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Abstract 11 

Sugar replacement is still an active issue in the food industry. The use of structure-taste relationships 12 

remains one of the most rational strategy to expand the chemical space associated to sweet taste. A new 13 

machine learning model has been setup based on an update of the SweetenersDB and on open-source 14 

molecular features. It has been implemented on a freely accessible webserver. Cellular functional assays 15 

show that the sweet taste receptor is activated in vitro by a new scaffold of natural compounds identified 16 

by the in silico protocol. The newly identified sweetener belongs to the lignan chemical family and opens 17 

a new chemical space to explore. 18 
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 21 

Introduction 22 

Consumer interest in natural high potency sweeteners has grown spectacularly in recent years, fueled by 23 

concerns about sugar overconsumption and the use of artificial additives in foods. There are three main 24 

strategies to reduce sugar intake: an abrupt reduction of sugar without substitution, the use of flavor 25 

materials to modify sweet taste perception and the use of alternative sweeteners. Though many low-26 

calorie sweeteners are known, only few of them are used by the food industry (Belloir, Neiers, & Briand, 27 

2017). The search of novel intense sweeteners, possessing the same chemosensory profile as sucrose, 28 

remains open and challenging.  29 

All sweet tasting compounds are detected by a single heterodimeric G protein-coupled receptor composed 30 

of T1R2 and T1R3 subunits expressed at the surface of taste buds (Li et al., 2002; Nelson et al., 2001). 31 

However, no experimental 3D-structure of the T1R2/T1R3 sweet taste receptor is available and ligand-32 

based approaches such as Structure Activity Relationship (SAR), are relevant to establish a link between 33 

the structure of a compound and its sweet taste. From original studies of Edna W. Deutsch & Corwin 34 

Hansch (Deutsch & Hansch, 1966), followed a year later by Robert S. Shallenberger & Terry E. Acree 35 
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(Shallenberger & Acree, 1967) to recent structure-taste relationship models (Achary, Toropova, & 36 

Toropov, 2019; Arnoldi, Bassoli, Merlini, & Ragg, 1991; Barker, Hattotuwagama, & Drew, 2002; Bassoli 37 

et al., 2001; Chéron, Casciuc, Golebiowski, Antonczak, & Fiorucci, 2017; Drew et al., 1998; Rojas, 38 

Tripaldi, & Duchowicz, 2016; Spillane & McGlinchey, 1981; Spillane et al., 2000, 1996; Spillane, 39 

McGlinchey, Muircheartaigh, & Benson, 1983; Spillane & Sheahan, 1989; Tuwani, Wadhwa, & Bagler, 40 

2019; Van Der Heijden, Brussel, & Peer, 1979; Vepuri, Tawari, & Degani, 2007; Walters, 2006; Zheng, 41 

Chang, Xu, Xu, & Lin, 2019), the quest to understand the molecular features underlying sweet taste 42 

perception is still active. 43 

In this study, we present the first online tool able to predict sweet taste perception based on a machine 44 

learning protocol. We have updated and curated the previous database of 316 sweet compounds 45 

(SweetenersDB) and added new applicability domain metrics to assess the robustness of the predictions. 46 

A novel scaffold of natural sweetener, belonging to the lignan chemical family, that have never been 47 

annotated as sweet have been identified and experimentally validated. 48 

 49 

Materials and Methods 50 

Data preparation 51 

Based on our previous work (Chéron et al., 2017), the database of sugars and sweeteners (Figure S1), 52 

named SweetenersDB, was curated and updated with missing compounds (Ruiz-Aceituno, Hernandez-53 

Hernandez, Kolida, Moreno, & Methven, 2018). Each compound was labelled with a relative sweetness 54 

value, corresponding to a measure of the sweet taste intensity relative to sucrose. Relative sweetness is 55 

defined as the concentration ratio between a sucrose solution and a solution of sweetener perceived with 56 

the same intensity. The relative sweetness of each compound was transformed in logarithmic scale for 57 

easier manipulation, and it will be later referred to as logSw. For compounds that were already present in 58 

the database, we updated the SMILES (Simplified Molecular Input Line Entry System) to isomeric 59 

