of Kleene algebras [20], defined by a
finite number of equations/quasiequations,' intermediate to Rel(;, +, *, 0, 1) and
HS PRel(;, +,*,0,1). That is,

Rel(;, +, *,0, 1) € Kleene algebras € HS PRel(;, +, *,0, 1),

and so
HS P(Kleene algebras) = HS PRel(, +, *,0, 1).

Of course, the operations of Definition 2.1 are not the only operations that can be
defined on binary (endo)relations. In particular, various unary ‘test’ operations can be
defined; here is a selection.

Definition 2.3.

e The unary operation D is the operation of taking the diagonal of the domain of a
relation:
DR) = {(x,x) € X>| Ay € X : (x,y) €R}.

e The unary operation R is the operation of taking the diagonal of the range of a
relation:
R(R) ={(y,y) € X*|Ix € X : (x,y) €R}.

' A quasiequation is a conditional equation where the condition is a finite conjunction of equations. That
is, a quasiequation is a formula of the form sy =#; A=~ A5, =1, D u=v.
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e The unary operation A is the operation of taking the diagonal of the antidomain
of a relation—those points of X at which the image of the relation in empty:

AR) = {(x,x) € X*|Ay € X : (x,y) €R}.

One can vary the operations from those of Definition 2.1 and/or restrict the binary
relations to some particular form. The resulting class will again contain its free algebras.
If the class is of interest, then it is useful to establish a description of these free algebras.

Restricting the binary relations to be some type of function (total functions, partial
functions, or injective partial functions, for example) tends to yield free algebras whose
elements are a ‘single object’, rather than a ‘set of objects’. The class of semigroups, for
example, is the variety generated by Tot(;)—algebras of total functions with composi-
tion—and an element of a free semigroup is a single string, rather than a set of strings
as we have in the case Rel(;, +, *,0, 1). Similarly, elements of free groups are also
strings, with groups forming isomorphs of algebras of permutations, with the familiar
operations.

There is also an observable pattern when test operations are added to the signature:
strings are replaced by (labelled) trees. The following results are known.

1. The class Inj(;, "), of isomorphs of algebras of injective partial functions with
composition and inverse, is the class of inverse semigroups [35, 28].” (In this
signature D and R are definable via D(R) := R; R™! and R(R) = R"! ; R,
respectively.) Elements of free inverse semigroups are certain trees, so-called
Munn trees [25].

2. The class Par(;, D)—partial functions with composition and domain—is a variety
[34], most commonly known as the (left) restriction semigroups. A description of
the free algebras has been given, and again, elements can be viewed as trees [9].

3. The class Par(;, D, R)—partial functions with composition, domain, and range—
is a proper quasivariety; a finite quasiequational axiomatisation was given by
Schein [31]. Once more, a description of the free algebras has been given, and
elements can be viewed as trees [10].

We should also mention at this stage Hollenberg’s finite equational axiomatisation
of the equational theory of the quasivariety Rel(;, A) (in which D, 0, and 1 are easily
expressible) [18]. Of course, this result amounts to an implicit description of the
corresponding free algebras, as quotients of term algebras by this theory. Another result
involving binary relations (but not tests), is Bloom, Esik, and Stefanescu’s explicit
description of the free algebras for the case Rel(;, +, *,0, 1, ~), where ~ is the converse
operation R~ := {(x,y) € X? | (y, x) € R} [2]. There, the elements of the algebras are
sets of strings.

2 In this signature, in which ! is available, the inverse semigroups form a variety. To give an equational
axiomatisation it suffices to replace, in the natural axiomatisation, the quasiequation ‘inverses are unique’

by the equation a ; alialya=alaza;a " [30].
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Having noted that binary relations ~» sets, functions ~» singletons, and tests ~»
trees, one can anticipate that when tests are added to the case Rel(;, +, *, 0, 1), elements
of free algebras will be sets of labelled trees. We will prove that this is indeed the
case (Theorem 5.6). On the way to doing this, we also identify the free algebras
for the case without the ‘nondeterministic’ operators + and *, more precisely, for
the case Rel(;, 1, D) (Theorem 4.6). The analogous results for signatures formed by
adding/removing 0 and/or 1 follow as corollaries of these two theorems.

Remark 2.4. The term ‘Kleene algebra with domain’ was originally used for a certain
quasiequational theory extending the two-sorted Kleene algebra with tests with a domain
operation [4]. It was subsequently redefined as a (strictly less expressive) one-sorted
quasiequational theory extending Kleene algebra with a domain operation [6].

3. Trees

The central objects we will be working with throughout will be labelled rooted
trees. We will give two definitions of these. The first, Terminology 3.1, is the usual
graph-theoretic definition, and we give it in order to make use of basic graph-theoretic
terminology: vertex, edge, and so on. The second, Definition 3.2, is cleaner, in the
sense that isomorphic trees are identical, and will serve as the ‘official’ definition in
this paper.

Terminology 3.1.

e A tree is a connected acyclic undirected graph (reflexive edges are prohibited).
All trees will be assumed to be finite unless otherwise stated.

e A rooted tree is a tree with a distinguished vertex called the root.

e By alabelled tree, we will mean an edge-labelled tree. That is, given a set X of
labels, a labelled tree is a tree T together with a function from the edges of 7" to
2.

