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Abstract

Left-Right (LR) asymmetry is essential for organ positioning, shape and function. Myosin 1D

(Myo1D) has emerged as an evolutionary conserved chirality determinant in both Drosoph-

ila and vertebrates. However, the molecular interplay between Myo1D and the actin cyto-

skeleton underlying symmetry breaking remains poorly understood. To address this

question, we performed a dual genetic screen to identify new cytoskeletal factors involved in

LR asymmetry. We identified the conserved actin nucleator DAAM as an essential factor

required for both dextral and sinistral development. In the absence of DAAM, organs lose

their LR asymmetry, while its overexpression enhances Myo1D-induced de novo LR asym-

metry. These results show that DAAM is a limiting, LR-specific actin nucleator connecting

up Myo1D with a dedicated F-actin network important for symmetry breaking.

Author summary

Although our body looks symmetrical when viewed from the outside, it is in fact highly

asymmetrical when we consider the shape and implantation of organs. For example, our

heart is on the left side of the thorax, while the liver is on the right. In addition, our heart

is made up of two distinct parts, the right heart and the left heart, which play different

roles for blood circulation. These asymmetries, called left-right asymmetries, play a funda-

mental role in the morphogenesis and function of visceral organs and the brain. Aberrant

LR asymmetry in human results in severe anatomical defects leading to embryonic lethal-

ity, spontaneous abortion and a number of congenital disorders. Our recent work has

identified a particular myosin (Myo1D) as a major player in asymmetry in Drosophila

and vertebrates. Myosins are proteins that can interact with the skeleton of cells (called

the cytoskeleton) to transport other proteins, contract the cells, allow them to move, etc.

In this work, we were able to identify all the genes of the cytoskeleton involved with myo-

sin in left-right asymmetry, in particular a so-called ’nucleator’ gene because it is capable

of forming new parts of the cytoskeleton necessary for setting up asymmetries.
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Introduction

Left-Right (LR) asymmetry, or chirality, is a universal feature of living organisms. It is essential

to organs for their positioning (e.g., heart on the left side), lateralized differentiation (e.g.,

heart, lungs) and proper directional coiling (e.g., gut, heart tube). The study of LR asymmetry

in model organisms has led to the identification of key molecular pathways and symmetry

breaking mechanisms [1–3]. While vertebrates use directional movement of cells (chick), ions

(Xenopus) or cilia-dependent nodal flow (mouse) as symmetry breaking processes, inverte-

brates (snail, nematode, Drosophila) establish LR asymmetry mostly through acto-myosin-

based mechanisms. In particular, work in Drosophila identified the conservedmyosin1D
(myo1D) gene as a major dextral determinant [4,5].myo1D establishes LR asymmetry through

interaction with the adherens junction [6,7], Hox genes [8], planar cell polarity [9] and cell

death pathways [10]. In flies, several organs are chiral and undergo stereotyped looping in the

dextral direction (testis, genitalia, gut)[11,12]. Dextral is the wild type orientation and thus cor-

responds to the situs solitus condition in Drosophila. Loss ofmyo1D function leads to a sinis-

tral or situs inversus phenotype, making organs undergo looping in the opposite direction. The

existence of two opposite phenotypes and previous genetic data suggest that two pathways

exists, one dextral and one sinistral, with dextral being ‘dominant’ over sinistral [8]. To date,

the genetic basis of sinistral asymmetry remains uncharacterized in any system, due to the lack

of dedicated genetic screens to identify genes with a specific role in sinistral development.

Our recent work showed thatmyo1D is able to induce de novo chirality at all biological

scales, from molecular to organismal level. Indeed, ectopic expression ofmyo1D in naïve tis-

sues like the larval epidermis or trachea is sufficient to induce their directional twisting [13].

These results indicate that Myo1D is not only necessary for native LR asymmetry but also suffi-

cient to induce de novo chirality at multiple scales [13].

Interestingly, recent work showed thatmyo1D is also involved in LR asymmetry of Xenopus

and zebrafish [14,15], hencemyo1D represents a unique dextral determinant whose function is

conserved across phyla. These findings, together with the existence of nodal-independent

mechanisms for LR development of the heart [16], further suggest thatmyo1D-dependent and

actin-based processes may represent a unifying mechanism controlling LR asymmetry in both

vertebrates and invertebrates. In further support of this view, recent work identified a muta-

tion in the diaphanous1 (dia1) gene as being important for controlling dextral chirality of snail

shell in Lymnaea stagnalis [17–19]. dia1 belongs to the family of formin genes, encoding con-

served factors involved in actin assembly [20,21].

While a role of actin and associated factors emerges as a central mechanism for LR asym-

metry establishment across phyla, the exact nature of actin factors and their interplay remain

largely unknown. To try addressing these questions, we have undertaken a dedicated genetic

screen aiming at identifying novel regulators of dextral and/or sinistral development in Dro-

sophila. In this study, we have screened 539 genes involved in cytoskeleton homeostasis and

identified 8 novel candidate genes whose loss-of-function leads to LR asymmetry defects. We

have further characterized the role of the formin DAAM (Dishevelled Associated Activator of

Morphogenesis), showing that it is a LR-specific actin nucleator essential formyo1D function

both in native and de novo LR asymmetry. Of note, DAAM is also playing a critical role in the

sinistral pathway, making it a unique common denominator of Drosophila LR pathways. Our

genetic screen further identified flightless (fli), chickadee (chic; encoding Profilin) and the src

family non-receptor tyrosine kinase Tec29, which have previously been identified as regulators

of DAAM for actin nucleation and F-actin polymerization [22–24]. Altogether, our results

uncover the DAAM pathway as a key regulator providing a specific F-actin network essential

formyo1D-dependent LR asymmetry.
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Results

Genetic screen to identify cytoskeleton regulators important for

Drosophila LR asymmetry

Myo1D acts as a dextral determinant, necessary and sufficient to drive dextral development of

native LR organs and to induce de novo chirality of symmetrical ones [4,5,13]. In the absence

ofmyo1D activity, native asymmetrical organs are inverted along the LR axis (mirror image

orientation; Fig 1A), hence revealing the existence of a ‘recessive’ sinistral pathway. So far, no

gene controlling sinistral development specifically has been identified. In order to get new

insights into both dextral and sinistral LR pathways, we have designed a dual genetic screen in

which candidate genes with a role in either dextral, sinistral or both pathways could be poten-

tially identified (Fig 1B). A tester line expressing UAS-myo1D-RNAi in themyo1D-expression

domain (myo1D-gal4) is crossed to a collection of UAS-lines expressing RNAi against selected

genes (UAS-‘X’-RNAi). The progeny of this cross leads to i) flies expressing UAS-‘X’-RNAi in

themyo1D domain, allowing to test the role of candidate genes in the dextral pathway, and ii)

flies co-expressing UAS-myo1D-RNAi (sinistral phenotype) and UAS-‘X’-RNAi, allowing to

screen for candidate genes involved in the sinistral pathway. Through this screening scheme,

we aimed at identifying cytoskeleton regulatory genes involved in LR asymmetry. Based on the