SMILES in order to differentiate stereoisomers. When the information on stereocenters was not available, 60 

we either regrouped the stereoisomers in a single entry with their average logSw value if the logSw 61 

difference was lower than 0.2, or we discarded both compounds. The resulting dataset consisted of 316 62 

compounds in SweetenersDB (Table S1). The machine learning protocol was applied to two datasets of 63 

interest : 4796 natural compounds (Table S2) extracted from the SuperNatural II database and the 64 

phyproof catalogue from PhytoLab, already pre-screened by our previous model (Chéron et al., 2017). 65 

Every compound in the datasets were collected as SMILES strings and sanitized with RDKit (Landrum et 66 

al., 2018). To assess the importance of predicting protonation states, the major microspecies of each 67 

compound was also determined with ChemAxon cxcalc tool (ChemAxon, 2018) at physiological salivary 68 

pH (pH=6.5). Structures were then standardized using the “standardizer” (EMBL-EBI, 2017) Python 69 

package: salts are removed from the structure, and a set of around 30 structure-normalization rules are 70 

applied to each molecular graph to cover most of tautomerization reactions. 0D, 1D and 2D descriptors 71 

were computed using Dragon v6.0.38 (Talete srl, 2014), RDKit (Landrum et al., 2018), Mordred 72 

(Moriwaki, Tian, Kawashita, & Takagi, 2018), and ChemoPy (Cao, Xu, Hu, & Liang, 2013). Descriptors 73 

from the three latter packages were regrouped as “open-source” descriptors. For each of these two 74 

descriptors sets, the initial number of features was reduced by removing those that could not be calculated 75 

for a molecule, as well as near-constant features (two or less unique values), features with a standard 76 
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deviation below 0.001, and features with a correlation greater than 0.95. The resulting datasets consisted 77 

of 635 descriptors for the Dragon dataset, and 506 features for the “open-source” dataset. To avoid any 78 

model bias due to overfitting, the number of features used by the model is a hyperparameter that has been 79 

optimized. 80 

The updated SweetenersDB was split in training and test sets using a Sphere Exclusion clustering 81 

algorithm. Dragon descriptors were chosen for this procedure: they were normalized between 0 and 1, and 82 

the clustering was initiated from the compound that is closest to the center of the dataset in the descriptor 83 

hyperspace. 64 diverse compounds (20.3%) were selected for the test set, leaving 252 compounds in the 84 

training set (Figure 1, Table S1). The chemical space was mapped using a t-distributed Stochastic 85 

Neighbor Embedding (t-SNE) analysis. t-SNE was performed with the scikit-learn python package 86 

(v0.20.2) (Pedregosa et al., 2011) using default parameters (perplexity of 30, early exaggeration of 12, 87 

learning rate of 200 and 1000 iterations) except for the embedding initialization which was done with 88 

principal component analysis. 89 

 90 

 91 

Figure 1: Representation of the SweetenersDB chemical space based on a t-SNE dimensionality 92 

reduction method. Known sweet chemical families in the training and test set are represented by circle 93 

and triangles respectively. Light and dark grey data points represent natural compounds that were 94 

predicted as intensely sweet (logSw ≥ 2) by both our previous and current models (Table S2). Grey 95 

squares represent natural molecules experimentally tested in the present study. 96 

 97 
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Machine-learning model for sweetness prediction 98 

Several regression algorithms from the python package scikit-learn were evaluated: Random Forest, 99 

Support Vector Machine (SVM), Adaptative Boosting with a Decision Tree base estimator (AdaBoost 100 