Definition 3.2. Given a set X of labels, a labelled rooted tree is defined recursively as
a set of pairs (a, T), where a € £ and T is a labelled rooted tree.

Some explanation may be helpful. According to Definition 3.2, the empty set is
a labelled rooted tree (this is the base case of the definition). This empty set should
be thought of as encoding what is, in the graph-theoretic view, the tree with a single
vertex. Figure | illustrates how some simple examples of labelled rooted trees should
be viewed.
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Figure 1. The labelled rooted trees encoded as 0, {(a, 0)}, and {(a, 0), (a, {(b, 0)})}, respectively (with roots
at the top)

The reader may note that Definition 3.2 is more restrictive than the definition of
labelled rooted trees obtained from Terminology 3.1—it cannot describe any tree having
a vertex with two distinct but isomorphic child subtrees. However, we will have no
need of such trees in this paper.

Definition 3.3. A pointed tree is a tree with a distinguished vertex called the point.

We will primarily work with pointed labelled rooted trees. We will usually denote a
pointed labelled rooted tree (7, p) by its underlying labelled rooted tree 7. We define
the notion of a homomorphism of (possibly pointed) labelled rooted trees by reference
to homomorphisms of relational structures.

Definition 3.4. A relational structure (X, f) for a set £ of labels is a set X and
an assignment f giving for each element of @ € X a binary relation ¢/ on X. A
homomorphism from a relational structure (X, f) to the relational structure (Y, g) (both
with label-set ) is a map 6: X — Y validating

(x1,x2) €al = (6(x)),0(x)) € a
foreacha € X.

We can view any Z-labelled rooted tree as a relational structure (X, f) by taking X
to be the set of vertices of the tree and for each a € X setting a’ to be the set of pairs
(x,y) of vertices such that x is the parent of y and the edge {x, y} is labelled by a. When
we speak of a homomorphism 6: S — T of possibly pointed labelled rooted trees, we
mean a homomorphism of the trees viewed as relational structures that is also required
to map the root of S to the root of 7 and, if it exists, the point of S to the (therefore
extant) point of 7.

Let 2 be an algebra of binary relations (in any of the signatures we take an interest
in) with base set X. Let f be an assignment of members of 2 to the set X of variables.
Then (2, f) naturally defines a relational structure: (X, f). Conversely, let (X, f) be
a relational structure and let 2 be any algebra of binary relations on X that includes
{a’ | a € T} in its universe (that is, any algebra between the algebra generated by this
set and the algebra of all binary relations on X X X). Then the standard model-theoretic
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interpretation [¢]*/ of any E-term ¢ is independent of the precise choice of 2. Thus,
when interpreting terms and evaluating equations, it is safe to conflate the concepts of
algebra + assignment and relational structure, and we will often do so. For example,
the following definition is stated in terms of an algebra and assignment, but we will
mainly use it in contexts where we are ostensibly talking about a relational structure.

Definition 3.5. Let A be an algebra of binary relations with base X, let # be a term, and
let f be an assignment to the variables in z. We say that a pair (x,y) € X X X satisfies ¢
if (x,y) € [¢]*/.

We want to be able to reduce trees to forms without any redundant branches. In
order to do that, we first define a preorder on trees.

Definition 3.6. The preorder < on (possibly pointed) labelled rooted trees is defined
recursively as follows. For trees T and T, with roots r; and r, respectively, T < T if
and only if

(a) if r, is the point vertex of T, then r| is the point vertex of T,
(b) for each child v, of r,, there is a child v; of r; such that

(i) the labels of the edges r;v| and r,v, are equal,

@) 7T,, < T,,, where T,, and T,, are the v;-rooted and v,-rooted subtrees
respectively.

That < is indeed a preorder is clear. In fact, by induction on the height of the trees,
it is easy to see that

T, £ T, < there exists a homomorphism §: T, — T1. (3.1

In the following definition and proposition, we continue to work with trees that may
or may not be pointed.

Definition 3.7. Let T be a labelled tree with root . The reduced form of T is the tree
formed recursively as follows.

(a) For each child v of r, replace the v-rooted subtree with its reduced form. Call the
resulting tree 7.

(b) For each label a € X, let C, be the set of subtrees of 7’ rooted at a vertex linked
to r by an a-labelled edge. Remove all but the <-minimal subtrees in C,,.

Example 3.8 (reduction). The pointed tree on the left of Figure 2 reduces as shown.
The tree on the right is already reduced.
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Figure 2. Reduction of pointed labelled rooted trees

Proposition 3.9. The preorder < is a partial order on reduced labelled rooted trees.

Proor. By induction on the maximum height of the two trees being compared. For
the base case, take trees T'j, T, of height 0, so both have just a single vertex. Suppose
T, < T, and T, < T;. Then by Definition 3.6(a), the tree T is pointed if and only if 7,
is pointed. Hence T = T>.

