
HAL Id: hal-02879308
https://hal.science/hal-02879308

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Behavior-Driven Development for Assessing
User Interface Design Artifacts

Thiago Rocha Silva, Marco Winckler, Hallvard Trætteberg

To cite this version:
Thiago Rocha Silva, Marco Winckler, Hallvard Trætteberg. Extending Behavior-Driven Development
for Assessing User Interface Design Artifacts. The 31st International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE 2019), Jul 2019, Lisbon, Portugal. �10.18293/SEKE2019-054�.
�hal-02879308�

https://hal.science/hal-02879308
https://hal.archives-ouvertes.fr

DOI: 10.18293/SEKE2019-054

Extending Behavior-Driven Development for

Assessing User Interface Design Artifacts

Thiago Rocha Silva

Department of Computer Science,
Norwegian University of Science and

Technology (NTNU), Norway

thiago.silva@ntnu.no

Marco Winckler

SPARKS-i3S,
Université Nice Sophia Antipolis

(Polytech), France

winckler@unice.fr

Hallvard Trætteberg

Department of Computer Science,
Norwegian University of Science and

Technology (NTNU), Norway

hal@ntnu.no

Abstract — This paper presents a scenario-based approach to
specify requirements and tests by extending Behavior-Driven
Development (BDD) with the aim of ensuring the consistency
between user requirements and user interface design artifacts. The
approach has been evaluated by exploiting user requirements
specified by a group of potential Product Owners (POs) for a web
system to book business trips. Such requirements gave rise to a set
of User Stories that have been refined and used to automatically
check the consistency of task models, user interface (UI)
prototypes, and final UIs of the system. The results have shown our
approach was able to identify different types of inconsistencies in
the set of analyzed artifacts and consistently keep the semantic
traces between them.

Index Terms — Behavior-Driven Development (BDD); User
Interface Design Artifacts; Automated Requirements Assessment.

I. INTRODUCTION

Modeling is recognized as a crucial activity to manage the
abstraction and the inherent complexity of developing software
systems. As a consequence, software systems tend to be
designed based on several requirements artifacts which model
different aspects and different points of view about the system.
Considering that different phases of development require
distinct information, resultant artifacts from modeling tend to be
very diverse throughout the development, and ensuring their
consistency is quite challenging [1]. To face this challenge, extra
effort should be put on getting requirements described in a
consistent way across the multiple artifacts. Requirements
specifications should not, for example, describe a given
requirement in a user interface (UI) prototype which is
conflicting with its representation in a task model.

Behavior-Driven Development (BDD) [2] has aroused
interest from both academic and industrial communities as a
method allowing specifying testable user requirements in natural
language using a single textual artifact. BDD describes User
Stories (US) [3] and scenarios in a easily understandable way for
both technical and non-technical stakeholders. In addition, BDD
scenarios allow specifying “executable requirements”, i.e.
requirements that can be directly tested from their textual
specification. Despite providing support to automated testing of
user requirements, BDD and other testing approaches essentially
focus on assessing fully interactive artifacts such as full-fledged
(final) versions of user interfaces. Automated assessment of
model-based artifacts such as task models, UI prototypes, etc. is
not supported.

Motivated by such a gap, we have researched and developed
an approach based on BDD and User Stories to support the
specification and the automated assessment of functional aspects
of user requirements on user interface design artifacts such as
task models, UI prototypes, and final UIs [4]–[8]. This paper
presents a refined version of this approach and summarizes the
new results we got in a case study exploiting User Stories
specified by potential Product Owners (POs) to automatically
assess user interface design artifacts for a web system to book
business trips. The following sections present the foundations of
this work as well as the refined version of our approach and a
brief discussion of the results obtained with this case study.

II. FOUNDATIONS

A. Behavior-Driven Development (BDD)
According to Smart [9], BDD is a set of software engineering

practices designed to help teams focus their efforts on
identifying, understanding, and building valuable features that
matter to businesses. BDD practitioners use conversations
around concrete examples of system behavior to help understand
how features will provide value to the business. BDD
encourages business analysts, software developers, and testers to
collaborate more closely by enabling them to express
requirements in a more testable way, in a form that both the
development team and business stakeholders can easily
understand. BDD tools can help turn these requirements into
automated tests that help guide the developer, verify the feature,
and document the application.