Gene List Annotation for Drosophila (GLAD) database [25] and Perkins et al. [26], we have

selected 539 candidate genes annotated as playing a potential role in actin or microtubule cyto-

skeleton regulation (S1 Table), and tested their involvement in dextral and/or sinistral devel-

opment. 1–3 RNAi lines targeting each individual candidate gene were used for screening. In

wildtype males, genitalia rotate by 360˚ clockwise (or dextral) while rotation is inverted in

myo1D-RNAimales (sinistral; ranging from -45˚ to -360˚). The extent of genitalia rotation was

used as an external marker to determine the modifying effect of candidate gene silencing in

either the dextral or the sinistral pathway (Fig 1C). Among 539 candidate genes tested, most

(511; 94.5%) did not show any phenotype while 20 (4%) led to lethality (Fig 1D) using either

myo1D-gal4 or an alternative Gal4 line (Abd-B-gal4). Interestingly, out of 539 genes, 8 (1.5%)

(chickadee (chic),DAAM, lethal(2) giant larvae (l(2)gl), rhea/talin, flightless (fli), Tec29, Diapha-
nous (dia),myospheroid (mys)) showed a specific phenotype in either dextral (Fig 1E), sinistral

(Fig 1F) or both pathways. Among the positive hits, fli, chic,mys, rhea and DAAM showed the

strongest phenotype. In particular, loss of DAAM activity led to a strong and fully penetrant

no-rotation phenotype in amyo1D-RNAi context. Hence, DAAM flies loose asymmetry and

become symmetrical, indicating that this gene plays an essential role in sinistral development.

Here, we will focus on the role of the actin nucleator DAAM in laterality.

The formin DAAM plays a specific role in (sinistral and dextral) LR

asymmetry

The Drosophila DAAM gene encodes for two protein isoforms: a short isoform (DAAM-PB,

1153 aa) and a long one (DAAM-PD, 1463 aa) harboring an extra featureless domain (310 aa)

at its N-terminus (Fig 2A)[27]. In order to test for an isoform-specific role in LR asymmetry, we

compared the phenotype induced by RNAi either targeting the two isoforms (DAAM-RNAi) or

selectively targeting the N-terminal domain of DAAM-PD (DAAM-PD-RNAi). Interestingly,

results show that knock-down of DAAM-PD recapitulates the sinistral-to-no-rotation pheno-

type, suggesting a specific or primary role of the long isoform in genitalia rotation (Fig 2B). The

weaker effect using this DAAM-PD RNAi line may be due to reduced level of expression or effi-

ciency. A specific role of DAAM-PD was further confirmed by rescue experiments using

expression of specific isoforms (Fig 3B). Interestingly, a form of DAAM-PD which is mutated
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in the FH2 nucleation domain (DAAM-PD-I1042A) could not rescue the RNAi phenotype (Fig

3B), indicating that actin assembly is essential for DAAM function in LR asymmetry.

In addition to DAAM, the fly genome encodes 5 other formin genes: dia, Formin-related
(Frl), Formin homology 2 domain containing (Fhos), Formin3 (form3) and cappuccino (capu).

In order to assess formin specificity in LR asymmetry, we tested the role of all formin genes in

dextral and sinistral pathways. Data show that only dia silencing can induce a weak phenotype

in the sinistral pathway (Fig 2C and Fig 1E). In addition to formins, actin can be nucleated

through the tandem WH2 domain-based Spire protein and the Arp2/3 complex (Fig 2D). We

thus tested the potential role of these actin nucleators in LR asymmetry. Our results show that

except for a weak effect of Arp2, none of these factors showed a significant LR phenotype in

either dextral (Fig 2E) or sinistral (Fig 2C) pathway. Additionally, except for dia showing a

strong interaction (see below) and a weak effect of capu, their combined silencing together

with DAAM-RNAi did not enhance the DAAM phenotype (Fig 2F). Altogether, these results

suggest that the formin DAAM plays a major and specific role in LR asymmetry, likely through

promoting the assembly of a specific F-actin structure important for chirality.

DAAM is partly redundant with Diaphanous for dextral genitalia LR

asymmetry

In amyo1D-RNAi context, the loss of DAAM induces a no-rotation phenotype, indicating an

essential role in sinistral development. To test if DAAM is a general factor for LR asymmetry,

we next analyzed the potential role of DAAM in dextral development. Silencing of DAAM by

using moderate to strong drivers (myo1D-Gal4, AbdB-Gal4) led to a partial dextral phenotype,

which could be increased upon doubling RNAi-expressing transgenes, leading to the appear-

ance of some non-rotated flies (Fig 3A). Interestingly, expressing RNAi against the DAAM-PD

long isoform could also induce rotation defects, confirming a role of this isoform in LR asym-

metry. Of note, the DAAM phenotypes could almost be completely rescued upon expression

of DAAM-PD (long) but less efficiently with DAAM-PB (short), further suggesting a specific

role of the long isoform in LR asymmetry (Fig 3B).

The fact that i) DAAM silencing led to only partially rotated genitalia and ii) dia showed a

weak phenotype (Fig 1E), led us to test for potential redundancy of DAAM with other formins

in dextral development. We thus silenced both DAAM and other formins in the genitalia (Fig

2F) and found that removing both DAAM and dia significantly enhanced the DAAM pheno-

type in the dextral pathway (Fig 2F and Fig 3C). These results suggest that while DAAM plays

an essential role in the sinistral pathway, it has a partly redundant function with dia for dextral

development. Hence, in genitalia, the dextral pathway appears more robust than the sinistral

one with regard to formin function.