Now let T and T, be of height at most n + 1, and assume antisymmetry of < holds
for all reduced trees of height at most n. Suppose T < T, and T, < T}, and denote
the roots by r| and r,, respectively. As before, T has a point at r; if and only if T,
has a point at r,. By Definition 3.7 the child subtrees of vertex r; are reduced, and for
each a € X the child subtrees linked by an a-labelled edge are pairwise <-incomparable.
Likewise for the child subtrees of vertex r;.

Let v, be an arbitrary child of r,. Since Ty < T,, we can find a child v; of
ry as in Definition 3.6(b), giving us 7,, < T,,. Then using 7, < T and applying
Definition 3.6(b) again, we obtain a child v/, of r, and have T, <T, <T, (with v,
and r,v) having the same label). Hence by pairwise <-incomparability, T, = T\;. So
T,, <T, <T,, which by the inductive hypothesis yields 7, = T,,. Since v, was
arbitrary, we conclude that every child subtree of r; is present as a child subtree of
r1. Symmetrically, every child subtree of r| is present as a child subtree of r,. Hence
T, =T,. O

Note now that the partial order < on reduced trees is Noetherian (converse well-
founded). Indeed, by structural induction there are a finite number of distinct labelled
trees of any fixed depth, hence a finite number of reduced pointed labelled trees of that
depth. And T < T, implies the depth of T, is at most the depth of 7).

Proposition 3.10. If a labelled rooted tree T reducesto T', then T < T’ and T' < T.

Proor. Another induction on height. All trees of height 0 are already reduced, so this
base case is trivial.

Now assume the result holds whenever T is of height at most n. Let T be of height
n+ 1, with root r. It is clear that the root ’ of T’ is the point of 7’ if and only if r is the
point of 7. So there is no obstruction to a homomorphism mapping r to 7" or vice versa.
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First we show T < T"’. Every child subtree of 7’ is the reduced form 7, of some
child subtree T, of r (with rv and ’v" having the same label). Hence, by the inductive
hypothesis and (3.1), there is a homomorphism 6,,: T), — T,. By gluing together
{6,, | v a child of 7'}, and mapping r’ to r, we obtain a homomorphism 7/ — T. Hence
T<T.

Now we show T’ < T. Let T” be the intermediate tree in the reduction of T to 77,
that is, 7" is the tree formed from 7 by reducing all child subtrees of r. Denote the root
of T"” by r”’. Take an arbitrary child subtree T, of r, and let T~ be its reduced form
sitting as a subtree of 7. So by the inductive hypothesis, there is a homomorphism
T, — T, . Since < is Noetherian on reduced trees, when 7" is formed from 7" by
applying step (b) in the definition of reduction, a subtree T, with T\, < T~ (and such
that #/v'* and r’'v' have the same label) is retained. Thus there is a homomorphism
T,» — T, and hence, by composition, a homomorphism 7, — T,,. Gluing together the
homomorphisms for each child v of r, and mapping r to 7, we obtain a homomorphism
T - T .HenceT' <T. O

Thus reduction selects a canonical member of every <-equivalence class. Informally,
we can think of < on reduced trees as corresponding to the inclusion relation on binary
relations—if 7'} < T, then T is a more specific description than 7.

Definition 3.11. Let X be a set and let 7 and S be reduced pointed X-labelled rooted
trees.

e The pointed tree concatenation 7 ; S of 7 and S is the tree formed by

1. identifying the point of T and the root of S (the root is now the root of T
and the point is the point of ),

2. reducing the resulting tree to its reduced form.
e The domain D(T) of T is the tree formed by

1. reassigning the point of T to the current root of 7',

2. reducing the resulting tree to its reduced form.

Notation 3.12. For a symbol a from an alphabet, we write a for the pointed labelled
rooted tree with two vertices, whose point is the child vertex and whose single edge is
labelled by a. We write & for the pointed labelled rooted tree with a single vertex.

Remark 3.13. A very similar setup to that presented in this section has already been used
for investigating Kleene algebras with domain [24]. In that thesis, the graph-theoretic
definition of trees is used, and pointed labelled finite rooted trees are called ‘trees with
a top’. There, the relation < is termed ‘simulates’, and trees are only considered up to
simulation equivalence. Thus there is no notion of a reduced form; the operations of
Definition 3.11 are defined without their reduction steps.

We will return to say more about the thesis [24] at the end of Section 5.
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4. Composition, identity, and domain

In this section we will identify the free algebras of the class Rel(;, 1, D). From there,
it is straightforward to accommodate the addition of + and * (and 0).

By a term we mean a raw syntactic object belonging to a term algebra/absolutely
free algebra—no background theory is assumed. Thus equality of terms means literal
equality.

Definition 4.1. We define the single-tree interpretation [-] of {;, 1, D}-terms as
follows.

1. [a] := a, for any variable a,
2. [1] =6,

3. [s;t] = [s];[z],

4. [D(s)] := D([sD.

Here the operations and constants on the right-hand side are those defined for trees in
Section 3.

Definition 4.1 is well defined because if pressed for a formal definition of terms
we would give one that satisfies unique readability, either by writing ; in prefix form,
requiring parentheses, or defining terms directly as trees.