BDD specification is based on User Stories and scenarios
which allow to specify executable requirements and test
specifications by means of a Domain-Specific Language (DSL)
provided by Gherkin. User Stories were firstly proposed by
Cohn [3]. North [10] has proposed a particular template to
specify them in BDD and named it as “BDD story”:

Title (one line describing the story)
Narrative:
As a [role], I want [feature], So that [benefit]
Scenario 1: Title
Given [context], When [event], Then [outcome]

In this template, BDD stories are described with a title, a
narrative and a set of scenarios representing the acceptance
criteria. The title provides a general description of the story,
referring to a feature this story represents. The narrative
describes the referred feature in terms of the role that will benefit
from the feature (“As a”), the feature itself (“I want”), and the

benefit it will bring to the business (“So that”). The acceptance
criteria are defined through a set of scenarios, each one with a
title and three main clauses: “Given” to provide the context in
which the scenario will be actioned, “When” to describe events
that will trigger the scenario and “Then” to present outcomes that
might be checked to verify the proper behavior of the system.
Each one of these clauses can include an “And” statement to
provide multiple contexts, events and/or outcomes. Each
statement in this representation is called a step.

B. User Interface Design Artifacts
1) Task Models: Task models provide a goal-oriented

description of interactive systems but avoiding the need of detail
required for a full description of the user interface. Each task can
be specified at various abstraction levels, describing an activity
that has to be carried out to fulfill the user’s goals. By modeling
tasks, designers are able to describe activities in a fine
granularity, for example, covering the temporal sequence of
tasks to be carried out by the user or system, as well as any
preconditions for each task [11]. The use of task models serves
multiple purposes, such as better understanding the application
under development, being a “record” of multidisciplinary
discussions between multiple stakeholders, helping the design,
the usability evaluation, the performance evaluation, and the
user when performing the tasks. Task models are also useful as
documentation of requirements both related with content and
structure. HAMSTERS [12] is a tool-supported graphical task
modeling notation for task modeling. In HAMSTERS, tasks can
be of several types such as abstract, system, user, and interactive
tasks. Temporal relationships between tasks are represented by
means of operators. Operators can also be of several types such
as enable, concurrent, choice, and order independent operators.
The temporal operators allow extracting usage scenarios for the
system. This is done by following the multiple achievable paths
in the model, with each combination of them generating an
executable scenario that can be performed in the system.

2) User Interface (UI) Prototypes and Final UIs: A UI

prototype is an early representation of an interactive system.

They encourage communication, helping designers, engineers,

managers, software developers, customers and users to discuss

design options and interact with each other. Prototypes are often

used in an iterative design process where they are refined and

become more and more close to the final UI through the

identification of user needs and constraints. While the beginning

of the project requires a low-level of formality with UI

prototypes being hand-sketched in order to explore design

solutions and clarify user requirements, the development phase

requires more refined versions frequently describing

presentation and dialog aspects of the interaction. By running

simulations on prototypes, we can determine and evaluate

potential scenarios that users can perform in the system [13]. The

presentation aspect of full-fledged user interfaces frequently

corresponds to how the user “see” the system. From the user’s

point of view, the presentation of a user interface actually is the

system, so if some feature is not available there, then it does not

exist at all. Mature UI versions are the source for acceptance

testing and will be used by users and other stakeholders to assert

whether or not features can be considered as done.

III. THE PROPOSED APPROACH

Our proposed approach for assessing the considered artifacts
is illustrated in Figure 1, where User Story scenarios are used to
ensure consistency in our target artifacts (task models, UI
prototypes and final UIs). Therein are exemplified five steps of
scenarios being tested against equivalent tasks in task model
scenarios, and the equivalent interaction elements in UI
prototypes and final UIs. In the first example, the step “When I
select ‘<field>’” corresponds to the task “Select <field>” in the
task model scenario. Such a correspondence is due to the fact
that the step and the task represent the same behavior, i.e.
selecting something, and both of them are placed at the first
position in their respective scenario artifacts. The interaction
element “field” that will be affected by such a behavior will be
assessed on the UI prototype and on the final UI. In both
artifacts, such a field has been designed with a CheckBox as
interaction element. The semantics of the interaction in
CheckBoxes is compatible with selections, i.e. we are able to
select CheckBoxes, so the consistency is assured.

