. Alpes-côte-d'azur, France) for his PhD grant. The authors also would like to thank the Direction Générale pour l'Armement (DGA) for PhD fellowship of Jeanne Fèvre and the Commissariat a? l'Energie Atomique CEA DAM DIF for financial support

J. M. Schwantes, C. R. Orton, and R. A. Clark, Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel, Environ. Sci. Technol, vol.46, pp.8621-8627, 2012.

P. Thakur, H. Khaing, and S. Salminen-paatero, Plutonium in the atmosphere: A global perspective, J. Environ. Rad, vol.39, pp.175-176, 2017.

P. E. Morrow, H. Witschi, M. Vore, P. E. Hakkinen, J. Mac-gregor et al., Profile in toxicology, Toxicol. Sci, vol.53, pp.157-158, 2000.

E. Fattal, F. Tsapis, and G. Phan, Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents, Adv. Drug Delivery Rev, vol.90, pp.40-54, 2015.

R. W. Leggett, A Model of the Retention, Translocation and Excretion of Systemic Pu, Health Phys, vol.49, pp.1115-1137, 1985.

E. Ansoborlo, O. Prat, P. Moisy, . Auwer, C. Den et al., Actinide speciation in relation to biological processes, Biochimie, vol.88, pp.1605-1618, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01930725

M. R. Bailey, The New ICRP Model for the Respiratory Tract, Radiat Prot Dosimetry, vol.53, pp.107-114, 1994.

T. J. Wronski, J. M. Smith, and W. S. Jee, The Microdistribution and Retention of Injected 239 Pu on Trabecular Bone Surfaces of the Beagle: Implications for the Induction of Osteosarcoma, Radiat. Res, vol.83, pp.74-89, 1980.

F. W. Bruenger, B. J. Stover, W. Stevens, and D. R. Atherton, Exchange of 239 Pu IV Between Transferrin and Ferritin in Vitro, Health Phys, vol.16, pp.339-340, 1969.

S. C. Miller, R. D. Lloyd, F. W. Bruenger, M. P. Krahenbuhl, E. Polig et al., Comparisons of the skeletal locations of putative plutonium-induced osteosarcomas in humans with those in beagle dogs and with naturally occurring tumors in both species, Radiat. Res, vol.160, pp.517-523, 2003.

G. N. Taylor, R. D. Lloyd, C. W. Mays, W. Angus, S. C. Miller et al., Plutonium-Or Americium-induced Liver Tumors and Lesions in Beagles, Health Phys, vol.61, pp.337-347, 1991.

W. G. Wolfang, M. Semmler, and W. Möller, Dosimetry and Toxicology of Ultrafine Particles, J. Aerosol Med, vol.17, pp.140-152, 2004.

J. Schubert, Treatment of Plutonium Poisoning by Metal Displacement, Science, vol.105, pp.389-390, 1947.

J. Schubert, Removal of radioelements from the mammalian body, Annu. rev. nucl. sci, vol.5, pp.369-412, 1955.

J. B. Hursh, Effect of BAL on Survival of Rats after Lethal Doses of Polonium, Proc. Soc. Exp. Biol. Med, vol.79, pp.210-212, 1951.

R. Ansoborlo, B. Amekraz, C. Moulin, V. R. Moulin, F. D. Taran et al., Review of actinide decorporation with chelating agents, C. R. Chim, vol.10, pp.1010-1019, 2007.
URL : https://hal.archives-ouvertes.fr/cea-01273033

J. G. Hamilton and K. G. Scott, Effect of Calcium Salt of Versene upon Metabolism of Plutonium in the Rat, Proc. Soc. Exp. Biol. Med, vol.83, pp.301-305, 2016.

L. Bonin, J. Aupiais, M. Kerbaa, P. Moisy, S. Topin et al., Revisiting actinide-DTPA complexes in aqueous solution by CE-ICPMS and ab initio molecular dynamics, RSC Adv, vol.6, pp.62729-62741, 2016.