Lemma 4.2. The map [ -] is a surjection from the {;, 1, D}-terms in variables ¥ onto
the reduced pointed X-labelled rooted trees. Hence [ -] is a surjective homomorphism
from the term algebra onto the reduced pointed X-labelled rooted trees, viewed as an
algebra of the signature {;, 1, D} with the operations we have defined.

Proor. We show that every reduced tree is the single-tree interpretation of some term
by induction on the size of the tree.

A tree whose root has no children is just e—the interpretation of 1—so assume
we have a tree T given by a nonempty set {(a;, T1), ..., (a,, T)}, and a distinguished
point p. First suppose p is the root of 7. For each 1 < i < n, let #; be a term whose
interpretation is the pointed tree whose tree is 7; and whose point is its root. Then we
can realise 7 by the term D(a; ;#1);---;D(a, ; t,). (We write iterated ; without brackets
because the positioning of the brackets turns out to be immaterial.)

Alternatively, suppose p is not the root of 7'; so without loss of generality p is a

vertex in T,. Let 7y, ...,t,_1 be as before and now let 7, be a term whose interpretation
is the pointed tree whose tree is T}, and whose point is p. Then we can realise 7' by the
term D(ay 5 11) 5+ 5 D(an-1 5 1) 5 G 5 B m

The following lemma says that the single-tree interpretation of a term records for us
a tree that, in a relational structure, ‘connects’ x and y if and only if the term is satisfied

by (x, ).
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Lemma 4.3. Let A be a {;, 1,D}-algebra of binary relations, with base X. Let t be a
{;, 1, D}-term, and let f be an assignment of elements of W—so, binary relations—to the
variables in t. Then for any x,y € X, the following are equivalent.

1. The pair (x,y) belongs to the model-theoretic interpretation of t under the
assignment f.

2. There is a homomorphism of [t] into (X, f) such that the root of [t] is mapped to x
and the point of [t] is mapped to y.

Proor. By structural induction on terms. As before, we write []*/ for the model-
theoretic interpretation of ¢.

First, suppose ¢ = a, for some variable a. Then [t] = a—consisting of an a-labelled
edge linking the root  to the point p. Therefore (x,y) € [¢{]*/ if and only if (x,y) € f(a),
so if and only if the map given by r — x and p +— y is a homomorphism. The case
t = 1 is similar.

Next, suppose t = s; ; sp and that the equivalence holds for s; and for s,. Then
(x,y) € [t]™/ if and only if there is a z € X such that (x,z) € [s;]*/ and (z,y) € [s2]™/.
By the inductive hypotheses, the latter is equivalent to the existence of a homomorphism
from [s;] mapping its root r; to x and point p; to z, and a homomorphism from [s;]
mapping its root r, to z and point p, to y. This is equivalent to the existence of a
homomorphism from [s; ; s3], mapping the root to x and point to y, since there exist
homomorphisms in both directions between a tree and its reduced form.

Finally, suppose ¢ = D(s) and that the equivalence holds for s. Then (x,y) € [{]*/ if
and only if x = y and there exists z such that (x, z) € [s]*/. By the inductive hypothesis,
this is equivalent to x = y and the existence of a homomorphism mapping the root of [s]
to x and the point to z. Since [¢] and [s] differ only by the position of their point, which
for [] is the root, the latest condition is equivalent to the existence of a homomorphism
from [¢] mapping both the root/point to x/y, as required. O

Corollary 4.4 (soundness with respect to relations). For any pair s and t of {;, 1, D}-
terms
[s]=[t] = Rel;,1,D)Es=r

Lemma 4.5 (completeness with respect to relations). For any pair s and t of {;, 1, D}-
terms
Rel(;, 1,D) E s =t = [s] = [z].

Proor. Suppose Rel(;, 1,D) = s = t. We will show that [s] < [¢]. Then by symmetry,
also [7] < [s]. So [s] = [f] and we are done.

Let r be the root and p the point of [s]. On [s] viewed as a relational structure, by
using Lemma 4.3 and the identity homomorphism [s] — [s], the pair (, p) belongs to
the model-theoretic interpretation of s (under the evident variable assignment). Hence,
by the assumption that Rel(;, 1,D) s = ¢, we have that (r, p) belongs to the model-
theoretic interpretation of z. Then by Lemma 4.3 there is a homomorphism of labelled
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trees from [¢] into [s] mapping the root of [¢] to r and the point of [¢] to p. That is, there
is a homomorphism of pointed labelled rooted trees from [¢] into [s]. We know this is
equivalent to the conclusion [s] < [f] we seek, so we are done. O

With Corollary 4.4 and Lemma 4.5 available, we can now complete the proof that
we have identified the free algebras of the class Rel(;, 1, D).

Theorem 4.6. Let X be an alphabet, and let Ry, be the set of reduced pointed X-labelled
finite rooted trees. Then the free Rel(;, 1,D)-algebra over X is Ry equipped with the
operations of pointed tree concatenation and of domain from Definition 3.11 (and the
constant g).