Fig 1. Genetic screen to identify new regulators of LR asymmetry. A, Schematic representation of dextral (wildtype, blue spermiduct),

sinistral (myo1Dmutant, red spermiduct) and non-rotated genitalia (green spermiduct). Posterior is up. SD, spermiduct; HG, hindgut; SP,

sperm pump; GP, genital plate. B, Schematic representation of the dual genetic screen used in this study, allowing screening for potential

dextral and/or sinistral factors. Gal4 and UAS are abbreviated as ‘>‘, after or before their name, respectively. C, Description of the color code

used to describe the extent of genitalia rotation, a schematic genital plate is represented on the left side. D, dorsal; V, ventral; DF, dextral full;

DP, dextral partial; NR, no rotation; SP, sinistral partial; SF, sinistral full. D, Summary of the screen results. From 539 genes tested, 20 led to

lethality and 8 (1.5%) showed a specific LR phenotype (in order of phenotypic strength:DAAM, chic, fli, Tec29, rhea,mys, dia, l(2)gl)(see E,

below). E, Phenotype induced by candidate genes in the sinistral pathway, usingmyo1D-Gal4 or Abd-B-Gal4 drivers. Color code as in C. F,

Phenotype induced by candidate genes in the dextral pathway, usingmyo1D-Gal4 or Abd-B-Gal4 drivers. Color code as in C. In E and F:

Numbers in parenthesis on the right side of color bars indicate the number of individuals analyzed for each genotype; bars with different colors

represent the percentage of occurrence of a given genitalia posture, as described in C. Numbers above bars indicate Wilcoxon rank sum test p-

values. P-value threshold for significance of the difference between compared genotypes is defined as: �:<1e-5; ��:<1e-8; ���:<1e-11; ����:

<1e-14. NA: not applicable.

https://doi.org/10.1371/journal.pgen.1008758.g001
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To further check if the effect of DAAM is dependent on the Myo1D dextral determinant,

we expressed DAAM RNAi inmyo1D null heterozygous flies (myo1Dk2/+). In this condition,

we observed a strong enhancement of the phenotype, with 90% of the flies displaying a no-

rotation phenotype. Enhancement was also induced upon knock-down of the DAAM-PD long

isoform (Fig 3A). Together, these results indicate that DAAM plays amyo1D-dependent role

in the genitalia dextral pathway, redundantly with the Dia formin.

DAAM is a general factor controlling asymmetry of LR organs

Our results indicate a clear role of DAAM in genitalia rotation, with variable strength in the

dextral and sinistral pathways. We next checked whether DAAM could also control LR asym-

metry of other lateralized organs. During pupal development, the hindgut undergoes coiling

which leads to the formation of a single dextral loop in adults (Fig 3D). Recent work has identi-

fied the H1 domain of the imaginal ring as a specific LR organizer for hindgut looping, in

which Myo1D is specifically expressed and necessary [9]. Interestingly, we found that expres-

sion of DAAM-RNAi in the H1 hindgut organizer (using bynGal4 driver) can lead to a fully

penetrant non-looped phenotype (Fig 3E). As for the genitalia, expression of a DAAM-PD-spe-

cific RNAi can recapitulate the gut phenotype of DAAM, although the penetrance is not as

strong. We could not test a specific role of DAAM in hindgut sinistral development as its

silencing already leads to non-rotated hindguts in 100% of the flies. Therefore, and in contrast

to genitalia, silencing ofDAAM in the hindgut is sufficient to completely block dextral looping.

Hence, DAAM can be essential (hindgut) or have partly redundant function (genitalia) with

another formin for LR asymmetry. Nonetheless, these results indicate that DAAM is a general

regulator of LR asymmetry in Drosophila, likely affecting all lateralized organs.

Myo1D and DAAM are part of the same protein complex in LR organizers

Myo1D has previously been shown to directly bind to DE-cadherin and β-catenin, suggesting

that the adherens junction may serve as a docking platform important for Myo1D chiral activ-

ity [4,6]. Because DAAM andmyo1D genetically interact, we next assessed a potential physical

interaction between the two proteins, by performing co-immunoprecipitation (Co-IP) experi-

ments from S2 cell extracts expressing tagged proteins (Fig 4A and 4B). As a control, Myo1D-

GFP could not be immunoprecipitated using an EB1-3XFlag protein (Fig 4Ba,b). Full-length

Myo1D tagged with GFP in combination with either full-length DAAM-PD or DAAM–PB

tagged with Flag were co-expressed in S2 cells. Anti-Flag immunoprecipitation revealed that

GFP-tagged Myo1D co-purified with both isoforms of DAAM (Fig 4Aa). In order to identify

the Myo1D-binding domains of DAAM further, GFP-tagged Myo1D was co-expressed with

either N-DAAM (aa1-430 of DAAM-PB, corresponding to aa311-aa741 of DAAM-PD; see Fig

2A) or C-DAAM (aa568-1153 of DAAM-PB, corresponding to aa878-aa1463 of DAAM-PD)

both tagged with Flag. Although Myo1D co-purified with both N-DAAM and C-DAAM, the

GFP signal was stronger in case of N-DAAM immunoprecipitation (Fig 4Ab), suggesting a

Fig 2. The DAAM formin plays a specific role in (sinistral and dextral) LR asymmetry. A, Schematic representation of the two DAAM isoforms (DAAM-PB, 1153 aa;

DAAM-PD, 1463 aa) with conserved domain organization. As compared to the short isoform, the DAAM-PD long isoform contains 310 extra amino acids on the N-

terminus which are encoded by a specific exon which contains no conserved protein motif. FH, Formin Homology domain; GBD, GTPase Binding Domain; DD,

Dimerization Domain; CC, coiled-coiled domain; DAD, Diaphanous Auto-inhibitory Domain; DID, Diaphanous inhibitory Domain. B, Phenotype induced upon

silencing of DAAM isoforms in sinistral development. To test for a potential sinistral activity, candidate genes are silenced in amyo1D loss-of-function background

(myo1D>>Dicer-2>>myo1D-RNAi background). C, Phenotype induced upon silencing all Drosophila formins in sinistral development. To test for a potential sinistral

activity, candidate genes are silenced in amyo1D loss-of-function background (myo1D>>Dicer-2>>myo1D-RNAi background). D, List of known Drosophila actin

nucleators (including 6 formin genes, Arp2/3 complex and WH2 domain nucleator) which have been tested for a potential role in LR asymmetry. E, Phenotype induced

by loss-of-function of actin nucleators in the dextral pathway. F, Genetic interaction between DAAM and other actin nucleators. To test genetic interaction, flies are

silenced for bothDAAM and candidate actin nucleators. In B-F, the distribution of phenotypes and statistical analysis is as described in Fig 1 legend.

https://doi.org/10.1371/journal.pgen.1008758.g002
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preferential binding surface between Myo1D and the common N-terminal part of both

DAAM isoforms. DAAM and Myo1D being found in the same protein complex, we next char-

acterized their intracellular localization in LR organs. To this goal, we performed quantitative

co-localization analysis of knock-in fusion proteins (Fig 4D and 4E; S1 Fig) and overexpressed

proteins (Fig 4F and 4G) in genitalia and hindgut LR organizers (named A8 and H1, respec-

tively). DAAM is found at the membrane and in puncta in both tissues. Results show that

DAAM and Myo1D co-localize with cell membranes in these two cell types (Fig 4D–4G) and

with DE-cadherin in hindgut LR organizer (S1 Fig), reinforcing a model of DAAM and

Myo1D closely interacting in cells controlling organ asymmetry.