Figure 1. The approach for assessing the different UI artifacts.

The same is true in the example with the second step (“When
I click on ‘<field>’”). There is a corresponding task “Click on
<field>” at the same second position in the task model scenario,
and the interaction element “Button”, that has been chosen to
address this behavior in both the UI prototype and the final UI, is
semantically compatible with the action of clicking, thus the
consistency is assured as well. In the third example, the step
“When I choose ‘value’ referring to ‘field’” is also compatible
with the task “Choose <field>” in the task model, and with the
interaction elements DataChooser and Calendar, respectively in
the UI prototype and in the final UI. Notice that, despite being
two different interaction elements, DataChooser and Calendar
support a similar behavior, i.e. both of them support the behavior
of choosing values referring to a field.

The example provided with the fourth step (“When I click on
‘<field>’”) illustrates an inconsistency being identified. Even
though there exists a corresponding task in the task model
scenario, the interaction elements that have been chosen to
address this behavior (TextInput in the UI prototype and
TextField in the final UI) are not compatible with the action of
clicking, i.e. such kind of interaction element does not
semantically support such an action. The semantics of
TextInputs (or TextFields) is receiving values, not being clicked.
Such an example is provided with the fifth step (“When I set

‘value’ in the field ‘<field>’”). For this step, the consistency is
assured because TextInputs and TextFields support the behavior
of having values being set on them. All this semantic analysis is
supported by the use of an ontology that models the interaction
elements and the interactive behaviors they support [14], [15].

The present strategy for assessment allows tracking some
key elements in the UI design artifacts and check whether they
are consistent with the user requirements. The solution has been
implemented in Java integrating multiple frameworks such as
JBehave, JDOM, JUnit, and Selenium WebDriver.

A. Alternatives for Performing the Approach
Depending on the project phase, our approach can be applied

in two ways. The first one is applied when the project is running,
and artifacts have already been designed. In such a case, our
approach can be used to assess such artifacts, indicating where
they are not in accordance with the specified requirements. The
second one refers to a project in the beginning, where no artifacts
have been designed yet. In this case, by using the ontology, they
can be modeled in a consistent way from the beginning, taking
into account the possible interactions supported by each
interaction element on the UI.

Figure 2. The graph of options for performing our approach (colors are used

to visually identify the different paths).

Figure 2 illustrates the resultant graph of options considered.
The colored lines indicate the possible paths to be taken in the
workflow. The yellow path indicates the design of scenarized
artifacts before writing formatted User Stories. The green path
indicates the opposite, while the blue path indicates both
activities in parallel. Notice that regardless the path chosen, the
extraction of scenarios is only possible after having designed the
scenarized artifacts, and the identification of requirements is a
precondition for all the other activities. Finally, to run tests on
the artifacts, it is required to have extracted scenarios and written
the User Stories. The approach benefits from the independence
for testing artifacts, i.e. tests can run on a single artifact or on a
set of scenarized artifacts which will be targeted at a given time.

IV. CASE STUDY

To investigate the potential of the approach, we have
conducted a case study with an existing web system for booking
business trips. We have studied the current implementation of
user requirements in this system, and by applying a manual
reverse engineering, we redesigned the appropriate task models

and UI prototypes for the system. Based on a set of User Stories
collected in a previous study [16], we refined it to simulate the
assessment of the resultant user interface design artifacts. The
aim of this present study is to provide a preliminary evaluation
regarding the extent of inconsistencies our approach is able to
identify in the targeted artifacts.

We started the study by setting up an initial version of User
Stories before reengineering initial versions of task models (in
HAMSTERS) and UI prototypes (in Balsamiq) from the existing
web system. After getting a first version of task models, we
extracted a representative set of scenarios from them. By
following our strategy for testing, we parsed and ran the initial
version of User Stories against the initial set of extracted
scenarios. As the strategy we follow for testing scenarios in task
models parses all the steps of each scenario at once, the first
round of results was obtained with a single battery of tests.
Following this step, we ran the same initial version of User
Stories against initial versions of Balsamiq prototypes. Unlike
the strategy for testing task models, the strategy we follow for
testing UI prototypes and final UIs parses each step of each
scenario at a time, so if an error is found out, the test stops until
the error is fixed. That requires to run several batteries of tests
until having the entire set of scenarios tested. Consequently, at
the end of running, the tested scenarios are fully consistent with
the UIs. Finally, we analyzed the testing results and the main
types of inconsistencies identified in each artifact.

In total, we set up for assessment 3 User Stories with 15
different scenarios, reengineered 3 task models (and extracted 10
scenarios from them), reengineered 11 UI prototypes, and tested
7 different final UIs. For scenarios extracted from task models,
testing results return the equivalent position of each task in the
US scenarios. For UI prototypes and final UIs, the expected
result for each step is the presence on the UI of one and only one
of the supported interaction elements designed to address a given
interactive behavior.

TABLE I. RESULTS AFTER ASSESSING THE ARTIFACTS

Artifact
Total

(Steps Analyzed)
Results

Consistent Inconsistent

Task Models 147 5 142

UI Prototypes 36 21 15

Final UIs 288 276 12

Table 1 summarizes the results obtained. For task models,
the most common source of the 142 inconsistencies identified
concerned the task gaps present in the beginning of the scenario.
As the assessment is performed in the extracted scenarios which
represent a sequential instance of the tasks in the task model, a
task gap in the beginning causes a domino effect in the
forthcoming tasks in the scenario. So even if the remaining tasks
in the scenario are semantically equivalent to the respective
steps, they will be shown as inconsistent once they will be found
in wrong positions due to this gap. For UI prototypes, from the
15 inconsistencies identified, we noticed they were mainly due
to interaction elements specified with different names in the step
and in the prototype. For final UIs, the high number of consistent
steps (276 out of 288) in the set of scenarios analyzed is due to
the need of fixing the inconsistency found before moving
forward to the next steps. This makes that the scenarios which

call previous ones, in order to reuse steps and reach a given state
of the system, already have these steps fully consistent during
the test. Most part of the inconsistencies on final UIs was due to
interaction elements that do not carry a unique and single
identifier (or carry a dynamically generated one) and, as such,
cannot be reached during the test.

We could also remark that some of the inconsistencies
identified showed to be more critical than others. While simple
inconsistencies such as differences in names of tasks and fields,
conflicts between expected and actual elements, and messages
and elements not found are easy to solve, conflicts between
specification and modeling, and different specification strategies
for task models represent more critical problems. On UI
prototypes, the presence of semantically inconsistent elements
as well as more than one element to represent the same field are
also critical problems. On final UIs, fields already filled-in
denotates inconsistencies that exposes important design errors.
During the test, we also noticed that some inconsistencies were
due to a wrong specification of the step in the US scenario, and
not to a problem in the design of the artifact itself. So, to fix these
inconsistencies, steps of US scenarios needed to be modified
during the battery of tests to obtain a consistent specification of
user requirements and artifacts. An immediate consequence of
this fact is that scenarios used to test a given version of an artifact
may be different than the ones which were used to test another
artifact previously. This makes regression tests essential to
ensure that a given modification in the set of US scenarios did
not break the consistency of other artifacts and ended up making
some artifact (that so far was consistent with the requirements)
inconsistent again.

As limitations of the approach, it is worthwhile to mention
that its current version covers only the assessment of
HAMSTERS task models, Balsamiq UI prototypes and web
final UIs. The need of extracting scenarios from task models to
perform testing in such artifacts, and tools that do not support
yet the automatic classification of errors are other limitations.

V. CONCLUSION AND FUTURE WORKS

This paper summarizes the new results we got by applying
our approach for specifying and checking the consistency of user
requirements on core user interface design artifacts. Compared
to plain-vanilla BDD, this approach benefits from (i) an
extension to assess other software artifacts than final UIs, and
(ii) a common vocabulary to be reused for specifying interactive
scenarios without requiring developers to implement the
mentioned behaviors. Compared to other approaches for
assessing requirements and artifacts, the term “test” is usually
not employed under the argument that such artifacts cannot be
“run”, i.e. executed for testing purposes, so in practice they are
just manually reviewed or inspected in a process called
verification. Manual verification of the software outcomes is
highly time-consuming, error-prone and even impracticable for
large software systems. Fully interactive artifacts such as final
UIs can in addition be validated by users who can interact with
the artifact and assess whether its behavior is aligned with their
actual needs. As within our approach we succeed automatically
running User Stories on software artifacts for assessing their
consistency with user requirements, we actually provide the
“test” component for both verification and validation of artifacts
in the software development. We consider this a big step towards

the automated testing (and not only the manual verification) of
software artifacts by means of a consistent approach allowing
fully verification, validation, and testing (VV&T).