Proor. Since Ry is generated by Z, it follows by the first isomorphism theorem of
universal algebra that Ry is isomorphic to a quotient Q of the term algebra (for
signature {;, 1, D}) over variables . The congruence relation ~ defining the quotient
is givenby s ~ t <= [s] = [1], for terms s and ¢ over £. So by Corollary 4.4 and
Lemma 4.5, the congruence ~ is given by equational validity in Rel(;, 1, D). It is a basic
result of universal algebra that Q is then precisely the free algebra over X of the class
Rel(;, 1,D). O

The inclusion of 1 and exclusion of 0 from the signature was in fact not essential.
We can easily add and remove them according to our wishes.

Corollary 4.7. Let ¥ and Ry (viewed as an algebra) be as in Theorem 4.6.
o The free Rel(;, D)-algebra over X is given by removing the tree € from Rs.

o The free Rel(;, 0, D)-algebra over X is given by the addition of a zero element—an
element validating 0 ; T = T ; 0 = 0 and D(0) = O—to the free Rel(;, D)-algebra
over X.

o The free Rel(;, 1,0, D)-algebra over X is given by the addition of a zero element
to Rs.

Proor. For Rel(;, D), first note that every nontrivial tree in Ry is the single-tree
interpretation of a {;, D}-term, and conversely, if a tree is the interpretation of a {;, D}-
term then it cannot be trivial—by induction, all such interpretations have at least
one edge. Hence the nontrivial trees indeed form a {;, D}-algebra generated by (the
interpretations of elements of) . Since every {;, D}-algebra of relations embeds in a
{;, 1, D}-algebra of relations, it follows from Corollary 4.4 that every equation validated
by the nontrivial trees is validated by all {;, D}-algebras of relations. The converse
follows immediately from Lemma 4.5.

For Rel(;, 0, D) and Rel(, 1, 0, D), note that by the definition of a zero element, a
term is interpreted as the zero of the algebra if and only if the symbol O appears in the
term, and similarly a term is interpreted as @ in every algebra of relations if and only
if 0 appears in the term. These observations are sufficient to extend Corollary 4.4 and
Lemma 4.5 to terms that may contain 0. O
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We remark that the class Rel(;, 1, D), as noted in [17], forms a quasivariety.3 It has
been shown that this quasivariety is not finitely axiomatisable in first-order logic [17].
Naturally, the same statements hold when we add/remove 0 and 1.

S. Expansion by union and reflexive transitive closure

In this section, we extend the result of the previous section to provide a description
of the free algebras of the class of relational Kleene algebras with domain, that is, the
free algebras of Rel(;, +, *,0, 1, D).

Definition 5.1. For a set K of reduced trees, let maximal(K) denote the set of <-
maximal elements of K. We lift the notation ; and D of Definition 3.11 to sets of trees
by using elementwise application. We define the standard tree interpretation [ - | of
{;, +,%,0,1,D}-terms as follows.

1. Fora € %, [a] := {a},
. [o] =0,
1] = {eh

. [s + 1] := maximal([s] U []),

. [ 7] := maximal([s] ; []),

. [s]* = maximal(U, [s]%), where [s]° := 1 and [s]™*! == [s]"; [s],
. [D(s)] := maximal(D[s]).

N N B W

Note that [a], for a € Z, [0], and [1], contain only reduced trees, and U preserves
this property on sets of trees (as do the lifted ; and D, by definition). Hence the maximal
operation is applicable whenever it is used in Definition 5.1, and standard interpretations
contain only reduced trees.

Definition 5.2. Let X be an alphabet. A set of pointed X-labelled rooted trees is regular
if it is the standard tree interpretation of some {;, +, *,0, 1, D}-term.*

We can think of a regular set L of trees as a concise record of all the reduced trees
in the downward-closed set | L (with respect to the < ordering). In this view (thinking
of L as | L), the operation + corresponds to the real set union operation, and ; and D
correspond to pointwise application of the operations of Definition 3.11. The advantage
of using the arrangement of Definition 5.1 is that regular sets remain finite until such
time that Kleene star is used. That the partial order < on reduced trees is Noetherian

3 The short proof of this using general model-theoretic results consists of noting that the class is both
closed under direct products and—almost by definition—has a pseudouniversal axiomatisation. (See [16,
Section 9.2] for a definition of pseudouniversal.)

4 It is not claimed that this notion of regular sets of pointed trees is the same as the notion of a regular tree
language coming from the theory of tree automata [11].
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ensures there are ‘enough’ elements in maximal(lJ;2, [s]") for that to be a sensible
definition of [[s]" (as demonstrated in the proof of the next lemma).
The following lemma is the analogue of Lemma 4.3.

Lemma 5.3. Let W be a {;,+, *,0, 1, D}-algebra of binary relations, with base X. Let t
beal;, +,%,0,1,D}-term, and let f be an assignment of elements of U to the variables
in t. Then for any x,y € X, the following are equivalent.

1. The pair (x,y) belongs to the model-theoretic interpretation of t under the
assignment f.

2. Thereis atree T in [t] and a homomorphism of T into (X, f) such that the root
of T is mapped to x and the point of T is mapped to y.