To further confirm this view, we determined the temporal requirement formyo1D and

DAAM using the TARGET method [28], which allows the control of gene expression in space

and time through a thermosensitive Gal4 driver. Results show that both genes are required

during the same time window preceding genitalia rotation, between days 5–6 of development

(Fig 4C)[4].

Altogether, these results support a model of DAAM and Myo1D interaction in the same

protein complex in LR organizer cells, important for proper asymmetry of target organs.

Abd-B controls DAAM expression in the genitalia LR organizer

Previous work has shown that the expression of Myo1D in the genitalia LR organizer (A8 seg-

ment) is under the control of the Hox gene Abd-B for dextral development. Additionally, Abd-
B is known to be essential for sinistral chirality as a double loss of Abd-B andmyo1D leads to

non-rotated genitalia [8]. Because of the dual role of DAAM in both dextral and sinistral path-

ways, we tested a potential regulation of the DAAM gene by Abd-B. Results show that silencing

Abd-B specifically in themyo1D domain strongly reduced the expression of DAAM in the gen-

italia LR organizer (Fig 5A and 5B). Although we do not show direct regulation, these data sug-

gest DAAM as a novel and major target gene of Abd-B in genitalia, essential for sinistral LR

asymmetry. Therefore, in accordance with the Hox gene phenotype, Abd-B appears to control

two essential factors in the genitalia LR organizer, DAAM and Myo1D, which are essential for

sinistral and dextral development, respectively.

Profilin and Tec29 cooperate with DAAM for LR asymmetry

Similar to other formins, DAAM contains two formin homology domains, FH1 and FH2,

allowing the protein to interact with Profilin/G-actin and nucleate F-actin, respectively (Fig

6A). Our genetic data show that the FH2 domains is essential for DAAM function in laterality

(Fig 3B). It has been shown that DAAM controls the formation of actin filaments in several tis-

sues, including muscles [27], trachea [24] and neurons [29]. DAAM has been shown to interact

with a number of regulators modulating its nucleating activity and F-actin assembly. Of these,

Profilin is an actin monomer binding protein, which is able to interact with the FH1 domain,

and thought to provide monomer supply for polymerization [23]. Additional interactors

Fig 3. DAAM function in genitalia and hindgut LR asymmetry. A, Functional requirement ofDAAM for dextral genitalia development. DAAM function is

reduced using RNAi lines targeting both DAAM isoforms or only the long one (DAAM-PD). Genetic interaction withmyo1D is tested in heterozygous conditions

(lines 7–9). B, Rescue experiments showing the specificity ofDAAM function in dextral genitalia development. While a wild type DAAM-PB or DAAM-PD can

rescue the loss of DAAM function, a mutant form of DAAM-PD in the FH2 nucleation domain (DAAM-PD-I1042A) cannot. An over-rotation phenotype is

observed upon DAAM-PD expression (this phenotype has been added to our color code: DE, extra dextral; pink arrow on genitalia scheme). C, The functional

redundancy betweenDAAM and dia for dextral genitalia development has been tested by combining loss of DAAM and dia function (lanes 1–4, controls; lanes 5–7,

double loss-of-function). D, Loss ofDAAM function induces a non-rotated hindgut phenotype. Photographs are dorsal views of adult fly abdomens after feeding

with a blue dye to reveal hindgut shape (dotted line). Phenotype schematized below photograph. E, Phenotype induced by loss-of-function of DAAM isoforms in

hindgut looping. Color code for phenotype description is as described in D. In A-C and E, the distribution of phenotypes and statistical analysis is as described in

Fig 1 legend.

https://doi.org/10.1371/journal.pgen.1008758.g003
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include the Src family non-receptor tyrosine kinase Tec29, which was identified as an enhancer

of the DAAMEx1 tracheal phenotype [24], and fli, encoding a gelsolin family protein, that

appears to regulate the actin assembly activity of both Daam1 and mDia in mouse cells [22].

Very interestingly, our genetic screen allowed to identify chic, Tec29 and fli as important regu-

lators of Drosophila LR asymmetry (Fig 1D–1F).

Silencing of fli, chic and Tec29 either induced non-rotation (fli) or partial genitalia rotation

defects (fli, chic, Tec29), indicating that like DAAM, they participate to both sinistral and dex-

tral pathways (Fig 1D–1F). Furthermore, we could show that DAAM and chic interact geneti-

cally for LR asymmetry, as reducing their activity leads to a strong enhancement of the

phenotype, with most of the flies (90%) showing non-rotated genitalia (Fig 6C). A similar

interaction could also be observed with Tec29 (Fig 6D). Altogether, these data suggest that a

DAAM pathway involving DAAM, Tec29 and chic (and potentially fli) is involved in the con-

trol of laterality in Drosophila.

DAAM is essential for de novo LR asymmetry induced by Myo1D and

Myo1C

Myo1D is necessary for dextral laterality. Our recent work further showed that ectopic expres-

sion of Myo1D is sufficient to induce chirality of the whole larval body, which undergoes

directional twisting (referred to as dextral by convention)[13](Fig 7B). These results indicate

that Myo1D is not only necessary for native LR asymmetry but also sufficient to induce de
novo chirality. The Drosophila genome contains a paralogous class 1 Myosin, Myosin1C,

which does not play any role in LR asymmetry. However, overexpression of Myo1C can induce

twisting of larval body and trachea, but with an opposite (sinistral) direction to that of Myo1D

[13](Fig 7C). The chiral activity of both Myo1D and Myo1C has been shown to depend on

their head motor domain and on chic [13]. In order to assess the role of DAAM in de novo LR

asymmetry, we have modulated the level of DAAM inmyo1D ormyo1C gain-of-function

twisted larvae. Expression ofmyo1D in the larval epidermis using the Tsh-Gal4 driver induces

180˚ dextral rotation of the larval body (Fig 7B). We show that co-expression of DAAM-RNAi
suppressed this phenotype, with 50% of the larvae showing 90˚ dextral rotation. Interestingly,

expression of a DAAM-PD-RNAi had a stronger suppression effect, with most larvae showing

a 90˚ rotation and few ones with normal posture (Fig 7B). Reduction of DAAM could also

strongly suppress themyo1C-induced sinistral larval twisting phenotype, indicating that

DAAM is essential for de novo chirality induced by both Myosins (Fig 7C).

We next tested the effect of DAAM overexpression inmyo1D ormyo1C twisted larvae.

Strikingly, co-expression of DAAM-PD with Myo1D or Myo1C led to an enhancement of the

twisting phenotype induced by each myosin. While single expression ofmyo1D (using cut-
Gal4) ormyo1C (using tsh-Gal4) led to 90˚ dextral (Fig 7D) and 90˚ sinistral (Fig 7E) larvae,

respectively, co-expression of DAAM-PD was able to enhance the phenotype leading to larvae

Fig 4. Spatial and temporal coupling of DAAM and Myo1D in LR organizer cells. A, Co-Immunoprecipitation experiments showing

interaction between Myo1D and DAAM full length (Aa), N-DAAM or C-DAAM (Ab) in the same protein complex. B, Control Co-IP experiment

showing that Myo1D-GFP does not show unspecific interaction with another Flag-tagged protein (EB1-3xFlag). Scale unit for blots is kDa. IgG

High, IgG High Chain; IgG Light, IgG Light chain. C, Temporal requirement for DAAM andmyo1D during genitalia rotation. Time (bottom) and

developmental (upper part) scales are shown. D-G Intracellular localization of DAAM and Myo1D in the hindgut LR organizer cells (H1, white

bracket)(D,F), or genital disc LR organizer cells (A8, dotted line)(E,G) at the third instar larval stage. Knock-in fusion proteins DAAM::GFP and

Myo1D::mCherry (D,E) are expressed under the control of their respective endogenous regulatory sequences. Tagged proteins DAAM::GFP and

Myo1D::Flag (F, G) are expressed under the control of themyo1D-Gal4 driver. Images on the right are cropped single z-plane images

corresponding to the white rectangles on the left panel. Plots represent fluorescence intensity profile along the dotted lines in cropped area.

Quantification of DAMM and Myo1D co-localization in hindgut (D,F) and genitalia (E,G), using Pearson Correlation Coefficient (PCC) and

Maners Co-localization Coefficient (MCC).

https://doi.org/10.1371/journal.pgen.1008758.g004
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twisted by 180˚ (Fig 7D and 7E). Of note, an FH2 domain mutant form of DAAM-PD

(DAAM-PD-I1042A) could not enhance the phenotype of either myosin (Fig 7D and 7E),

indicating that the actin assembly activity of DAAM is also essential for de novo asymmetry.

These results thus indicate that DAAM is essential for de novo asymmetry and that it is a limit-

ing factor for the chiral activity of Myo1D as well as that of Myo1C.

DAAM overexpression using the cutGal4 line did not show any phenotype on its own (Fig

7D), while its expression using the stronger GAL4 line tsh led to 90˚ twisted sinistral larvae

(Fig 7E and 7F). This result was surprising and suggested that, according to the above results,

DAAM may be inducing sinistral twisting through endogenous Myo1C. To test this hypothe-

sis, we overexpressed DAAM together withmyo1C-RNAi (Fig 7F). In these conditions, the

DAAM sinistral phenotype was strongly suppressed, further reinforcing the view that DAAM

acts through Myosins to set chirality.

Discussion

In this study, we identified the formin DAAM as an essential factor for both native and de
novo LR asymmetry. Our results further reveal that DAAM is important not only formyo1D-

dependent dextral chirality but also for the recessive sinistral pathway. Thus, DAAM repre-

sents a specific actin nucleator essential for all forms of Drosophila LR asymmetry.

Actin nucleation, cell polarity and cell adhesion are important for LR

asymmetry

Our genetic screen allowed us to identify a number of new regulators of LR asymmetry. Based

on their known function, candidate genes can be sorted into three main categories: i) DAAM,

dia, fli, chic and Tec29, that are likely to work together to control actin nucleation and F-actin

polymerization, ii) rhea/talin andmys, which are involved in cell adhesion through integrins,

and, iii) l(2)gl which is involved in adherens junction and apico-basal polarity. These findings

are entirely consistent with current knowledge in fly and vertebrate models. First, the zebrafish

lgl2 gene has been shown to be important for E-cadherin localization at the adherens junction

in the Kupffer vesicle (the LR organizer in fish), with lgl2mutants showing reduced vesicular

lumen and cilia number [30]. Second, the Myo1D protein has been shown to directly interact

with β-catenin and DE-cadherin in the genitalia [4,6], and a role of Myo1D in the chirality and

remodeling of the adherens junction has been established in the embryonic hindgut [7] and

adult male genitalia [31]. We therefore speculate that l(2)glmay be involved in the interaction

between Myo1D and the adherens junction for proper LR asymmetry.

The fact that rhea/talin andmys are involved in integrin adhesion suggests an important

role of cell-extracellular matrix (ECM) adhesion for genitalia LR asymmetry. Of note,

Fig 5. Abd-B controls the expression of DAAM in the genitalia LR organizer. A, Upper panel, overview of the

expression of Abd-B (red) and DAAM (green) in control genitalia imaginal disc and genitalia LR organizer (A8, dotted

line). Lower panel are single z-plane images at higher magnification corresponding to the region highlighted by white

rectangles on the upper panel. B, Upper panel, overview of the expression of Abd-B (red) and DAAM (green) in

genitalia imaginal disc expressing Abd-B RNAi against Abd-B in the LR organizer (A8, dotted line). Lower panel, high

magnification of the expression of Abd-B and DAAM. Region corresponds to the box (white rectangle) shown in

upper panel. C, Quantification of the reduction of DAAM and Abd-B immunostaining signal in control and Abd-B
RNAi condition. Quantified regions correspond to yellow dotted line squares in A and B. A9 is a domain adjacent to

A8 in which the Abd-B RNAi is not expressed. Signal intensity is calculated as an “A8 cell signal/A9 average cell signal”

ratio and significance for difference between conditions assessed with a T-test. p-value is indicated in the brackets

showing compared conditions. Threshold for significance of the difference between compared genotypes is defined as:
�:<0.05; ��:<0.01; ���:<0.001.

https://doi.org/10.1371/journal.pgen.1008758.g005
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Fig 6. Profilin (Chic)and the Tec29 cooperate with DAAM for LR asymmetry. A, Schematic representation of DAAM protein domains and their role in actin

dynamics. FH, Formin Homology domain; GBD, GTPase Binding Domain; DD, Dimerization Domain; CC, coiled-coiled domain; DID, Diaphanous Inhibitory

Domain; DAD, Diaphanous Auto-inhibitory Domain. Profilin (Chic) binds to the FH1 domain while the FH2 domain is implicated in actin nucleation. DAAM-PD

proteins bearing a point mutation in the FH2 domain (I1042A) are actin-polymerization incompetent mutant forms. B, Dextral phenotype induced by profilin/chic loss-

of-function. Silencing of chic induces genitalia rotation defects. C, Genetic interaction betweenDAAM and chic. While silencing chic orDAAM individually leads to a

PLOS GENETICS DAAM actin nucleator and left-right asymmetry

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008758 April 23, 2020 14 / 23

https://doi.org/10.1371/journal.pgen.1008758


mutations in the Drosophila tenectin gene, encoding a ligand for PS2 integrin, can induce gen-

italia rotation defects [32], and recent work showed that genitalia rotation involves cell interca-

lation and asymmetry of junction remodeling [31]. A role for cell adhesion and ECM has also

been shown in vertebrates for LR asymmetry. In particular, work in chick showed that the

asymmetrically expressed N-Cadherin is important for Pitx2 expression and heart looping

[33]. Additionally, N-cadherin controls the asymmetry of the ECM in the dorsal mesentery

that is essential for proper gut looping [34]. Future work will help to characterize the precise

role played by the adhesion genes identified in our screen during Drosophila LR asymmetry

and chiral morphogenesis.

While genetic screening allowed identifying new factors important for LR asymmetry, it

also provided information about factors, gene families or cellular functions that are likely not

being involved in the process. In particular, genes involved in microtubule formation or regu-

lation have not been identified as potential regulators of Drosophila chirality. This observation

suggests that unlike vertebrates, in which microtubules and associated molecular motors play

an important role for cilia-driven flow and asymmetry, Drosophila does not depend on micro-

tubule cytoskeleton for establishing LR asymmetry. Hence, while Drosophila rely exclusively

on actin-based processes, vertebrates use both systems (actin and microtubules) for establish-

ing LR asymmetry. Nevertheless, Myo1D is the sole common denominator between inverte-

brates and vertebrates [14,15], and it will be interesting to characterize how Myo1D, actin and

microtubules interact for establishing vertebrate LR asymmetry.

The DAAM pathway is essential for Drosophila LR asymmetry

Our screen and analysis show that the formin DAAM is essential for both sinistral and dextral

development. Genetic invalidation of all Drosophila actin nucleators (formins, spire, Arp2/3)

individually or in combination with DAAM shows that the formin DAAM is an LR-specific

actin nucleating factor (Fig 2). Our genetic data also suggest that the long form of DAAM

(DAAM-PD) may have a specific function during LR asymmetry, which might be linked to

the extra N-terminal domain present in this protein isoform. Finally, we show that the FH2

actin assembly domain of DAAM is essential for both normal and de novo laterality (Fig 3).

Based on our results, we propose a model in which DAAM and associated regulators (Chic,

FliI, Tec29) build a specific F-actin network that serves as a substrate for Myo1D function.

Because Myo1D has been shown to induce chiral movement of F-actin in an in vitro gliding

assays, we speculate that interaction between Myo1D and the DAAM-dependent F-actin net-

work (daamF-actin) induces a chiral cytoskeleton. Since Myo1D has been shown to bind

directly to DE-cadherin and β-catenin, Myo1D could serve as a scaffold and determinant at

the adherens junction for assembling a DAAM-complex and a chiral cytoskeleton (Fig 7G). As

a result of the formation of the tripartite complex (Myo1D, daamF-actin, AJs), cell-cell adhe-

sion would be biased and lead to multiscale chirality of tissues and the whole body as observed

in twisted larvae, trachea or genitalia [13].

Could DAAM and/or formins play a conserved role in LR asymmetry across phyla? It is

interesting to note that in chick, Daam2 has been shown to be downstream of Pitx2 and Wnt

for cadherin-based adhesion and cell remodeling during gut looping [35]. It would therefore

weak rotation phenotype, silencing both chic andDAAM induces a strong no-rotation phenotype. D, Genetic interaction betweenDAAM and Tec29. Silencing both

DAAM and Tec29 significantly enhances the phenotype of eitherDAAM or Tec29 alone. In B-D: Numbers in parenthesis on the right side of color bars indicate the

number of individuals analyzed for each genotype; bars with different colors represent the percentage of occurrence of a given genitalia posture, as described in C.

Numbers above bars indicate Wilcoxon rank sum test p-values. P-value threshold for significance of the difference between compared genotypes is defined as: �:<1e-5;
��:<1e-8; ���:<1e-11; ����:<1e-14. NA: not applicable.

https://doi.org/10.1371/journal.pgen.1008758.g006
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be interesting to know if, in addition to Xenopus and zebrafish[14,15], Myo1D plays any role

in chick LR asymmetry. Our recent work showed a link between Myo1D and Planar Cell

Polarity (PCP) in Drosophila, zebrafish and Xenopus [9,15,36], and Daam1 function has been

shown to be involved in PCP-mediated renal tubulogenesis [37], suggesting a conserved

Myo1D-DAAM-PCP link. In the pond snail Lymnaea stagnalis, some natural variants show a

sinistral phenotype in their shell coiling. Recent genetic linkage and mutant analysis has pro-

vided data showing that the Lymnae diaphanous1 (Lsdia1) gene is important for dextral coiling

of the snail shell [17–19]. These data indicate that snail depend on formin activity for their LR

asymmetry. We have recently shown that chiral interaction between Myo1D and F-actin

induces chirality at all biological scales [13], indicating a molecular origin of macroscopic chi-

rality. Interestingly, work using cell culture has revealed that isolated cells can develop intrinsic

chirality, leading to the self-organization and polarization of F-actin bundles. In particular,

recent work showed that this process of autonomous chirality could be abolished by blocking

formins, in particularmDia1 [38,39]. In conclusion, DAAM and Dia may represent genuine

formins involved in LR asymmetry in both vertebrates and invertebrates. The identification of

DAAM as a LR-specific actin nucleator in vivo provides strong evidence that a specific subset

of F-actin is assembled in LR organizers for Myo1D activity. Because DAAM is also required

for de novo asymmetry, we conclude that DAAM is a general molecular effector helping to

assemble a specific F-actin substrate for Myo1D activity in both native and de novo chirality.

Materials & methods

Drosophila strains and genetics

Details of all genotypes and transgenes can be found in FlyBase (http://flybase.bio.indiana.

edu) or in references herein. The list of fly lines used in each figure is provided as a S2 Table.

For the genetic screen, all crosses were made at 29˚C and F1 males with appropriate genotypes

were collected (N = >20) and scored for the extent of genitalia rotation (see color code, Fig 1).

RNAi lines were from the Vienna Drosophila RNAi Centre (VDRC, Vienna, Austria), the

NIG-Fly Stock Centre (Kyoto, Japan), and the Transgenic RNAi Project (TRiP, Boston, USA,

DRSC). RNAi lines targeting the cytoskeleton were selected based on the GLAD database [25]

and [26].

The following Drosophila strains have been used:myo1DNP1548-Gal4 (Kyoto #112690)[4];

Abd-BLDN-Gal4/TM3 (gift from E. Sanchez Herrero) [40]; byn-Gal4 (gift from K. Matsuno)

[41]; tshmd621-Gal4 (Bloomington #3040)[13]; cutB-Gal4 (II) (gift from J. Casanova)[42];

myo1DK2 [4]; DAAM::sfGFP (gift from F. Schweisguth) [43]; UAS-myo1D::GFP [4]; UAS-

myo1C::RFP [6]; UAS-FL DAAM PB [29]; UAS-FL DAAM PD [27]; UAS-FL DAAM PDI1042A

[27]; UAS-myo1D RNAi [4]; UAS-myo1D RNAi x2 [4]; UAS-myo1C RNAi x2 [6]; UAS-

DAAM RNAi T129M [27]; UAS-DAAM RNAi (VDRC #103921 (KK) and VDRC #24885

(GD)); UAS-Abd-B RNAi (VDRC #12024 (GD)); UAS-Arp2 RNAi (VDRC #29944 (GD));

Fig 7. DAAM is essential for de novo LR asymmetry induced by Myo1D and Myo1C. A, Color code and schemes describing the extent of larval twisting described in

B-F. Dextral and sinistral twisting is defined respectively as clockwise or anti-clockwise rotation of the anterior of the larvae when viewed from the anterior side.

Anterior is up. B, Loss ofDAAM function suppressesmyo1D-induced de novo LR asymmetry. RemovingDAAM function attenuates themyo1D phenotype.C, Loss of

DAAM function suppressesmyo1C induced de novo LR asymmetry. D, Overexpression of DAAM slightly enhances themyo1D-induced dextral twisted phenotype,

while a form of DAAM that is mutant for nucleation (DAAM-PD-I1042A) does not. E, Overexpression ofDAAM enhances themyo1C-induced sinistral twisted

phenotype, while a form of DAAM that is mutant for nucleation (DAAM-PD-I1042A) does not. F, Loss ofmyo1C suppresses DAAM-induced twisting, indicating that

the sinistral phenotype induced by DAAM alone is mediated through endogenous Myo1C. G, Summary of the Myo1D-DAAM pathway in Drosophila LR asymmetry.

In B-F: Numbers in parenthesis on the right side of color bars indicate the number of individuals analyzed for each genotype; bars with different colors represent the

percentage of occurrence of a given genitalia posture, as described in C. Numbers above bars indicate Wilcoxon rank sum test p-values. P-value threshold for

significance of the difference between compared genotypes is defined as: �:<1e-5; ��:<1e-8; ���:<1e-11; ����:<1e-14. NA: not applicable.

https://doi.org/10.1371/journal.pgen.1008758.g007
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UAS-Arp3 RNAi (VDRC #108951 (KK)); UAS-capu RNAi (VDRC #34278 (GD) and VDRC

#110404 (KK)); UAS-chic RNAi (VDRC #102759 (KK)); UAS-dia RNAi (VDRC #20518 (GD)

and VDRC #103914 (KK)); UAS-Fhos RNAi (VDRC #34034 (GD)); UAS-fli RNAi (Blooming-

ton #27566 (TRIP) and VDRC #39528 (GD)); UAS-form3 RNAi (VDRC #42302 (GD) and

VDRC #45594 (GD)); UAS-Frl RNAi (VDRC #34412 (GD)); UAS-l(2)gl RNAi (VDRC #51247

(GD)); UAS-mys RNAi (VDRC #103704 (KK)); UAS-rhea RNAi (VDRC #40400 (GD)); UAS-

spir RNAi (Bloomington #61283 (TRIP)); UAS-Tec29 RNAi (VDRC #106962 (KK) and

Bloomington #25791 (TRIP)). The following lines were obtained from Bloomington stock cen-

ter: w1118, UAS-mCD8::GFP, UAS-nls::GFP, UAS-myr::RFP, UAS-mCD8::mCherry, UAS-nls::
RFP, 10xUAS-IVS-myr::tdTomato, UAS-Dicer-2, and tub-GAL80ts.

Transgenic constructs

myo1D::mNeonGreen andmyo1D::mCherry: These line are generated by CRISPR/Cas9 medi-

ated in-frame insertion of a “GVG-linker-mCherry” or “GVG-linker-mNeonGreen” coding

sequence on the C-terminal side ofmyo1D coding sequence (InDroso service). UAS-myo1D::

Flag: the cDNAs for full length Drosophila Myo1D, encoding amino acids 1–1011, were ampli-

fied by PCR with primers that added a NotI site at the 5’ end and “Avi-FLAG” tag and KpnI

site at the 3’ end. The PCR products was inserted into pUASt vector. For each construct, sev-

eral independent transgenic lines were generated (BestGene service) and tested.

The UAS-DAAM PD::GFP4A line was created in a similar way as UAS-DAAM PD [27] by

using the pTWV Drosophila Gateway vector. The DAAM PD isoform specific RNAi line

(UAS-DAAM PD RNAi) was created by cloning a PD region specific sequence (AAT-

GAGTGTCCTCATGGATAA) into pValium20 that was subsequently inserted into the attP2

landing site.

Temporal requirement assay

Double temperature-shift experiments to determine the temporal window formyo1D and

DAAM function in genitalia rotation were performed using the TARGET method [28]. In

brief, flies with TUB-GAL80ts, AbdB-Gal4, UAS-Dicer2,UAS-X-RNAi were synchronized at

25˚C to collect embryos of different developmental stages (day 1 to day 8). Collected embryos

were shifted to 30˚C for 1 day (RNAi expression). Data were collected at each time point

(day1- 8, N = 30) and plotted.

Dissection, immunohistochemistry and image acquisition

Dissection of genital discs and larval imaginal rings was done as previously described [6][9].

Antibodies used are primary: goat anti-GFP (Antibodies-on-line, 1:400), mouse anti-AbdB

(DSHB, 1:400), rabbit anti-DE-cadherin (DSHB, 1:50), mouse anti-mNeon:Green (32F6—

Chromotek, 1:400) and rabbit anti-Flag (Sigma, 1:400), and secondary: donkey anti-goat-

Alexa488 (A11055 –Life technologies, 1:500), donkey anti-goat-Alexa546 (A11056 –Life tech-

nologies, 1:500), donkey anti-mouse-Alexa488 (A21202 –Life technologies, 1:500), donkey

anti-rabbit-Alexa488 (A21206-Life technologies, 1:500), donkey anti-rabbit-Alexa546

(A10040-Life technologies, 1:500) and Goat anti-rat-Alexa546 (A11081-Life technologies,

1:500). FITC-Phalloidin (P5282-Sigma, 1:500) was incubated overnight at +4˚C with second-

ary antibodies. Samples were imaged with a Zeiss Z780 confocal microscope with the Zen soft-

ware and post-treated with the Fiji Software. Co-localization studies were done using the

JaCoP plugin of ImageJ. Pearson’s Correlation Coefficient (PCC) and Manders co-localization

coefficient (MCC) were calculated using the JaCoP plugin in endogenous and over-expressed

conditions for DAAM and Myo1D proteins. For signal intensity quantifications in Figs 5, S1
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and S2: Maximum signal intensity of regions of interest was determined on a single z-plane

using the Fiji Software. A “Gal4-positive cell maximum signal/‘Gal4-negative cells’ average

maximum signal” ratio was determined for each analyzed condition. Comparison of these

ratio was used for statistical analysis.

Co-immunoprecipitation and western blots

S2 cell transfection and sample preparation were performed as described previously [44]. S2

cell lysates were incubated with anti-Flag coated agarose-beads (Sigma) and after an intensive

wash, proteins were eluted in standard Laemmli buffer. Protein samples were subjected to

SDS-PAGE and analyzed by western blot. Rabbit anti-GFP (1:2000, Invitrogen), mouse anti-

Flag (1:5000, Sigma), anti-rabbit IgG-HRP (1:10000, Jackson) and anti-mouse IgG-HRP

(1:5000, Jackson) were used for western blots. The EB1 coding sequences were amplified from

a BDGP cDNA clone (LD08743), first cloned into pENTR3C and subsequently inserted into

the pAWF vector by using standard Gateway cloning methods before using for S2 cell

transfections.

Statistical analysis

Statistical analysis was conducted using RStudio v3.5.1 and Wilcoxon rank sum test for Figs 1–

4, 6 and 7. Statistical analysis for Fig 5 and S2 and S3 Figs was conducted using Microsoft

Excel and one-tailed Student T-test. For Figs 1–4, 6 and 7 p-value threshold for significance of

the difference between compared genotypes is defined as: �:<1e-5; ��:<1e-8; ���:<1e-11;
����: <1e-14. For Fig 5 and S2 and S3 Figs p-value threshold for significance of the difference

between compared genotypes is defined as: �:<0.05; ��:<0.01; ���: <0.001.

Supporting information

S1 Fig. (related to Fig 4). DAAM and Myo1D proteins are enriched with the cell membrane

(A) and associated with DE Cadherin at the adherens junction (B) in the adult hindgut LR

organizer (H1, white brackets). Cell membranes are visualized with expression of membrane

targeted mCherry under the control of the byn-Gal4 driver. Adherens junctions are visualized

using a DE-cadherin (DE-Cad) antibody. Images on the right are single z-plane images at

higher magnification corresponding to the region highlighted by white rectangles on the left

panel. Plots represent fluorescence intensity profile along the dotted lines in high magnifica-

tion images. Schemes describe position of the plot profile with respect to the imaged cell orien-

tation. H2, hindgut precursor cells domain (white bracket).

(PDF)

S2 Fig. (related to Fig 4). DAAM expression in gut and genitalia organizer is not affected

uponmyo1D depletion.

A, Expression of DAAM in the larval hindgut LR organizer cells (H1, white bracket), and

hindgut precursors (H2, yellow bracket) domain, or larval and pupal genital discs LR organizer

cells (A8) in control andmyo1D RNAi condition. DAAM::GFP knock-in fusion proteins

expressed under the control of its respective endogenous regulatory sequences is detected with

anti-GFP antibody. Gut and genitalia organizer cells are visualized with the expression of

tdTOMATO under the control of themyo1D-Gal4 driver. Images on the right–or bottom

right for pupal genitalia—are cropped single z-plane images corresponding to the white rect-

angle region(s) on the left panel. For quantification of the DAAM immunostaining signal in

control andmyo1D RNAi condition, maximum signal intensity in regions corresponding to

white and yellow lines in single z-plane images were obtained, then a signal intensity ratio is
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calculated as an “myo1D-Gal4-positive cell signal (white line)/myo1D-Gal4-negative cell aver-

age signal (yellow lines)”. Significance for difference between conditions is assessed with a T-

test. p-value is indicated on the brackets showing compared conditions. Threshold for signifi-

cance of the difference between compared genotypes is defined as: �: <0.05; ��:<0.01; ���:

<0.001. ns: non-significant

B, DAAM and Myo1D are both expressed in genitalia’s A8 domain at the pupal stage. Knock-

in fusion proteins DAAM::GFP and myo1D::mCherry are expressed under the control of their

respective endogenous regulatory sequences and detected using anti-GFP and anti-RFP anti-

bodies, respectively.

(PDF)

S3 Fig. (related to Fig 4). Actin expression and subcellular localization in gut and genitalia

organizer is not affected upon DAAM depletion. Actin expression in the larval hindgut LR

organizer cells (H1, white bracket), and hindgut precursors (H2, yellow bracket) domain, or

larval discs LR organizer cells (A8) in control and DAAM RNAi condition. Actin is detected

using FITC-conjugated Phalloidin and gut and genitalia organizer cells are visualized with the

expression of RFP under the control of themyo1D-Gal4 driver. Images on the right are

cropped single z-plane images corresponding to the white rectangle region(s) on the left panel.

Single z-plane images for the gut show lateral views of the cell with on their basal side (bottom

of the image) the intensely stained muscular sheet. For quantification of the Actin staining sig-

nal in control and DAAM RNAi condition, maximum signal intensity in regions correspond

to white and yellow lines in single z-plane images were obtained, then a signal intensity ratio is

calculated as an “myo1D-Gal4-positive cell signal (white line)/myo1D-Gal4-negative cell aver-

age signal (yellow lines)”. Significance for difference between conditions is assessed with a T-

test. p-value is indicated on the brackets showing compared conditions. Threshold for signifi-

cance of the difference between compared genotypes is defined as: �: <0.05; ��:<0.01; ���:

<0.001. ns: non-significant.

(PDF)

S1 Table. (related to Fig 1). List of the cytoskeletal genes tested in the screen described in Fig

1B., indicating Gene ID, Gene name/Symbol, RNAi identifier, Source and phenotype.

(XLSX)

S2 Table. (related to Figs 1–7, S1–S3 Figs). List of fly genotypes used in each of the figures.

(XLSX)

S3 Table. (related to Figs 1–7, S1–S3 Figs). Raw counting and staining intensity data.

(XLSX)
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8. Coutelis J-B, Géminard C, Spéder P, Suzanne M, Petzoldt AG, Noselli S. Drosophila Left/Right Asym-

metry Establishment Is Controlled by the Hox Gene Abdominal-B. Dev Cell. 2013; 24: 89–97. Available:

https://doi.org/10.1016/j.devcel.2012.11.013 PMID: 23328400
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