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New reflection formulas for Euler sums

Introduction

The study of Euler sums has a fairly long history dating back to the middle of the 18th century. In response to a letter from Goldbach dated from december 1742, Euler considered infinite sums of the form

S p,q = ∞ n=1 H (p) n n q ,
where p and q are positive integers, and H (p) n = n k=1 1 k p are generalized harmonic numbers. For p = 1, the generalized harmonic numbers reduce to classical harmonic numbers H n = H (1) n . The importance of harmonic numbers comes from the fact that they appear (sometimes quite unexpectedly) in different branches of number theory and combinatorics. In our times, the sums S p,q are called the linear Euler sums. Euler discovered that for all pairs (p, q) with p = 1, or p = q, or p + q odd, these sums have expressions in terms of zeta values (i.e. the values of the Riemann zeta function ζ(s) = n≥1 n -s at positive integers), a remarkable result that will be also found and completed later by Nielsen [START_REF] Wang | Euler sums and Stirling sums[END_REF]. Among the beautiful formulas discovered by Euler [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF], the following two are particularly noteworthy:

-Euler's reflection formula:

S p,q + S q,p = ζ(p)ζ(q) + ζ(p + q) for p ≥ 2 and q ≥ 2 (called "prima methodus") that allows to express S q,p as a function of S p,q and vice versa. In particular, for p = q, it results that Ramanujan's method of summation of series appears in Chapter VI of Ramanujan's second notebook [START_REF] Ramanujan | Manuscript Book 2 of Srinivasa Ramanujan[END_REF]. Because of the ambiguities (observed by Hardy in Chapter XIII of his classical treatise on divergent series) contained in the definition of the "constant of a series" that made its use very tricky, Ramanujan's method, based on the Euler-MacLaurin summation formula, had fallen into neglect. The method has known a revival of interest at the end of the 20th century when a clear and rigorous definition of the sum of a series in the sense of Ramanujan summation was given by Candelpergher et al. [START_REF] Candelpergher | La sommation de Ramanujan[END_REF] at the same time as the link with usual summation was completely clarified. The reader will find in the recent monograph [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] a masterful synthesis of main definitions, fundamental properties, and scope of application of the Ramanujan summation.

S p,p = 1 2 (ζ(p))
Ramanujan's method is particulary well appropriate to linear Euler sums, allowing to easily handle both the convergence case and the divergence case, however this process of regularization is unusual and remains little known. In the remainder of this article, we give a complete evaluation of the sums in the sense of Ramanujan summation (which will be noted R 1,p , R p,1 and R p,p ) corresponding respectively to the sums S 1,p , S p,1 and S p,p (the reader should note that S p,1 is only defined as a divergent series). This enables us to provide a number of relations similar (though more complicated) to the classical relations mentioned above (see Propositions 1 to 4). Some nice applications of these formulas are given in [START_REF] Coppo | New identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF].

Ramanujan summation of Euler sums

Let us recall that the generalized harmonic numbers H (p) n are defined by

H (p) n = n k=1 1 k p for n ≥ 1 and p ≥ 1 .
When p = 1, they reduce to classical harmonic numbers denoted H n = H (1) n . It is convenient to express them in the form

H n = ψ(n + 1) + γ ,
where ψ(z) = ∂ ln(Γ(z)) is the digamma function and γ = -ψ(1) is the Euler constant; in the same way, we have for p ≥ 2 the following expression [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF][START_REF] Cohen | Analytic and Modern Tools[END_REF]:

H (p) n = (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) + ζ(p) .
Definition 1. For any positive integer p, the function s → Z(p, s) is defined as the analytic continuation of the function defined in the half-plane Re(s) > 1 by

Z(p, s) = +∞ n=1 H (p) n n -s - +∞ 1 ψ p (x) x -s dx ,
where ψ 1 (x) = ψ(x + 1) + γ, and

ψ p (x) = (-1) p-1 (p -1)! ∂ p-1 ψ(x + 1) + ζ(p) for p ≥ 2 .
It follows from [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]Theorem 9] that this function can be analytically continued as an entire function in the whole C. For each integer q ∈ Z, we define R p,q by R p,q := Z(p, q) . The value R p,q is thus well-defined and may be interpreted as the R-sum (i.e. the sum in the sense of Ramanujan summation) of the (possibly divergent) series

n≥1 H (p) n n -q . Example 1 (values at q = 0). R p,0 =        3 2 γ -1 2 ln(2π) + 1 2 for p = 1 3 2 ζ(2) -2 for p = 2 3 2 ζ(p) -p-2 p-1 ζ(p -1) -1 p-1 for p > 2 (cf. [2, p. 44]).