Proor. Structural induction on terms. We give the details for the * case in the direction
| = 2, as this case is not entirely trivial. So suppose that r = s*, that condition |
holds for ¢, and that whenever condition 1 holds for s, condition 2 holds for s. Then

since (x, y) belongs to the model-theoretic interpretation of s*, there are zy, .. ., z, with
20 = X, Z, =y, and each (z;, z;+1) belonging to the interpretation of s. Hence there are
trees S1,...,S, € [s] and homomorphisms mapping each S; into (X, f) with the root

mapping to z;_; and point mapping to z;. By (3.1), there is a homomorphism of the
reduced tree (... (S1;S2);- ;S5 ,) into (X, f) mapping the root to x and the point to y. By
(3.1) again (and an induction up to n), thereisa 7’ € [s]" with T’ > (... (S1;52);- ;S )
and a homomorphism of 7" into (X, f) mapping the root to x and the point to y. Then
T e U, [s]/, and since the partial order < on reduced trees is Noetherian, there exists
aT € [s]* = maximal(U2,[s]") with T > T’. Such a T fulfils condition 2, so we are
done. O

Proposition 5.4 (soundness with respect to relations). For any pair s and t of
{;’ +’ *3 O’ 1, D}'terms

[s] = [{] = RelG;,+, %,0,1,D)E s=1.

Proor. Suppose [s] = [¢]. Let A be a {;, +, *,0, 1, D}-algebra of binary relations, with
base X. Let f be an assignment of elements of U to the variables appearing in s = .
Write [ - |*/ for the model-theoretic interpretations in 2 under f. Then by Lemma 5.3,
for any x,y € X, we have that (x,y) € [s]*/ if and only if there is a T € [s] with
T connecting x and y. As [s] = [#], this is equivalent to there being a T € [¢] with
T connecting x and y, which in turn is equivalent, by Lemma 5.3 again, to having
(x,y) € [f]*/. As x and y were arbitrary, we have [s]*/ = []*/. As A and f were
arbitrary, we conclude that Rel(;, +, *,0,1,D) F s = 1. m]

Proposition 5.5 (completeness with respect to relations). For any pair s and t of
{;,+, *,0,1,D}-terms

Rel(;, +,%,0,1,D) E s =t = [s] = [1].
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Proor. Just like the proof of Lemma 4.5. Given S € [s], we obtain the existence of
aT € [tf] withS < T. By symmetry, there is an S’ € [[s] with T < S”’. Since [s] is a
<-antichain, § = T. Hence [s] C [¢]. By symmetry, also [¢] C [s]. m

With Proposition 5.4 and Proposition 5.5, we can now complete the proof of
Theorem 5.6 in the familiar way.

Theorem 5.6. Let X be an alphabet, and let Ry be the set of reduced pointed Z-labelled
rooted trees. Then the free Rel(;, +, *,0, 1,D)-algebra over ¥ has as its universe all
the regular subsets of Rs. The operations are the following, where L, Ly, and L,, are
regular sets of reduced trees.

1. 0:=0,

2. 1:={g},

3. Ly + L, := maximal(L; U L,),

4. Ly ; L, = maximal(L, ; L,),

5. L* := maximal(J2, L"), where L° == {g} and L' == L' ; L,

6. D(L) := maximal(D(L)).
Proor. Similar to the proof of Theorem 4.6. O
Corollary 5.7. Let X and Ry be as in Theorem 5.6.

o The free Rel(;, +, *,0, D)-algebra over X consists of the regular subsets of Ry that
do not contain the trivial tree &.

o The free Rel(;, +, *, 1, D)-algebra over X consists of the nonempty regular subsets

Of Rz.

o The free Rel(;, +, *,D)-algebra over X consists of the nonempty regular subsets
of Rs, that do not contain &.

Proor. Similar to the proof of Corollary 4.7. O

Corollary 5.8. Let X and Rs be as in Theorem 5.6. Then the free Rel(;, +,0, 1, D)-
algebra over X consists of all finite regular subsets of Rs.

Proor. First note that the regular subsets interpreting {;, +, 0, 1, D}-terms are precisely
the finite regular subsets. Then soundness and completeness follow from Proposition 5.4
and Proposition 5.5 respectively. |

In [24], Mbacke proves (Theorem 5.3.3 there) that a certain finite equational theory
over the signature {;, +, 0, 1, D}—the theory of domain semirings—is complete for the
equational validities of what amounts to the algebras of trees identified in Corollary 5.8.
Hence, we obtain the following corollary.
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Corollary 5.9. The axioms of domain semirings provide a finite equational axiomat-
isation of the equational theory of Rel(;, +,0, 1, D).

In other words, the axioms of domain semirings are (sound and) equationally
complete for algebras of binary relations. In [19], Jipsen and Struth study the singly-
generated free domain semiring. Corollary 5.8 now subsumes the description of that
paper, though that is not to say that these free algebras are uncomplicated objects.

The other main result of [24] (Theorem 5.3.12 there) is an axiomatisation of the
equational validities of our algebras of regular sets of trees. The axiomatisation used
consists of the second-order theory of star-continuous Kleene algebras, augmented with
one additional second-order axiom:

a; (Y byic=Y(@ibio) - a; (Y. DB);c= ) (a;Db);0),

beB beB beB beB

where ), indicates supremum. Unfortunately, this axiom is not sound for algebras
of binary relations. (And so, in particular, it is not a consequence of the axioms of
star-continuous Kleene algebras, which are sound for relations.) Hence, we do not
obtain an analogue of Corollary 5.9 for the signature {;, +, *, 0, 1, D}.