J. Aupiais, L. Bonin, . Auwer, C. Den, P. Moisy et al., On the use of speciation techniques and ab initio modelling to understand tetravalent actinide behavior in a biological medium: An IV DTPA case, Dalton Trans, vol.45, pp.3759-3770, 2016.

P. W. Durbin, B. Kullgren, J. Xu, and K. N. Raymond, Development of Decorporation Agents for the Actinides, Radiat. Prot. Dosimetry, vol.79, pp.433-443, 1998.

G. N. Taylor, R. D. Lloyd, J. J. Boseman, D. R. Atherton, and C. W. Mays, Removal of Plutonium from Beagles Using Ca-DTPA and Zn-DTPA: Effects of Initial DTPA Injection, Health Phys, vol.35, pp.201-210, 1978.

W. Stevens, F. W. Bruenger, D. R. Atherton, D. S. Buster, and G. Howerton, The Retention and Distribution of 241 Am and 65 Zn, Given as DTPA Chelates in Rats and of [ 14 C]DTPA in Rats and Beagles, Radiat. Res, vol.75, pp.397-409, 1978.

J. W. Stather, H. Smith, M. R. Bailey, A. Birchall, R. A. Bulman et al., The retention of 14 C-DTPA in human volunteers after inhalation or intravenous injection, Health Phys, vol.44, pp.45-52, 1983.

J. G. Mcafee, G. Gagne, H. L. Atkins, P. T. Kirchner, R. C. Reba et al., Biological distribution and excretion of DTPA labeled with Tc-99m and In-111, J. Nucl. Med, vol.20, pp.1273-1278, 1979.

O. Grémy, D. Laurent, S. Coudert, N. M. Griffiths, and L. Miccoli, Decorporation of Pu/Am Actinides by Chelation Therapy: New Arguments in Favor of an Intracellular Component of DTPA Action, Radiat. Res, vol.185, pp.568-579, 2016.

R. Gall, B. Grillon, G. Rataeu, G. Burgada, R. Bailly et al., Comparative decorporation efficacy of 3,4,3-LIHOPO, 4,4,4-LIHOPO and DTPA after contamination of rats with soluble forms of 238 Pu and 233 U, Radiat. Prot. Dosimetry, vol.105, pp.535-538, 2003.

B. Breustedt, E. Blanchardon, P. Berard, P. Fritsch, A. Giussani et al., Biokinetic modelling of DTPA decorporation therapy: the conrad approach, Radiat. Prot. Dosimetry, vol.134, pp.38-48, 2009.

A. E. Gorden, J. Xu, K. N. Raymond, and P. Durbin, Rational design of sequestering agents for plutonium and other actinides, Chem. Rev, vol.103, pp.4207-4282, 2003.

G. J. Deblonde, .. Sturzbecher-hoehne, M. Abergel, and R. J. , Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): a critical feature for efficient chelation of lanthanide(IV) and actinide(IV) ions, Inorg. Chem, vol.52, pp.8805-8811, 2013.

B. Kullgren, E. E. Jarvis, D. D. An, and R. J. Abergel, Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions, Toxicol. Mech. Methods, vol.23, pp.18-26, 2012.

R. J. Abergel, P. W. Durbin, B. Kullgren, S. N. Ebbe, J. Xu et al., Biomimetic Actinide Chelators: An Update on the Preclinical Development of the Orally Active Hydroxypyridonate Decorporation Agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), Health Phys, vol.99, pp.401-407, 2010.

T. A. Choi, A. M. Furimsky, R. Swezey, D. I. Bunin, P. Byrge et al., Vitro Metabolism and Stability of the Actinide Chelating Agent3, vol.4, pp.1832-1838, 2015.

M. P. Kelley, G. J. Deblonde, .. Su, J. Booth, C. H. Abergel et al., Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO), Inorg. Chem, vol.57, pp.5352-5363, 2018.

R. A. Bulman, R. J. Griffin, and A. T. Russell, An examination of some complexing agents for ability to remove intracellularly deposited plutonium, Health Phys, vol.37, pp.729-734, 1979.