Evaluation of R 1,p

Let ζ H be the harmonic zeta function [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF] defined for Re(s) > 1 by

ζ H (s) = ∞ n=1 H n n -s . For p = 1, Z(p, s) is closely linked to ζ H (s) through the relation Z(1, s) = ζ H (s) - ∞ 1 x -s (ψ(x + 1) + γ) dx for Re(s) > 1 .
In particular, since

ζ H (p) = S 1,p for p ≥ 2 , it follows that R 1,p = S 1,p - ∞ 1 ψ(x + 1) + γ x p dx (p ≥ 2) . ( 1 
)
Definition 2. For any positive integer p, let τ p be the real constant defined by the series representation

τ p := ∞ k=1 (-1) k+p ζ(k + p) k . ( 2 
)
Remark 1. The sequence {τ p } p first appeared in [START_REF] Boyadzhiev | A special constant and series with zeta values and harmonic numbers[END_REF] and [START_REF] Candelpergher | Laurent expansion of harmonic zeta functions[END_REF] . The constant τ 1 has been thoroughly studied by Boyadzhiev [START_REF] Boyadzhiev | A special constant and series with zeta values and harmonic numbers[END_REF] (see also [START_REF] Cohen | Analytic and Modern Tools[END_REF]Ex. 92,p. 142] and [START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF]).

To give an expression of the R-sum R 1,p , we first prove the following lemma:

Lemma 1. For p > 2, we have the relation

∞ 1 ψ(x + 1) + γ x p dx = p-2 j=1 (-1) p-j j ζ(p -j) -(-1) p ζ (p) -τ p . ( 3 
)
For p = 2, this relation reduces to

∞ 1 ψ(x + 1) + γ x 2 dx = -ζ (2) -τ 2 .
For p = 1, we have the identity

1 0 ψ(x + 1) + γ x dx = τ 1 .
Proof. For p ≥ 2, the convergent series n≥1 ln(n+1) n p may be splitted into the two series

∞ n=1 ln(n + 1) n p = ∞ n=1 ln(n) n p + ∞ n=1 1 n p ln 1 + 1 n .
The well-known expansion of ln(1 + 1/n) in power series leads to the identity

∞ n=1 1 n p ln 1 + 1 n = ∞ n=1 1 n p ∞ k=1 (-1) k-1 k 1 n k = (-1) p-1 τ p , then it follows that ∞ n=1 ln(n + 1) n p = -ζ (p) -(-1) p τ p . ( 4 
)
On the other side, for p > 2, the finite Taylor expansion of the logarithm allows us to write

ln(x + 1) = p-2 j=1 (-1) j-1 j x j + (-1) p x p-1 ∞ 1 1 t p-1 (t + x) dt ,
and thus, for any positive integer n, we have ln(n + 1)

n p = p-2 j=1 (-1) j-1 j 1 n p-j + (-1) p ∞ 1 1 t p-1 n(t + n) dt .
By summing this identity, we get

∞ n=1 ln(n + 1) n p = p-2 j=1 (-1) j-1 j ζ(p -j) + (-1) p ∞ 1 ψ(x + 1) + γ x p dx .
Hence, formula (3) follows from (4) by substitution. For p = 2, it reduces to

∞ 1 ψ(x + 1) + γ x 2 dx = ∞ n=1 ln(n + 1) n 2 = -ζ (2) -τ 2 . ( 5 
)
In the case p = 1, the well-known Taylor expansion of ψ(x + 1) + γ

ψ(x + 1) + γ = ∞ n=1 (-1) n-1 ζ(n + 1)x n (|x| < 1)
gives (after division of both sides by x and integration from 0 to 1)

1 0 ψ(x + 1) + γ x dx = ∞ n=1 (-1) n-1 ζ(n + 1) n = τ 1 .
Proposition 1. For any positive integer p > 2, we have