6. Automata, and closure under intersection

It is well known that the set of regular languages over a finite alphabet X is closed
under complement with respect to . It is clear that, over a (nonempty) finite alphabet,
the regular sets of trees are not closed under the complement operation (with respect
to the set of reduced trees). And, more meaningfully, this is true even in the view that
a regular set L represents the downward-closed set |L (since complement does not
preserve downward closure). However, as we will show, the regular sets of trees are
closed under the following ‘intersection’ operation.

Ly - L, := maximal([L; N |L,)

In [15], and its extended journal version [14], condition automata are defined.
They are an extension of finite-state automata designed specifically for working with
relational queries that may contain D (among other tests such as range and antidomain).
In this section, we will use a slightly simplified definition of condition automata.

Definition 6.1. A domain condition automaton is a 6-tuple (Z, S, 1,7, 9, c), where
(%,S8,1,T,9) is a finite-state automaton (nondeterministic, with e-transitions permitted),
and c is a function that assigns a {;, +, *,0, 1, D}-term (over X) to each state S'.

A domain condition automaton accepts a path x 4 X1 5.8 X, in a relational
structure precisely when it is accepted by the finite-state automaton with a trace such
that at each step the condition D(c(s)), where s is the current state, is satisfied at the
corresponding vertex x in the relational structure (or, to be correct, is satisfied by the

pair (x, x)).
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Lemma 6.2. Let t be a {;,+, *,0,1,D}-term, and let T be a pointed labelled rooted
tree, with root r and point p. Then the pair (r, p) in the relational structure T satisfies t
ifand only if there isa T’ € [t] with T < T'.

Proor. This is just a specialisation of Lemma 5.3 (and the equivalence of the condition
T < T’ with the existence of a homomorphism from 7” into 7). m|

Proposition 6.3. Let X be an alphabet and let Ly and L, be two sets of reduced pointed
X-labelled finite rooted trees. If Ly and L, are regular, then L, - L, is regular.

Proor. Let Ly = [#] and L, = [,]. Then by [15, Proposition 5], there is a domain
condition automaton (A; such that for any pointed labelled rooted tree 7', with root r and
point p, the pair (r, p) satisfies #; if and only if the path from r to p is accepted by A;.
Similarly, there is such a domain condition automaton A, for #,. By [15, Proposition
6], there is a domain condition automaton A that accepts a path if and only if that path
is accepted by both A; and A,. Then using [15, Proposition 5] in the other direction,
applied to A, there is a {;, +, *,0, 1, D}-term ¢ such that for any pointed labelled rooted
tree 7', with root r and point p, the pair (r, p) satisfies ¢ if and only if it satisfies both #|
and 1,.

Applying Lemma 6.2, we have (for reduced T) that T € |[] if and only if (r, p)
satisfies ¢ if and only if (r, p) satisfies both #; and 1, if and only if T € |[#] and
T € |[f;] ifand only if T € |L; N | Ly. Hence 7] = |L; N |Ly. So

[f] = maximal(|[7]) = maximal({L; N [L,) = L; - L,. O

Let (O(Ry), U, N) be the lattice of downward-closed subsets of Rs. We now know
that the sets of the form | L, for regular L, form a sublattice of (O(Ryx), U, N). Given that
(O(Rs), U, N) is a Heyting algebra, this raises the further question of whether the sets of
the form | L are closed under the implication operation of (O(Rsx), U, N).

Problem 6.4. Are the regular sets of reduced trees closed under the following implication
operation?’

L — L= maximal{U{K cOX) | KN |L C L}

We conjecture that the answer to this problem is yes.
We pose one additional problem, relating to extra-order-theoretic composition
structure of the regular sets.

Problem 6.5. Are the regular sets of reduced trees closed under the following residuation
operations?

L\ Ly, :=maximal{T e Rs | VS € |[L{, S ;T € |L,}
Li /L, = maximal{T € Ry | VS € [L,, T ;S € L}

3 Thanks go to one of the anonymous referees for posing this question.
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7. Decidability of equational theory

In this section we describe how to decide the validity of a {;, +, *, 0, 1, D}-equation
with respect to relational semantics.

First, we give a definition of condition automata closer to that found in [15] and [14].
Recall (Definition 2.3) that A is a unary function symbol whose relational interpretation
is the antidomain operation.

Definition 7.1. A condition automaton is a 6-tuple (X, S,1,T, ¢, ¢), where (£, S, 1, T,
0) is a finite-state automaton (nondeterministic, with e-transitions permitted), and c is a
function that assigns a {;, +, *,0, 1, A}-term (over X) to each state S.

Acceptance for condition automata is defined just like acceptance for domain
condition automata, where the symbol D is now shorthand for two applications of A.

Theorem 7.2. The equational theory of the class of algebras of binary relations of the
signature {;, +,*,0, 1,D} is decidable.