S. C. Miller, F. W. Bruenger, G. Kuswik-rabiega, and R. D. Lloyd, Decorporation of plutonium by oral administration of a partially lipophilic polyaminocarboxylic acid, Health Phys, vol.63, pp.195-197, 1992.

S. C. Miller, F. W. Bruenger, G. Kuswik-rabiega, G. Liu, and R. D. Lloyd, Duration and doserelated effects of an orally administered, partially lipophilic polyaminocarboxylic acid on the decorporation of plutonium and americium, J. Pharmacol. Exp. Ther, vol.267, pp.548-554, 1993.

K. Sueda, M. P. Sadgrove, J. E. Huckle, M. G. Leed, W. M. Weber et al., Orally Administered DTPA Penta-Ethyl Ester for the Decorporation of Inhaled 241, Am. J. Pharm. Sci, vol.103, pp.1563-1571, 2014.

J. D. Reddy, R. R. Cobb, N. W. Dungan, L. L. Matthews, K. V. Aiello et al., Preclinical Toxicology, Pharmacology, and Efficacy of a Novel Orally Administered Diethylenetriaminepentaacetic acid (DTPA) Formulation, Drug Dev. Res, vol.73, pp.232-242, 2012.

J. P. Wilson, R. R. Cobb, N. W. Dungan, L. L. Matthews, B. Eppler et al., Decorporation of Systemically Distributed Americium by a Novel Orally Administered Diethylenetriaminepentaacetic Acid (DTPA) Formulation in Beagle Dogs, Health Phys, vol.108, pp.308-318, 2015.

G. Phan, A. Herbet, S. Cholet, H. Benech, J. Deverre et al., Pharmacokinetics of DTPA entrapped in conventional and long-circulating liposomes of different size for plutonium decorporation, J. Control. Release, vol.110, pp.177-188, 2005.

G. Phan, B. Le-gall, G. Grillon, E. Rouit, M. Fouillit et al., Enhanced decorporation of plutonium by DTPA encapsulated in small PEG-coated liposomes, Biochimie, vol.88, pp.1843-1849, 2006.

G. Phan, B. Le-gall, J. Deverre, E. Fattal, and H. Benech, Predicting Plutonium Decorporation Efficacy after Intravenous Administration of DTPA Formulations: Study of Pharmacokinetic-Pharmacodynamic Relationships in Rats, Pharm. Res, vol.23, pp.2030-2035, 2006.

J. R. Zeevaart, W. K. Louw, Z. I. Kolar, E. Kilian, and F. E. Van-rensburg, Dormehl, I. C. Biodistribution and Pharmacokinetics of Variously Molecular

, Polyethyleneiminomethyl Phosphonate Complexes in the Normal Primate Model as Potential Selective Therapeutic Bone Agents, Arzneimittelforschung, vol.54, pp.340-347, 2011.

R. K. Oskuee, A. Dehshahri, W. T. Shier, and M. Ramezani, Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity, J. Gene. Medicine, vol.11, pp.921-932, 2009.

S. Wen, F. Zheng, M. Shen, and X. Shi, Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility, J. Appl. Polym. Sci, vol.128, pp.3807-3813, 2013.

F. Lahrouch, B. Siberchicot, L. Leost, J. Aupiais, A. Rossberg et al., Polyethyleneimine methylenecarboxylate: a macromolecular DTPA analogue to chelate plutonium(IV), Chem. Commun, vol.54, pp.11705-11708, 2018.

F. Lahrouch, A. C. Chamayou, G. Creff, M. Duvail, C. Hennig et al., A Combined Spectroscopic/Molecular Dynamic Study for Investigating a Methyl-Carboxylated PEI as a Potential Uranium Decorporation Agent, Inorg. Chem, vol.56, pp.1300-1308, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02000048

N. V. Jarvis, J. R. Zeevaart, J. M. Wagener, W. K. Louw, I. C. Dormehl et al., Metal-ion speciation in blood plasma incorporating the water-soluble polymer, polyethyleneimine functionalised with methylenephosphonate groups, in therapeutic radiopharmaceuticals, Radiochim. Acta, vol.90, pp.237-246, 2002.

I. C. Dormehl, W. K. Louw, R. J. Milner, E. Kilian, and F. H. Schneeweiss, Biodistribution and Pharmacokinetics of Variously Sized Molecular Radiolabelled Polyethyleneiminomethyl Phosphonic Acid as a Selective Bone Seeker for Therapy in the Normal Primate Model, Arzneimittelforschung, vol.51, pp.258-263, 2011.

F. Lahrouch, O. Sofronov, G. Creff, A. Rossberg, C. Hennig et al., Polyethyleneimine methylphosphonate: towards the design of a new class of macromolecular actinide chelating agents in the case of human exposition, Dalton Trans, vol.46, pp.13869-13877, 2017.

K. B. Krauskopf, Thorium and rare-earth metals as analogs for actinide elements, Chem. Geol, vol.55, pp.323-335, 1986.

L. Leost, J. Roques, A. Van-der-meeren, L. Vincent, N. Sbirrazzuoli et al., Towards the development of chitosan nanoparticles for plutonium pulmonary decorporation, Dalton Trans, vol.47, pp.11605-11618, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01998994

B. Ravel, M. Newville, . Iucr, and . Athena, HEPHAESTUS: data analysis for Xray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-541, 2005.

J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, Parameter-free calculations of Xray spectra with FEFF9, Phys. Chem. Chem. Phys, vol.12, pp.5503-5513, 2010.

X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin et al., ABINIT: Firstprinciples approach to material and nanosystem properties, Comput. Phys. Commun, vol.180, pp.2582-2615, 2009.

F. Jollet, M. Torrent, and N. Holzwarth, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format, Comput. Phys. Commun, vol.185, pp.1246-1254, 2014.

N. A. Holzwarth, A. R. Tackett, and G. E. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, Comput. Phys. Commun, vol.135, pp.329-347, 2001.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

G. Jomard, B. Amadon, F. Bottin, and M. Torrent, Structural, thermodynamic, and electronic properties of plutonium oxides from first principles, Phys. Rev. B, vol.78, pp.75125-75126, 2008.

V. Harpe, A. Petersen, H. Li, Y. Kissel, and T. , Characterization of commercially available and synthesized polyethylenimines for gene delivery, J. Controlled Release, vol.69, pp.309-322, 2000.

Z. Szabó, T. Toraishi, V. Mallet, and I. Grenthe, Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms, Coord. Chem. Rev, vol.250, pp.784-815, 2006.

G. Andreev, N. Budantseva, M. Sokolova, I. Tananaev, and B. Myasoedov, Interaction of Transuranium Elements with Biologically Important Ligands: Structural and Spectroscopic Evidence for Nucleotide Coordination to Plutonium, Inorg. Chem, vol.48, pp.2343-2345, 2009.

A. D. Nelson, T. H. Bray, F. A. Stanley, and T. E. Albrecht-schmitt, Periodic Trends in Actinide Phosphonates: Divergence and Convergence between Thorium, Uranium, Neptunium, and Plutonium Systems, Inorg. Chem, vol.48, pp.4530-4535, 2009.

P. H. Santschi, J. W. Murray, M. Baskaran, C. R. Benitez-nelson, L. D. Guo et al., Thorium speciation in seawater, Mar. Chem, vol.100, pp.250-268, 2006.

D. Langmuir and J. S. Herman, The mobility of thorium in natural waters at low temperatures, Geochim. Cosmochim. Acta, vol.44, pp.1753-1766, 1980.

, For Table of Contents Only Discussion on alternative polyethyleneimine based platforms that may represent a breakthrough in the field of plutonium decorporation field. Combination of ab initio Molecular Dynamics and Extended X-ray Absorption Fine Structure to clarify the actinide complexation mechanism