Tree), and k-Nearest Neighbors. Five-fold cross validation was performed with hyperparameter tuning 101 

using a grid search. The workflow for each cross-validation fold was as follow: standardization of 102 

descriptors, feature selection, and model training. Selection of descriptors was done by keeping a given 103 

percentile of the highest ranked descriptors based on their Mutual Information with our endpoint. The 104 

optimal percentile of features was tuned as a parameter of the Grid Search. 105 

Once optimal hyperparameters were found for each model, final models were trained using the full 106 

training dataset. Their predictive performance was evaluated based on criteria previously defined by 107 

Golbraikh and Tropsha (Golbraikh & Tropsha, 2002). For the “Dragon” models, only the SVM model did 108 

not pass all criteria, and for the “open source” model, only the AdaBoost Tree passed all criteria. In both 109 

cases, the AdaBoost Tree model was selected as the best performing model, using 32 descriptors for the 110 

“Dragon” model, and 51 descriptors for the “open source” model (Figure S2 and Table S4). A summary 111 

of their performances is reported in the results section (Table 1) and detailed in supporting information 112 

(Table S3).  113 

In addition to training and validating several models for sweetness prediction, a web server implementing 114 

the “open-source” model was developed and is freely available at the following address: 115 

http://chemosimserver.unice.fr/predisweet/ 116 

Other chemoinformatics solutions are available but none of them has been implemented on a webserver. 117 

For instance, the e-Sweet platform (Zheng et al., 2019) is based on a consensus model of various machine 118 

learning protocols. The database used to train and test their model is very similar to the database used to 119 

setup Predisweet and e-Sweet performs as well as our model (R2 on the test set is in the same range [0.75-120 

0.78] for both solutions). Recently a new functionality to predict sweetness has been implemented on the 121 

BitterSweet webserver (Tuwani et al., 2019). The performance of BitterSweet is comparable to e-Sweet 122 

and Predisweet (R2 of 0.72 on our test set) but the protocol is still unpublished, and seven molecules of 123 

the test set has not been considered as sweet. 124 

 125 

Webserver interface 126 

The user is asked for one or several molecules which can either be drawn directly on the chemical 127 

structure editor Ketcher or inputted as a simple text query or file in the SMILES format. The workflow 128 

(Figure 2) followed by query compounds is the same as used during model development. First, a 129 

molecule is generated from the SMILES string with RDKit to assess its sanity. The structure is then 130 

standardized using the “standardizer” Python module. The 51 molecular descriptors selected during 131 

model development are computed and standardized based on the training set transformations. The 132 

descriptors are passed to the AdaBoost Tree model in order to predict the logSw. Finally, the quality of 133 

each prediction is assessed based on three metrics, namely the applicability, reliability, and decidability 134 

domains (Hanser, Barber, Marchaland, & Werner, 2016). The applicability domain indicates if the 135 

compound is within the descriptor range of the training set and its score is computed using a convex hull 136 

approach. The reliability domain highlights the density of information around the compound. The 137 

reliability score is calculated by counting the number of molecules from the training set that are inside a 138 

sphere centered on the query. The decidability domain shows the confidence in the prediction that was 139 
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made. The decidability score is based on the weights of each decision tree that compose the AdaBoost 140 

model. It is computed by summing the weights of decision trees that made a prediction close to the model 141 

prediction and dividing it by the sum of all weights. 142 

Each molecule is indexed in the database with its InChIKey, which avoids making predictions for the 143 

same molecule twice. For a seamless user experience, the name of each molecule is retrieved by querying 144 

PubChem with the pubchempy Python package, and a 2D representation of the compound is generated 145 

with RDKit. 146 

 147 

 148 

Figure 2: Workflow followed by each molecule submitted to the webserver. 149 

 150 

Functional expression of the human sweet taste receptor 151 

In order to validate the sweetness of the three natural compounds, we employed a cell-based expression 152 

system for the human T1R2/T1R3 sweet taste receptor as previously described (Poirier et al., 2012; 153 