R 1,p = S 1,p - p-2 j=1 (-1) p-j j ζ(p -j) + (-1) p ζ (p) + τ p , ( 6 
)
where τ p is defined by formula [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. For p = 2, it reduces to

R 1,2 = S 1,2 + ζ (2) + τ 2 = 2ζ(3) + ζ (2) + τ 2 .
More generally, for p ≥ 2, we have the formula

R 1,2p = (p+1)ζ(2p+1)- p-1 j=1 ζ(2p-j)ζ(j+1)- 2p-2 j=1 (-1) j j ζ(2p-j)+ζ (2p)+τ 2p . ( 7 
)
Proof. By formula (1), we have the relation

R 1,p = S 1,p - ∞ 1 ψ(x + 1) + γ x p dx ,
and, by (3), we have

(-1) p ∞ 1 ψ(x + 1) + γ x p dx = -ζ (p) -(-1) p τ p + p-2 j=1 (-1) j j ζ(p -j) .
Then formula (6) follows immediately by substitution, and ( 7) results from the expression of S 1,2p given by Euler's formula [13, Eq. (3.6)]:

S 1,2p = (p + 1)ζ(2p + 1) - p-1 j=1 ζ(2p -j)ζ(j + 1) (p > 1) . ( 8 
) Example 2. R 1,2 = 2ζ(3) + ζ (2) + τ 2 , R 1,4 = 3ζ(5) -ζ(3)ζ(2) + ζ(3) - 1 2 ζ(2) + ζ (4) + τ 4 , R 1,6 = 4ζ(7) -ζ(3)ζ(4) -ζ(2)ζ(5) + ζ(5) - 1 2 ζ(4) + 1 3 ζ(3) - 1 4 ζ(2) + ζ (6) + τ 6 .
Remark 2. We point out here the analogy between formula (7) for R 1,2p and the "dual" formula

R 1,-2p = 1 -2p 2 ζ(1 -2p) + ζ (-2p) + τ -2p (p ≥ 1)
given in [7, Eq. ( 8)] where τ -p is defined by the series representation

τ -p = ∞ k=2 (-1) k+p ζ(k) k + p (p ≥ 1) .

Evaluation of R p,1

We now give an evaluation of the "reciprocal" sum R p,1 corresponding to the divergent Euler sum S p,1 .

Definition 3. Let σ p defined by σ 2 = 1 and, for p > 2,

σ p = 1 + (-1) p p + p-2 j=1 (-1) j ζ(p -j) (j -1)!(p -1 -j)! (p -1)! - 1 j . ( 9 
)
Example 3. The first values of σ p are

σ 2 = 1 , σ 3 = 1 2 ζ(2) , σ 4 = 2 3 ζ(3) - 1 3 ζ(2) + 1 2 , σ 5 = 3 4 ζ(4) - 5 12 ζ(3) + 1 4 ζ(2) , σ 6 = 4 5 ζ(5) - 9 20 ζ(4) + 9 10 ζ(3) - 1 5 ζ(2) + 1 3 .
Remark 3. We can deduce from [3, Eq. ( 27)] another interesting expression of σ p . Let us define the infinite sum Z(i, j) by

Z(i, j) = ∞ n=1 1 n i (n + 1) j for i, j ≥ 1 .

Partial fraction decomposition of

1 n i (n+1) j shows that Z(i, j) have an expression as Z-linear combinations of zeta values and integers. Explicitly,

Z(1, j) = j - j-2 r=0 ζ(j -r) (j ≥ 2) , Z(i, 1) = (-1) i-1 + i-2 r=0 (-1) r ζ(i -r) (i ≥ 2) , Z(i, j) = (-1) i j-2 r=0 i + r -1 i -1 ζ(j -r) + i-2 r=0 (-1) r j + r -1 j -1 ζ(i -r) + (-1) i-1 i + j -1 j -1 (i, j ≥ 2) .
Then, formula [3, Eq. ( 27)] may be translated into the identity

σ p = i+j=p 1 j Z(i, j) .
Proposition 2. For any positive integer p ≥ 2, we have

R p,1 = γζ(p) + ζ(p + 1) -S 1,p -σ p -ζ (p) -(-1) p τ p , ( 10 
)
where τ p and σ p are respectively defined by formulas (2) and [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF]. It follows that, for p ≥ 2,