Future works include evaluating the impact of maintaining
and successively evolving the mentioned artifacts throughout a
real software development process, besides investigating the
suitability of the approach for assessing a wider group of
artifacts, especially those related to conceptual aspects of
software modeling such as class diagrams. Concerning the tools,
the development of a plugin to suggest and autocomplete steps
in the User Story scenarios based on the interactive behaviors of
the ontology is also envisioned.

REFERENCES

[1] M. Winckler and P. Palanque, “Models as Representations for Supporting

the Development of e-Procedures,” in Usability in Government Systems,

Elsevier, 2012, pp. 301–315.

[2] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis, and A.

Hellesoy, The RSpec Book: Behaviour Driven Development with RSpec,
Cucumber, and Friends. Pragmatic Bookshelf, 2010.

[3] M. Cohn, User Stories Applied for Agile Software Development. Addison-

Wesley, 2004.

[4] T. R. Silva and M. A. A. Winckler, “Towards Automated Requirements

Checking Throughout Development Processes of Interactive Systems,” in

2nd Workshop on Continuous Requirements Engineering (CRE), REFSQ
2016, 2016, pp. 1–2.

[5] T. R. Silva, “Definition of a Behavior-Driven Model for Requirements

Specification and Testing of Interactive Systems,” in Proceedings of the
24th International Requirements Engineering Conference (RE 2016),
2016, pp. 444–449.

[6] T. R. Silva, J.-L. Hak, and M. Winckler, “Testing Prototypes and Final

User Interfaces Through an Ontological Perspective for Behavior-Driven

Development,” in HCSE 2016 and HESSD 2016, LNCS, vol. 9856,

Springer, 2016, pp. 86–107.

[7] T. R. Silva, J.-L. Hak, and M. Winckler, “An Approach for Multi-Artifact

Testing Through an Ontological Perspective for Behavior-Driven

Development,” Complex Systems Informatics and Modeling Quarterly,

no. 7, pp. 81–107, 2016.

[8] T. R. Silva and M. Winckler, “A Scenario-Based Approach for Checking

Consistency in User Interface Design Artifacts,” in Proceedings of the
16th Brazilian Symposium on Human Factors in Computing Systems (IHC
2017), 2017, vol. 1, pp. 21–30.

[9] J. F. Smart, BDD in Action: Behavior-driven development for the whole
software lifecycle, 1 edition. Manning Publications, 2014.

[10] D. North, “What’s in a Story?,” 2019. [Online]. Available:

https://dannorth.net/whats-in-a-story/. [Accessed: 01-Jan-2019].

[11] F. Paternò, C. Santoro, L. D. Spano, and D. Raggett, “W3C, MBUI - Task

Models,” 2017. [Online]. Available: http://www.w3.org/TR/task-models/.

[12] C. Martinie, P. Palanque, and M. A. Winckler, “Structuring and

Composition Mechanisms to Address Scalability Issues in Task Models,”

in INTERACT 2011, 2011, vol. 6948 LNCS, no. 3, pp. 589–609.

[13] M. Beaudouin-Lafon and W. E. Mackay, “Prototyping Tools and

Techniques,” in Prototype Development and Tools, 2000, pp. 1–41.

[14] T. R. Silva, J.-L. Hak, and M. Winckler, “A Formal Ontology for

Describing Interactive Behaviors and Supporting Automated Testing on

User Interfaces,” International Journal of Semantic Computing, vol. 11,

no. 04, pp. 513–539, 2017.

[15] T. R. Silva, J.-L. Hak, and M. Winckler, “A Behavior-Based Ontology for

Supporting Automated Assessment of Interactive Systems,” in

Proceedings of the 11th IEEE International Conference on Semantic
Computing (ICSC 2017), 2017, pp. 250–257.

[16] T. R. Silva, M. Winckler, and C. Bach, “Evaluating the usage of

predefined interactive behaviors for writing user stories: an empirical

study with potential product owners,” Cognition, Technology & Work,

2019.