Proor. Let s and ¢ be {;, +, *, 0, 1, D}-terms, and let X be the set of variables appearing
in either s or £. Now s = ¢ is valid in Rel(;, +, *, 0, 1, D) if and only if the pointed X-
labelled rooted trees satisfying s are precisely those satisfying #—we proved the stronger
statement involving reduced trees. In the equivalence just stated, we can temporarily
use the usual graph-theoretic definition of a pointed X-labelled rooted tree; in particular
we do not limit to finite trees. According to [15, Proposition 5], there are (domain)
condition automata A, and A, that accept precisely the finite pointed trees satisfying s
and ¢ respectively. But in fact the finiteness condition plays no role, and hence can be
dropped. The same remark can be made for the following statements and we will make
no further mention of it. By [15, Corollary 3], there are condition automata A;,_, and
A,_s such that a pointed tree is accepted by A,_, precisely if it is accepted by A but
not by A;, and a tree is accepted by A,_, precisely if it is accepted by A, but not A;. By
[15, Proposition 5], there exist {;, +, *, 0, 1, A}-terms 7,_, and 7, such that the pointed
trees satisfying 7,_, and 7,_ are precisely those accepted by A,_; and A, respectively.
Hence s = t is valid in Rel(;, +, *, 0, 1, D) if and only if the sets of pointed X-labelled
rooted trees satisfying 7, and 7;_, are both empty. Finally, we reduce the problem of
deciding if a {;, +, *,0, 1, A}-term 7 is satisfiable by a pointed labelled rooted tree to
the problem of deciding the satisfiability of a formula of propositional dynamic logic.’
This latter problem is known to be decidable (in EXPTIME [27]), so then we are done.
See Figure 3 for a summary of the transformations we have outlined.

6 See, for example, [8], for a description of propositional dynamic logic, including the notion of a regular
frame.



20 Brett McLean

t — A,
\ Aset ———— T ——— ‘P(Ts—t)
/ Ay — Ty — SO(Tlfs)
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S —

Figure 3. Transformations used to decide equality of # and s

We define a translation from {;, +, *, 0, 1, A}-terms to (propositional variable-free)
formulas of propositional dynamic logic as follows. First we define the translation P
from {;, +, *,0, 1, A}-terms to program terms by structural induction as follows.

P(a) =a
P(s;t) = P(s); P(t)
P(s +1t) = P(s) + P(¢)

P = P(t)"

P0) = L?

P) =17
P(A(n) = (=P(1))?

Then we simply define the translation ¢(¢) of a {;, +, *,0, 1, A}-term ¢ to be (P(?))T. It is
clear that for any given regular frame, satisfiability of ¢(¢) is equivalent to satisfiability
of ¢ on the corresponding relational structure. Since propositional dynamic logic has the
tree-model property (any frame with selected point can be ‘unwound’ to an equivalent
labelled rooted tree), we obtain the equivalence of satisfiability of ¢(f) on regular frames
and satisfiability of 7 on tree-based relational structures. But if ¢ is satisfied by a pair
(x,y) of vertices in a tree-based relational structure, then clearly y is a descendent of x,
and 7 is satisfied by the tree rooted at x and having point y. (And conversely, satisfaction
by a pointed rooted tree implies satisfaction by a tree-based relational structure.) Hence
we have the required equivalence between satisfaction of ¢ with respect to pointed
labelled rooted trees and satisfaction of ¢(¢) with respect to regular frames. O

The procedure described in the proof of Theorem 7.2 hardly seems efficient. The
best upper bound that can be obtained from it is a SEXPTIME bound. The constructions
of A,_; and A;_, rely on determinisations involving a subset construction, so can result
in an exponential increase in problem size. Likewise, construction of the terms 7,_, and
T,_y from automata can also add an exponent in general. Lastly, we already mentioned
that the final step, deciding satisfiability of propositional dynamic logic formulas, is
in EXPTIME, and in fact this problem also has an exponential time lower bound (no
O(2™) algorithm for any & < 1 [8]).

We finish with the obvious problem.

Problem 7.3. Determine the precise complexity of deciding validity of {;, +, *,0, 1, D}-
equations with respect to relational semantics.
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A. Appendix

Theorem A.1. The class Rel(;, +, *, 0, 1) is not closed under elementary equivalence.

Proor. By the definition of * on relations, algebras in Rel(;, +, *,0, 1) validate a* =
sup;qy @ (with respect to the orderinga < b < a + b = b). Take any relation R
whose star R* differs from all finite approximants sup;_, R'—for example take R to be
the immediate-successor relation in N. Let 2 be any algebra of relations containing
R—for example the algebra generated by R. Let U be any non-principal ultrafilter on N,
and let R be the element of the ultrapower '/ U represented by the constant sequence
(R,R,...). Then (R)* is represented by (R*,R*,...), but this is not a supremum for
{R' | i € N} since the strictly smaller element represented by (1,1 +R,1+R+R?,...)
is also an upper bound. Hence the ultrapower does not validate a* = sup,q; d', so
Rel(, +, *,0, 1) is not closed under ultrapowers. It follows by L.0$’s theorem [23] that
Rel(;, +, *,0, 1) cannot be closed under elementary equivalence. m]
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