R 2p,1 = γζ(2p) -p ζ(2p + 1) + p-1 j=1 ζ(2p -j)ζ(j + 1) -σ 2p -ζ (2p) -τ 2p . ( 11 
)
Proof. By summing (in the sense of Ramanujan summation) the following equations :

H (p) n n - 1 n ζ(p) = - 1 n +∞ m=n+1 1 m p = 1 n (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) , we get R n≥1 H (p) n n - ζ(p) n = - R n≥1 1 n +∞ m=n+1 1 m p = R n≥1 1 n (-1) p-1 (p -1)! ∂ p-1 ψ(n + 1) = - +∞ n=1 1 n +∞ m=n+1 1 m p + (-1) p (p -1)! +∞ 1 ∂ p-1 ψ(x + 1) 1 x dx ,
where the symbol R n≥1 denotes the R-sum of the series (see [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] for a precise definition). Since

+∞ n≥1 1 n +∞ m=n+1 1 m p = +∞ n=1 H n n p -ζ(p + 1) , this can be rewritten R n≥1 H (p) n n - ζ(p) n = ζ(p + 1) - +∞ n=1 H n n p + (-1) p (p -1)! +∞ 1 ∂ p-1 ψ(x + 1) 1 x dx .
Thus we have

R n≥1 H (p) n n = γζ(p) + ζ(p + 1) - +∞ n=1 H n n p + (-1) p (p -1)! +∞ 1 ∂ p-1 ψ(x + 1) 1 x dx , i.e. R n≥1 
H (p) n n = γζ(p) + ζ(p + 1) -S 1,p + (-1) p (p -1)! +∞ 1 ∂ p-1 ψ(x + 1) x dx . ( 12 
)
The integral in the right member of ( 12) is evaluated by performing p-1 successive integrations by parts. When p = 2, this is just

+∞ 1 ∂ψ(x + 1) x dx = ∞ 1 ψ(x + 1) + γ x 2 dx -1 , which, by (5), is -ζ (2) -τ 2 -1.
Hence, by [START_REF] Sury | Identities involving reciprocals of binomial coefficients[END_REF], we have

R n≥1 H (2) n n = γζ(2) + ζ(3) -S 1,2 -σ 2 -ζ (2) -τ 2 .
We now assume that p > 2. We have the identity

∂ p-k ψ(2) = (-1) p-k (p -k)! + (-1) p-k+1 (p -k)!ζ(p -k + 1) (p -k ≥ 1)
[6, Proposition 9.6.41] from which results the relation

(-1) p (p -1)! +∞ 1 ∂ p-1 ψ(x + 1) x dx = (-1) p ∞ 1 ψ(x + 1) + γ x p dx + 1 (p -1)! p-3 k=0 (-1) k k!(p -k -2)! ζ(p -k -1) - 1 (p -1)! p-2 k=0 (-1) k k!(p -k -2)! .
In this expression, the last term can be simplified by means of the formula

1 (p -1)! p-2 k=0 (-1) k k!(p -k -2)! = 1 p -1 p-2 k=0 (-1) k p-2 k = 1 + (-1) p p
[12, Eq. ( 14)]. After reindexation, we can also write

1 (p -1)! p-3 k=0 (-1) k k!(p-k-2)! ζ(p-k-1) = - p-2 j=1 (-1) j (j -1)!(p -j -1)! (p -1)! ζ(p-j) .
Moreover, by (3), we have

(-1) p ∞ 1 ψ(x + 1) + γ x p dx = p-2 j=1 (-1) j j ζ(p -j) -ζ (p) -(-1) p τ p .
Thanks to these simplifications, formula [START_REF] Sury | Identities involving reciprocals of binomial coefficients[END_REF] can then be rewritten

R n≥1 H (p) n n = γζ(p) + ζ(p + 1) -S 1,p -ζ (p) -(-1) p τ p -σ p , with σ p = 1 + (-1) p p + p-2 j=1 (-1) j (j -1)!(p -j -1)! (p -1)! ζ(p -j) - p-2 j=1 (-1) j j ζ(p -j) .
This completes the demonstration of the expected formula [START_REF] Ramanujan | Manuscript Book 2 of Srinivasa Ramanujan[END_REF]. Formula ( 11) is immediately deduced from Euler's formula [START_REF] Coppo | New identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF].