Sigoillot et al., 2018). Briefly, the cDNAs coding human T1R2 and T1R3 subunits were cloned into 154 

pcDNA3 and pcDNA4 expression plasmids, respectively. HEK293T cells stably expressing Gα16gust44 155 

and T1R3 were seeded at a density of 0.4 ×106 cells per well into 96-well black walled, clear bottom 156 

microtiter plates (Falcon) in high-glucose DMEM supplemented with 2 mM GlutaMAX, 10% dialyzed 157 

foetal bovine serum, penicillin/streptomycin, G418 (400 µg/mL) and zeocin (250 µg/mL) at 37 °C and 158 

6.3% CO2, in a humidified atmosphere. Twenty-four hours later, HEK293T-Gα16gust44-T1R3 cells were 159 

transiently transfected with pcDNA3-T1R2 (120ng/well) with Lipofectamine 2000. Calcium signal of 160 

mock-transfected cells (HEK293T Gα16gust44 cells stably expressing T1R3 transfected with pcDNA3 161 

empty vector) were always measured in parallel and compared. Twenty-four hours after transfection, the 162 

cells were loaded for 1 hour at 37°C with the calcium indicator Fluo4-AM (Molecular Probes) diluted in 163 

C1 buffer (130 mM NaCl, 5 mM KCl, 10 mM Hepes pH 7.4, 2 mM CaCl2) in the presence of pluronic 164 

acid (0.025%, w/v) and probenecid (2.5 mM). After washing with C1 buffer, cells were stimulated with a 165 

range of sweet tasting compounds. The fluorescence intensity was measured for 90 seconds (excitation 166 

488 nm, emission 510 nm) into an automated fluorimetric FlexStation3 Multi-Mode microplate reader. 167 

The change in fluorescence upon stimulus application were averaged, mock-substracted and baseline-168 
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corrected. The EC50 values were calculated using SigmaPlot software by nonlinear regression using the 169 

function:  170 

���� = ��� + �
� −���
1 + 
 �

�����
���������� 171 

 172 

Chemicals 173 

All tested compounds (arctiin, ginsenoside Rd and jujuboside A, Figure 3) were purchased from Phytolab 174 

GmbH & Co. KG, with the exception of sucralose obtained from Sigma-Aldrich. All the compounds were 175 

dissolved first in DMSO (100 mM in 100% DMSO), and then diluted with the C1 buffer solution; except 176 

for sucralose, which was dissolved in the C1 buffer solution directly. 177 

 178 

 179 

Figure 3: Structure of the tested compounds 180 

Results and discussion 181 

New machine-learning model based on open-source features 182 

The performance of the Open-source and Dragon models has been compared. Both models show good 183 

predictivity on the test set according to state of the art QSAR rules (Table 1). Slightly more than 90% of 184 
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the test set are predicted with an absolute error lower than a log unit (Figure S3). The models are less 185 

accurate for high sweetness values since they have been trained with less information for highly potent 186 

sweeteners. Improving the quality of the machine learning model would then requires i) expanding the 187 

chemical diversity of sweet compounds and ii) a larger database of in vivo and in vitro experiments. A 188 

threshold of LogSw larger than 2 has then been chosen to minimize false positive predictions prior in 189 

vitro validation. Since similar performance have been obtained for both models, the open-source version 190 

have been implemented on a webserver, freely accessible at the following address: 191 

http://chemosimserver.unice.fr/predisweet/. Another model has been set up with descriptors calculated at 192 

salivary pH to assess the effect of the protonation state on the model performance. Even though more than 193 

a quarter of the molecules had different descriptor values between the default and the salivary pH dataset, 194 

there was no significant difference in terms of performance. The protonation assessment step thus has 195 

been skipped in the final protocol. We emphasize that the model has not been trained to predict bitter taste 196 

and we envision to include this feature in a future work. Additionally, any QSAR model has a field of 197 

application that clearly defines the boundaries within which the model should be used, usually referred to 198 

as the applicability domain. We’ve implemented three different metrics to explicitly inform the user 199 

whether the model and its prediction can be trusted for a particular query molecule.  200 

 201 

Table 1: Performance of the models according to Golbraikh and Tropsha rules. (Golbraikh & Tropsha, 202 

2002) 203 

Rules Open-source model Dragon model 

R2 > 0.6 0.74 0.75 

Q2 > 0.5 0.84 0.79 

|R2 – R0
2|/R2 < 0.1 0.02 0.05 

0.85 <= k <= 1.15 0.93 0.90 

|R0
2 – R’

0
2| < 0.3 0.07 0.12 

 204 

Identification of a new sweet scaffold 205 

A large database of natural compounds has been virtually screened to identify new putative sweeteners. 206 

The analysis of the resulting sweet chemical space of ~4800 natural compounds shows that it does not 207 

fully overlap the chemical space of known sweeteners (Figure 1). It suggests that a large part of the 208 

natural chemical space remains unexplored. We have finally selected three natural compounds that have 209 

been tested for their ability to activate the human sweet taste receptor T1R2/T1R3 expressed in HEK 210 

cells, as previously reported (Poirier et al., 2012). As a negative control, HEK293T Gα16gust44 cells 211 

stably expressing T1R3 were mock-transfected with the empty expression vector to control for T1R2-212 

independent non-specific signals. In addition to a LogSw value higher than 2, the price and the 213 

commercial availability were two important criteria in the compound choice. Two of them, Jujuboside A 214 

and Ginsenisode Rd, belong to the triterpene chemical family. The third one, arctiin, possesses a lignan 215 

scaffold. As shown in Figure 4b, application of arctiin on T1R2/T1R3-expressing cells evoked calcium 216 

responses in a dose-dependent manner, while no fluorescence signals where observed with mock 217 
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transfected cells. The half-maximal effective concentrations (EC50) of arctiin was 2.5 ± 0.4 mM. As a 218 

control, we determined the concentration-response curve for the high-intensity sucralose (Figure 4a) 219 

leading to an EC50 value of 87 ± 13 µM, in agreement with reported values (Assadi-Porter et al., 2010; 220 

Masuda et al., 2012; Servant et al., 2010). In contrast, jujuboside A and ginsenisode Rd showed 221 

detectable activity on the T1R2/T1R3 receptor, but only at the highest tested concentration (Figure 4c and 222 

d) precluding establishment of complete dose–response curve and calculation of EC50 values. This 223 

concentration used was the maximum one that did not induce any side effects on mock transfected cells. 224 

 225 

 226 

Figure 4: Response of the human sweet taste receptor to the three natural compounds identified by the 227 

machine learning protocol and sucralose used as a control. Dose-response curves of T1R2/T1R3-228 

expressing cells (red curve) and mock-transfected cells (black curve). All concentrations were measured 229 

in triplicate and each experiment was repeated at least 2 times.  230 

 231 

Conclusion 232 

In this study we have used machine learning to predict novel agonists of the sweet taste receptor. An 233 

AdaBoost Tree model was setup based on open-source chemical features optimized on a curated database 234 

of 316 known sweet agents (SweetenersDB) and implemented on a freely available webserver. The 235 

virtual screening of a large database of natural compounds identified thousands of putative sweeteners, of 236 

which three were selected for in vitro functional assays of the human sweet taste receptor and dose-237 
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response analyses. Among them, we identified arctiin as a novel agonist of the T1R2/T1R3 sweet taste 238 

receptor with an EC50 value of 2.5±0.4mM. It belongs to the lignan chemical family, polyphenols found 239 

in plants, of which epi-lyoniresinol has already been annotated as slightly sweet by sensory analyses 240 

(Cretin et al., 2015; Marchal, Cretin, Sindt, Waffo-Téguo, & Dubourdieu, 2015). As numerous natural 241 

sweeteners, arctiin might also possess bitter taste but it would require additional experiments out of the 242 

scope of the present study to assess its aftertaste. Nevertheless, our results confirm that the lignan 243 

chemical family opens a new chemical space for the search of new sweet agents and machine learning is a 244 

fruitful approach in this context. 245 
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