4 Values of R p,p

The case p = 1

The following formula [2, Eq. (3.23)] allows to extend formula [START_REF] Ramanujan | Manuscript Book 2 of Srinivasa Ramanujan[END_REF] to the case p = 1. We have

R 1,1 = 1 2 γ 2 - 1 2 ζ(2) + γ 1 + τ 1 , ( 13 
)
where γ 1 is the first Stieltjes constant and τ 1 is the constant defined by [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. A new direct proof of this formula is given below.

Proof of formula [START_REF] Wang | Euler sums and Stirling sums[END_REF]. The relation 

R 1,1 = 1 2 γ 2 + 1 2 ζ(2) - 1 2 + 1 2
ψ 2 (x) + 2 ψ(x) x + 1 x 2 dx = 2R 1,1 -γ 2 -ζ(2) + 1 .
Moreover, from [6, p. 145], we have

1 0 ψ 2 (x) - 2γ x - 1 x 2 dx = 2γ 1 -2ζ(2) + 1 .
Subtracting these two expressions, we obtain the following

2 1 0 (ψ(x) + γ) 1 x + 1 x 2 dx = R 1,1 -γ 2 -ζ(2) + 1 -(2γ 1 -2ζ(2) + 1) . Since (ψ(x) + γ) 1 x + 1 x 2 = ψ(x + 1) + γ x ,
we deduce the relation

2 1 0 ψ(x + 1) + γ x dx = 2R 1,1 + ζ(2) -γ 2 -2γ 1 .
Applying Lemma 1 with p = 1, we obtain formula (13) after division by 2.

The case p > 1

For p ≥ 2, the R-sums R p,p may be easily evaluated by means of the relation Thus, for p > 1, formula (16) follows immediately by replacing σ 2p by its expression given by ( 9) and is extendable to the case p = 1 by setting A 0 = 0.

R p,p = S p,p - ∞ 1 ψ p (x) x p dx , with ψ p (x) = (-1) p-1 (p -1)! ∂ p-1 ψ(x +
Example 5. We have the following relations: 

The odd case

1 0ψ 2

 12 (x + 1) dx [2, Eq. (2.6)] is a direct consequence of [2, Theorem 3]. Since ψ(x+1) = ψ(x)+1/x, this relation can be rewritten 1 0

Proposition 3 . 2 j=0(- 1 )

 321 -1 -j) + ζ (2p -1) -τ 2p-1 k (p -k)!(p + k -3)! ζ(p + 1 -k) k (p -k)!(p + k -3)! (p ≥ 3) . (15) For any integer p ≥ 1, we have R 1,2p + R 2p,1 = γζ(2p) + ζ(2p + 1) -2pj A j,p ζ(2p -j) -1 p (16)with A 0,p = 0 , andA j,p = (j -1)!(2p -1 -j)! (2p -1)! for j ≥ 1 .Proof. By adding identities (7) and (11), we get for p ≥ 2,R 1,2p + R 2p,1 = γζ(2p) + ζ(2p + 1) -2p-2j=1(-1) j j ζ(2p -j) -σ 2p .

R 1 , 2 +R 1 , 4 +R 1 , 6 +

 121416 R 2,1 = γζ(2) + ζ(3) -1 , R 4,1 = γζ(4) + ζ(5) R 6,1 = γζ(6) + ζ[START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF] 

Proposition 4 . 1 = 3 j=1(- 1 )

 4131 For any integer p ≥ 2, we haveR 1,2p-1 + R 2p-1,γζ(2p -1) + ζ(2p) -2pj C j,p ζ(2p -1 -j) -2ζ (2p -1) + 2τ 2p-1 (17) with C j,p = (j -1)!(2p -2 -j)! (2p -2)! -2 j for j ≥ 1 .

Proof. By adding identities ( 6) and ( 10), we get

Hence we have the following relation

from which formula (17) is derived by replacing σ 2p-1 by its expression given by [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF]. Note that, in the odd case, the constant term of σ 2p-1 is null.

Example 6. We have the following relations: