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Abstract 1 

Clinical response to checkpoint inhibitors-based (CPIs) therapies can vary among 2 

tumor types and between patients. This led to a significant amount of pre-clinical and 3 

clinical research into biomarker identification. Biomarkers have been found to cover 4 

both the tumor itself and the tumor microenvironment. Entering host-related 5 

parameters into the equation should provide a valuable strategy for identifying not 6 

only factors predictive of treatment efficacy but also of treatment-related toxicity. It is 7 

clear that germline variants can offer efficient and easily-assessable indicators (blood 8 

DNA) to enlarge the spectrum of predictive markers for CPI-based treatment. A major 9 

issue concerns the real functional significance of the reported single-nucleotide 10 

polymorphisms (SNPs) linked to CPI-treatment outcome. Powered calculations 11 

should lead to an optimal trade-off between sample size and allele frequency. New 12 

molecular technologies and new analytical methods should provide opportunities to 13 

bridge the knowledge gap between SNP-CPI treatment associations and the 14 

functional impact of these SNPs. 15 

Key words: Immunotherapy, Check-point inhibitors, predictive factors, germinal 16 

immunogenetics 17 

18 
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1. Immunotherapy-predictive factors-current status in brief 19 

Immunotherapy using the so-called checkpoint inhibitors (CPI) has now reached a 20 

high level of clinical evidence in terms of durable antitumor activity and acceptable 21 

safety across a spectrum of solid and hematologic malignancies (Ribas and Wolchok 22 

2018; Sharma and Allison 2015). The fact that clinical response to CPI-based 23 

therapies can vary among tumor types and between patients has given rise to 24 

considerable pre-clinical and clinical research into biomarker identification that may 25 

allow greater accuracy in predicting response and resistance to treatment, as 26 

recently reported in the excellent review article by Havel and colleagues (Havel, 27 

Chowell, and Chan 2019). These biomarkers have been found to cover both the 28 

tumor itself and the tumor microenvironment. Expression of PD-L1 has been reported 29 

to be predictive of response to CPI targeting PD-1 in several cancers (Ansell et al. 30 

2015; Garon et al. 2015; Havel, Chowell, and Chan 2019; Reck et al. 2016). As T 31 

cells recognize immunogenic antigens, it has been shown that tumor antigenicity, 32 

such as tumor mutational burden (TMB) or neoantigen load, could be associated with 33 

response to CPI (Cristescu et al. 2018; Rizvi et al. 2015). Linked or not to TMB, 34 

tumor microsatellite status has been identified as a predictor of CPI antitumor 35 

efficacy with a link between the presence of microsatellite instability and enhanced 36 

response rate (Le et al. 2015). Interestingly, and logically, a multifactorial approach 37 

combining these biomarkers was recently reported (Ott et al. 2019). The biomarker 38 

profile covered both the tumor microenvironment and the tumor characteristics 39 

including a T-cell-inflamed gene expression profile (GEP), PD-L1 expression and 40 

TMB. However, the study was undertaken retrospectively (Keynote – 028 clinical 41 

trial) and covered multiple tumor types. It was shown that high levels of TMB, PD-L1 42 

expression and T-cell-inflamed GEP, assessed separately or in combination, were 43 

able to predict clinical response to pembrolizumab. More precisely, the highest 44 

likelihood of clinical efficacy conferred by pembrolizumab was found in tumors 45 

exhibiting both high TMB and elevated levels of inflammation translated by GEP or 46 

PD-L1 (Ott et al. 2019). This study calls for prospective confirmation in order to 47 

ensure greater precision regarding the strength of the relationships within individual 48 

cancer types. Such a multifactorial approach also ensures its wide clinical scale 49 

applicability in daily practice although the elevated intrinsic cost may constitute a 50 

significant hurdle in clinical practice. 51 
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On the other hand, predictive markers are very scarce and even absent as 52 

regards side-effects associated with CPI treatment practice. Although toxicity related 53 

to CPI use is relatively rare and reversible, its severity is nevertheless challenging, 54 

with an approximate 1% of treatment-related deaths reported in a recent meta-55 

analysis (Wang et al. 2018). This review underscores the risk of death due to 56 

complications associated with CPI-based therapy as it is present in adjuvant and 57 

maintenance therapy strategies (Antonia et al. 2017; Weber et al. 2017). Globally, 58 

patients who died of toxic effects were older and patient sex had no influence on the 59 

risk of lethal toxic events. Clearly, more reliable predictors are needed to identify the 60 

few patients at high risk of toxic death under CPI treatment. On the other hand, there 61 

is compelling evidence that some patients under CPI undergo deterioration of their 62 

clinical status as a result of the applied therapy itself. This paradoxical phenomenon, 63 

called hyperprogression, has recently been well reviewed by Champiat and 64 

coworkers (Champiat et al. 2018). Hyperprogression needs to be acknowledged and 65 

patients at risk should be identified to improve the management of CPI-based 66 

therapy (Champiat et al. 2018). The review also stressed that, among a panel of 67 

biomarkers covering PD-L1 status, TMB and lymphocyte infiltration score, none 68 

appeared to be appropriate for the detection of hyperprogressive disease at 69 

individual level (Champiat et al. 2018). 70 

There is cumulative evidence that pharmacodynamics reactions (both 71 

response and toxicity) to conventional anti-cancer therapy, including chemotherapy 72 

and targeted therapy, may be linked to intrinsic genomic characteristics generally 73 

referred to as pharmacogenetics (Ciccolini et al. 2015; Hertz and McLeod 2013). To 74 

date, as summarized above, most research into predicting the clinical efficacy of CPI 75 

treatment has focused on tumor-immune phenotype and somatic genomic features. 76 

However and surprisingly enough, it is currently unclear how host germline genetics 77 

may affect response to immunotherapy by CPI. Host-related parameters entered into 78 

the equation should provide a valuable strategy for the identification not only of 79 

factors predictive of treatment efficacy but also of treatment-related toxicity. In 80 

addition, the present review article will examine the interactions between host and 81 

CPI-based treatment outcome related to age, sex, microbiota and, notably, germline 82 

genetics.  83 
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2. Predicting CPI treatment outcome through host characteristics 84 

2.1. Main host factors unrelated to germline genetics  85 

There is cumulative evidence supporting the role of the microbiome in the modulation 86 

of response to CPI treatment across cancer types (Gopalakrishnan et al. 2018; 87 

Havel, Chowell, and Chan 2019). It is clear that insights have recently been gained 88 

into the influence of the microbiome on immunity and cancer (Abt et al. 2012). Trials 89 

aimed at manipulating the gut microbiome are currently being developed to enhance 90 

response to cancer immunotherapy (Gopalakrishnan et al. 2018). However, the 91 

usefulness of microbiome profiling in patients treated by CPI remains unclear. A likely 92 

major difficulty in this context is the vast complexity of the body-wide human 93 

microbiome, particularly outside the gut. Other difficulties in this context are 94 

populations in different geographical areas and with differing lifestyles (Pasolli et al. 95 

2019). This problem highlights the need to capture microbial molecular mechanisms 96 

that can be causal in microbiome-associated health conditions in general and in CPI-97 

treatment responses in particular. 98 

An interesting meta-analysis has recently reported a possible association 99 

between gender and CPI-treatment outcome (Wallis et al. 2019). The study covered 100 

23 randomized clinical trials including 9322 men and 4399 women. In brief, meta-101 

analysis of study-level differences in response to treatment by CPI failed to reveal 102 

statistically significant differences between males and females. However, this 103 

question regarding the influence, or not, of gender on CPI treatment efficacy remains 104 

controversial and open to debate since other authors have drawn the conclusion that 105 

there is a significant advantage in favor of males (Conforti et al. 2018). It is possible 106 

that differences in treatment outcomes between men and women may result from 107 

difficulties in detecting interfering factors such as life-style, comorbidities, and the 108 

presence or not of autoimmune diseases (Wallis et al. 2019). 109 

Patient age is a host characteristic which cannot be ignored in the context of 110 

immunity in general and regarding clinical efficacy of immunotherapy by CPI in 111 

particular. However, little is known about age-related differences in patient response 112 

efficacy/toxicity to CPI therapy. An age-related impact in lung cancer patients treated 113 

by CPI was investigated in a recent report by King-Kallimanis and coworkers (King-114 

Kallimanis et al. 2018). Examining ten of the most commonly reported adverse 115 

events (AE) under immunotherapy, the most frequently reported AE was fatigue, 116 
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which was slightly more common in patients aged 70 and older. On the other hand, 117 

Casaluce and coworkers, also investigating the use of CPI in lung cancer, 118 

demonstrated that the elderly population drew greater benefit from CPI, although with 119 

contrasting results according to the type of CPI applied (Casaluce et al. 2018). The 120 

interaction between aging and individual immunologic status is complex (Alpert et al. 121 

2019). Nevertheless, it can potentially impact key mechanisms governing the 122 

responsiveness of CPI treatment in terms of efficacy and toxicity(Castelo-Branco and 123 

Soveral 2014). For instance, Kugel and coworkers recently reported that melanoma 124 

tumors from older individuals had higher CD8+: FoxP 3 ratios, thus supporting the 125 

increased response rate of elderly patients to anti-PD1 (Kugel et al. 2018). Clearly, a 126 

better understanding of changes in the aging immune system and their impact on 127 

CPI use would be helpful to improve immunotherapy management in advanced age. 128 

2.2. Factors related to germline genetics 129 

Current knowledge in genomic technologies has shed light on the identification of 130 

germline DNA alterations possibly associated with treatment outcome under CPI 131 

therapy. This vast area of investigation is providing a favorable context in terms of 132 

clinical applicability (research into whole genomic DNA) and compares well with more 133 

costly and laborious sequencing on available tumor samples. In this second part of 134 

the review, we attempt to gather complementary elements which constitute both the 135 

background (mainly links between individual SNPs and autoimmune diseases) and 136 

current developments (clinical reports on germinal immunogenetics and CPI therapy) 137 

including our own contribution in this field. It should be noted that several of the 138 

quoted studies are based on a limited number of patients with several SNPs. Such a 139 

methodological context may limit the clinical impact of the report data. The recent 140 

recommendations from the PAMM group of the EORTC point on the necessity to 141 

apply strict rules as concerns clinical pharmacogenetics (Robert et al. 2014). This 142 

includes the studied population with the number of studied cases, the assessment of 143 

diagnosis and treatments received. The recommendation also included the analyzed 144 

polymorphisms with mentioned to be made to an easy identification in the main 145 

databases. The authors also pointed to the applied statistical methods with a clear 146 

references to the Bonferroni correction, for instance. 147 

Autoimmune diseases are characterized by inflammation and tissue damage 148 

largely attributable to general deregulation of immunity cells (Chen et al. 2018). In 149 
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this respect, similar mechanisms of cell immunity deregulation can be the origin of 150 

autoimmune diseases and of excessive reactivity conferred by immunotherapy by 151 

CPI. Interestingly, single-nucleotide polymorphisms (SNPs) in key immune regulatory 152 

genes have been reported to be associated with auto-immune syndromes (Chen et 153 

al. 2018; Molineros et al. 2013; Visscher et al. 2017). Auto-immune diseases with 154 

variants and gene discovery were recently pointed to as an example of GWAS 155 

success (Visscher et al. 2017). It was thus logical to examine possible connections 156 

between these individual SNP distributions and immunotherapy treatment outcome. 157 

Several recent reports have pinpointed such links. Regarding response to treatment, 158 

a study by Lima and coworkers (Lima et al. 2015) examined in 204 patients the role 159 

of functional polymorphisms in immune response genes as potential biomarkers of 160 

BCG therapy in bladder cancer. Their approach merged an initial evaluation of 161 

separate genetic variants and subsequent assessment of their combinations (Lima et 162 

al. 2015). The focus was placed on 42 functional SNPs in 38 genes of molecules 163 

potentially implicated in BCG immunotherapy mechanisms of action. They found that 164 

several SNPs in cytokines, chemokines genes and their receptors carried a risk of 165 

recurrence after BCG treatment. Interestingly, the authors included SNP-related data 166 

in a global predictive approach and established a predictive score of BCG 167 

immunotherapy outcome combining clinicopathological characteristics and a range of 168 

genetic polymorphisms. Focusing on CPI treatment helps reveal this type of 169 

relationship between SNPs-treatment-related effects in terms of both response to 170 

treatment and toxicity. There is evidence showing a connection between the efficacy 171 

of monoclonal antibody therapy and polymorphisms of their target itself, as recently 172 

shown for CD52 (2 SNPs) and alemtuzimab in a group of 108 kidney graft recipients 173 

(Oko et al. 2009). Considering more broadly the field of therapeutic monoclonal 174 

antibodies and regarding herceptin and HER2 in breast cancer, our group has 175 

previously reported on the Ile655Val genetic polymorphism for the risk of developing 176 

trastuzumab-related cardiotoxicity in a group 61 patients (Beauclair et al. 2007). Also, 177 

in a group of 52 colorectal cancer patients treated by cetuximab-irinotecan, we 178 

previously demonstrated that the maximum toxicity grade was linked to the EGFR-179 

191C>A polymorphism (Etienne-Grimaldi et al. 2012). In this context of target 180 

polymorphisms and as concerns CPI, Nomizo and coworkers suggested the 181 

hypothesis that germline PD-1/PD-L1 SNPs might be potential predictive markers for 182 

response to nivolumab in advanced non-small-cell lung cancer (NSCLC) patients 183 
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(Nomizo et al. 2017). In this study, five PD-L1 SNPs and two PD-1 SNPs were 184 

genotyped in 50 NSCLC patients under nivolumab. The G-allele for PD-L1 185 

rs2282055 and the C-allele of PD-L1 rs4143815 were found to be associated with 186 

improved clinical response (Nomizo et al. 2017). On the other hand, other authors 187 

based on 152 advanced melanoma patients and 7 SNPs, have shown CTLA4 gene 188 

polymorphisms to be associated with anti-CTLA4 therapy (Breunis et al. 2008). 189 

HLA class I and class II molecules play a central role in controlling the 190 

specificity of antigen presentation (Havel, Chowell, and Chan 2019; Kelly and 191 

Trowsdale 2019). The fact that some immune-mediated adverse events under CPI 192 

are related to characteristics of well-defined autoimmune diseases linked to HLA risk 193 

alleles (Jin et al. 2019; Paternoster et al. 2015) has logically led investigators to 194 

explore whether HLA gene polymorphisms might be associated with CPI-related 195 

toxicity (Chowell et al. 2018; Hasan Ali et al. 2019). Hassan Ali and coworkers 196 

performed HLA haplotyping with complete HLA class I and class II sequencing in a 197 

group of 102 patients under CPI (Hasan Ali et al. 2019). They found a significant 198 

association between HLA-DRB1*11:01 and pruritus, while a significant association 199 

was demonstrated between HLA-DQB1* 03:01 and colitis. However, this study was 200 

built on a mix of cancer locations (NSCLC and melanoma) receiving heterogeneous 201 

treatments (anti-CTLA4 alone, anti-PD1 alone, a combination of both). This may limit 202 

the impact of the findings and requires confirmation studies on larger and clearly-203 

defined groups of patients taking into account treatment and cancer-type. HLA 204 

genotype was also recently investigated regarding a possible link with response to 205 

CPI-based treatment (Chowell et al. 2018). In this study, the authors effectively 206 

characterized the sets of patients according to the type of CPI and tumor location. In 207 

brief, the study covered a group of 1535 advanced patients on whom HAL-I 208 

genotyping was performed. In two independent melanoma cohorts, patients with the 209 

HLA-B44 supertype had extended survival. In contrast, the HLA-B62 genotype was 210 

associated with poor outcome. While these reported data may have potential 211 

implications for predicting response to CPI, the genetic complexity of the HLA system 212 

is such that an easy and generalizable germinal genetic-based tool is difficult to 213 

design on the currently available data. 214 

2.3. Personal implication 215 
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We recently applied a global germinal immunogenetic approach in an attempt 216 

to predict treatment outcome (toxicity and response) in patients under CPI (Refae et 217 

al. 2018; Refae et al. 2019). The setting of potentially relevant SNPs was based on 218 

an extensive literature search for genes implicated in immune reaction, 219 

immunotherapy response and autoimmune diseases (Figure 1). Candidate SNPs 220 

with minor allele frequency of ≥ 5% in Caucasians according to SNPpedia 221 

(http://www.snppedia.com) and Ensemble databases (http://Ensemble.org) were 222 

selected. This led to the constitution of a custom panel of 86 genes and 166 223 

associated SNPs. High-throughput genotyping of germinal DNA was performed by 224 

MassArray (Agena Bioscience®). In a group of 48 patients with NSCLC (Refae et al. 225 

2018), a composite score of favorable alleles (zero to five) was found to be markedly 226 

associated with progression-free-survival. On a larger group of 94 patients (Refae et 227 

al. 2019), it was possible to distinguish between an association with response rate 228 

conferred by tumor environment-related gene polymorphisms (CCL2, NOS3, IL1RN, 229 

IL12B, CXCR3, IL6R) and grade 3-4 adverse event prediction, which was more 230 

closely linked to target-related SNPs (UNG, IFNW1, CTLA-4, PD-L1, IFNL4). It is 231 

certain that these promising results based on multi-SNP predictive signatures need 232 

larger prospective series (in progress) to reveal their full clinical significance and 233 

applicability. 234 

3. Advantages and limits  235 

Germinal immunogenetics, as summarized above for the main current applications in 236 

the field of CPI-based treatment, has established its potential clinical usefulness. 237 

Germinal immunogenetics constitutes an ideal source of additional information in the 238 

area of predictive biomarkers for immunotherapy by CPI, which are generally 239 

centered on the tumor itself or on its environment. It is clear that germline variants 240 

can provide efficient and easily assessable indicators (blood DNA, at any time) in 241 

order to enlarge the range. Is germinal immunogenetics to be ranked at the same 242 

decisional level as molecular and cellular predictive biomarkers for immunotherapy 243 

by CPI? Probably not, and rightly so. The initial go/no go step, as exemplified by RAS 244 

mutation testing in colorectal cancer with anti-EGFR treatment, can be translated to 245 

biological predictive parameters for CPI-based therapy with PD-L1 expression, 246 

mutational load, microsatellite instability and tumor T cell infiltrate. Once a decision to 247 

treat is taken, additional information regarding patient characteristics is useful. This 248 
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additional information may be supplied by germinal immunogenetics, thus involving 249 

several potential risks, i.e. the risk of the patient being a lesser responder and the 250 

risk of him/her being predisposed to adverse events. This second step of dose 251 

adjustment is based on the individual germinal immunogenetic profile. Clearly, the 252 

two steps, with predictive markers on one hand and germinal immunogenetics on the 253 

other, may be ideally complementary (Table 1). However, it is important to take into 254 

account certain limitations in the ability of germinal polymorphisms to provide 255 

accurate predictions in patients receiving CPI-based therapy. These limitations of 256 

germinal polymorphism assessment concern not only CPI-based therapy but also the 257 

general field of anticancer treatment. For instance, the pharmacogenetics of 258 

anticancer agents has largely proven its clinical utility (DPD and fluoropyrimidines, 259 

UGT1A1 for irinotecan) (Henricks et al. 2018; Paez et al. 2019). However, this 260 

predictive tool suffers from several inherent drawbacks: the small number of cases 261 

on which links between pharmacogenetics and pharmacodynamics are generally 262 

established and the lack of independent validation on larger cohorts. The recently 263 

reported study by Bins and coworkers is an illustration for CPI-based therapy. The 264 

authors assessed the association between seven SNPs in four genes and toxicity 265 

under CPI (Bins et al. 2018). A multivariate analysis in an exploration cohort revealed 266 

that homozygous variant patients for PDCD1 B04C>T ran a lower risk of toxicity. 267 

However, in a prospective validation group this link was no longer observed (Bins et 268 

al. 2018). Relatively few prospective controlled trials in which the clinical usefulness 269 

of gene polymorphisms was firmly established have been published as concerns 270 

DPD (Henricks et al. 2018) and UGT1A1 (Paez et al. 2019).  271 

Another important issue concerns the precise functional significance of the reported 272 

SNPs linked to treatment outcome. This lack of information may be explained by the 273 

complexity of the investigations needed. Generally, only in silico simulations using 274 

dedicated software are undertaken to shed light on this important issue of the 275 

functional impact of reported predictive SNPs. Table 2 illustrates the main free 276 

software programs available in this context. These programs generate hypotheses 277 

for future experimental investigations in order to test the biological functionality of the 278 

alleles of interest. An illustration of this strategy is found in the study by Chen and 279 

coworkers (Kugel et al. 2018). The authors identified a variant of IgG1 with a Gly 280 

396–>Arg (hIgG1-G396R), which positively correlated with systemic lupus 281 

erythematosus. Interestingly, the authors generated mice carrying the G396R 282 
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homozygous genotypes. They were able to show that the variant impacted the 283 

phosphorylation of the ITT motif leading to an alteration of tyrosine kinase signaling 284 

on antigen binding.   285 

A clear distinction between a true predictive marker and a prognostic factor should 286 

also be defined. In this regard, Rendleman and coworkers reported on the link 287 

between IL10 rs3024493 and clinical outcomes in a population sample of 1022 288 

melanoma patients (Rendleman et al. 2015). They found a significant association of 289 

this IL10 gene polymorphism with melanoma survival while no mention of applied 290 

CPI-based treatment was made in this study. Thus, there would appear to be a 291 

potential risk in concluding that this IL10 gene polymorphism has a predictive value in 292 

melanoma patients treated by CPI whereas it only has intrinsic prognostic value 293 

independently of an applied therapy. Similarly, Liu and coworkers (Liu et al. 2018) 294 

recently reported on the prognostic value of CTLA-4 rs231775 in patients with renal 295 

carcinoma. Patients were treated by antiangiogenic therapy with sunitinib and not by 296 

CPI-based treatment. This finding highlights to the need to understand the biological 297 

significance of the disclosed alleles in order to establish more clearly their potential 298 

link with the drug mechanism of action.  299 

4. Perspectives  300 

It is clear that an understanding of mechanisms underlying the inter-individual 301 

variability of immunotherapy sensitivity remains a key challenge for personalized 302 

medicine. The identification of reliable immunotherapy biomarkers that provide 303 

insights into biological and genetic sources of response variability will be critical to 304 

guide personalized-medicine approaches. 305 

The statistical power to establish clinical genetic associations should be 306 

revisited, as recently stressed by Vissher and coworkers (Visscher et al. 2017). 307 

Carefully-powered calculations should lead to an optimal trade-off between sample 308 

size, allele frequency and effect size. A GWAS catalogue from 2008 to 2016 revealed 309 

a SNP-trait discovery timeline with an increasing number of SNP-related traits 310 

(Welter et al. 2014). New molecular technologies and innovative analytical methods 311 

should provide opportunities to bridge the knowledge gap between SNP-CPI 312 

treatment associations and the functional impact of these SNPs and the gene level. 313 

The design of novel computational methods incorporating machine learning and 314 

bioinformatic techniques should make available tools particularly suitable for 315 
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predicting immunosensitivity at individual level and for identifying SNP-related 316 

biological mechanisms (Oh et al. 2017). The huge power of the emerging 317 

CRISPR/cas9-based technologies (Karimian et al. 2019) could offer real 318 

opportunities by assisting in the design of appropriate biological models to test the 319 

functional impact of the SNPs discovered in germinal immunogenetic studies 320 

investigating CPI-based therapy. At this level, a dual approach associating cellular 321 

and animal models appears to be particularly relevant to ensure adequate 322 

exploration of functional impacts following SNP discovery (Winters, Murray, and 323 

Winslow 2018). It must also be borne in mind, in most cases, that the molecular 324 

mechanisms by which non-coding genetic variants disrupt gene expression remain 325 

unclear. In this respect, it is important to mention the DICE project (database of 326 

immune cell expression, expression quantitative trait loci[eQTL] and epigenomics) 327 

which is shedding more light on eQTL and the transcriptomic data human immune 328 

system (Schmiedel et al. 2018). 329 

Author’s contributions 330 

All authors have been participated in the writing and involved in critical revision of this 331 

manuscript for important intellectual content. All authors approved this manuscript. 332 

Funding/support and role of the sponsor 333 

None 334 



12 

 

 

References 

Abt, M. C., L. C. Osborne, L. A. Monticelli, T. A. Doering, T. Alenghat, G. F. 
Sonnenberg, M. A. Paley, M. Antenus, K. L. Williams, J. Erikson, E. J. Wherry, 
and D. Artis. 2012. 'Commensal bacteria calibrate the activation threshold of 
innate antiviral immunity', Immunity, 37: 158-70. 

Alpert, A., Y. Pickman, M. Leipold, Y. Rosenberg-Hasson, X. Ji, R. Gaujoux, H. 
Rabani, E. Starosvetsky, K. Kveler, S. Schaffert, D. Furman, O. Caspi, U. 
Rosenschein, P. Khatri, C. L. Dekker, H. T. Maecker, M. M. Davis, and S. S. 
Shen-Orr. 2019. 'A clinically meaningful metric of immune age derived from 
high-dimensional longitudinal monitoring', Nat Med, 25: 487-95. 

Ansell, S. M., A. M. Lesokhin, I. Borrello, A. Halwani, E. C. Scott, M. Gutierrez, S. J. 
Schuster, M. M. Millenson, D. Cattry, G. J. Freeman, S. J. Rodig, B. Chapuy, 
A. H. Ligon, L. Zhu, J. F. Grosso, S. Y. Kim, J. M. Timmerman, M. A. Shipp, 
and P. Armand. 2015. 'PD-1 blockade with nivolumab in relapsed or refractory 
Hodgkin's lymphoma', N Engl J Med, 372: 311-9. 

Antonia, S. J., A. Villegas, D. Daniel, D. Vicente, S. Murakami, R. Hui, T. Yokoi, A. 
Chiappori, K. H. Lee, M. de Wit, B. C. Cho, M. Bourhaba, X. Quantin, T. 
Tokito, T. Mekhail, D. Planchard, Y. C. Kim, C. S. Karapetis, S. Hiret, G. 
Ostoros, K. Kubota, J. E. Gray, L. Paz-Ares, J. de Castro Carpeno, C. 
Wadsworth, G. Melillo, H. Jiang, Y. Huang, P. A. Dennis, M. Ozguroglu, and 
Pacific Investigators. 2017. 'Durvalumab after Chemoradiotherapy in Stage III 
Non-Small-Cell Lung Cancer', N Engl J Med, 377: 1919-29. 

Beauclair, S., P. Formento, J. L. Fischel, W. Lescaut, R. Largillier, E. Chamorey, P. 
Hofman, J. M. Ferrero, G. Pages, and G. Milano. 2007. 'Role of the HER2 
[Ile655Val] genetic polymorphism in tumorogenesis and in the risk of 
trastuzumab-related cardiotoxicity', Ann Oncol, 18: 1335-41. 

Bins, S., E. A. Basak, S. El Bouazzaoui, S. L. W. Koolen, E. Oomen-de Hoop, C. H. 
van der Leest, A. A. M. van der Veldt, S. Sleijfer, R. Debets, R. H. N. van 
Schaik, Jgjv Aerts, and R. H. J. Mathijssen. 2018. 'Association between single-
nucleotide polymorphisms and adverse events in nivolumab-treated non-small 
cell lung cancer patients', Br J Cancer, 118: 1296-301. 

Breunis, W. B., E. Tarazona-Santos, R. Chen, M. Kiley, S. A. Rosenberg, and S. J. 
Chanock. 2008. 'Influence of cytotoxic T lymphocyte-associated antigen 4 
(CTLA4) common polymorphisms on outcome in treatment of melanoma 
patients with CTLA-4 blockade', J Immunother, 31: 586-90. 

Casaluce, F., A. Sgambato, P. Maione, A. Spagnuolo, and C. Gridelli. 2018. 'Lung 
cancer, elderly and immune checkpoint inhibitors', J Thorac Dis, 10: S1474-
S81. 

Castelo-Branco, C., and I. Soveral. 2014. 'The immune system and aging: a review', 
Gynecol Endocrinol, 30: 16-22. 

Champiat, S., R. Ferrara, C. Massard, B. Besse, A. Marabelle, J. C. Soria, and C. 
Ferte. 2018. 'Hyperprogressive disease: recognizing a novel pattern to 
improve patient management', Nat Rev Clin Oncol, 15: 748-62. 

Chen, X., X. Sun, W. Yang, B. Yang, X. Zhao, S. Chen, L. He, H. Chen, C. Yang, L. 
Xiao, Z. Chang, J. Guo, J. He, F. Zhang, F. Zheng, Z. Hu, Z. Yang, J. Lou, W. 
Zheng, H. Qi, C. Xu, H. Zhang, H. Shan, X. J. Zhou, Q. Wang, Y. Shi, L. Lai, 
Z. Li, and W. Liu. 2018. 'An autoimmune disease variant of IgG1 modulates B 
cell activation and differentiation', Science, 362: 700-05. 



13 

 

Chowell, D., L. G. T. Morris, C. M. Grigg, J. K. Weber, R. M. Samstein, V. Makarov, 
F. Kuo, S. M. Kendall, D. Requena, N. Riaz, B. Greenbaum, J. Carroll, E. 
Garon, D. M. Hyman, A. Zehir, D. Solit, M. Berger, R. Zhou, N. A. Rizvi, and T. 
A. Chan. 2018. 'Patient HLA class I genotype influences cancer response to 
checkpoint blockade immunotherapy', Science, 359: 582-87. 

Ciccolini, J., R. Fanciullino, C. Serdjebi, and G. Milano. 2015. 'Pharmacogenetics and 
breast cancer management: current status and perspectives', Expert Opin 
Drug Metab Toxicol, 11: 719-29. 

Conforti, F., L. Pala, V. Bagnardi, T. De Pas, M. Martinetti, G. Viale, R. D. Gelber, 
and A. Goldhirsch. 2018. 'Cancer immunotherapy efficacy and patients' sex: a 
systematic review and meta-analysis', Lancet Oncol, 19: 737-46. 

Cristescu, R., R. Mogg, M. Ayers, A. Albright, E. Murphy, J. Yearley, X. Sher, X. Q. 
Liu, H. Lu, M. Nebozhyn, C. Zhang, J. K. Lunceford, A. Joe, J. Cheng, A. L. 
Webber, N. Ibrahim, E. R. Plimack, P. A. Ott, T. Y. Seiwert, A. Ribas, T. K. 
McClanahan, J. E. Tomassini, A. Loboda, and D. Kaufman. 2018. 'Pan-tumor 
genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy', 
Science, 362. 

Etienne-Grimaldi, M. C., J. Bennouna, J. L. Formento, J. Y. Douillard, M. Francoual, 
I. Hennebelle, E. Chatelut, E. Francois, R. Faroux, C. El Hannani, J. H. Jacob, 
and G. Milano. 2012. 'Multifactorial pharmacogenetic analysis in colorectal 
cancer patients receiving 5-fluorouracil-based therapy together with 
cetuximab-irinotecan', Br J Clin Pharmacol, 73: 776-85. 

Garon, E. B., N. A. Rizvi, R. Hui, N. Leighl, A. S. Balmanoukian, J. P. Eder, A. 
Patnaik, C. Aggarwal, M. Gubens, L. Horn, E. Carcereny, M. J. Ahn, E. Felip, 
J. S. Lee, M. D. Hellmann, O. Hamid, J. W. Goldman, J. C. Soria, M. Dolled-
Filhart, R. Z. Rutledge, J. Zhang, J. K. Lunceford, R. Rangwala, G. M. 
Lubiniecki, C. Roach, K. Emancipator, L. Gandhi, and Keynote- Investigators. 
2015. 'Pembrolizumab for the treatment of non-small-cell lung cancer', N Engl 
J Med, 372: 2018-28. 

Gopalakrishnan, V., B. A. Helmink, C. N. Spencer, A. Reuben, and J. A. Wargo. 
2018. 'The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer 
Immunotherapy', Cancer Cell, 33: 570-80. 

Hasan Ali, O., F. Berner, D. Bomze, M. Fassler, S. Diem, A. Cozzio, M. Jorger, M. 
Fruh, C. Driessen, T. L. Lenz, and L. Flatz. 2019. 'Human leukocyte antigen 
variation is associated with adverse events of checkpoint inhibitors', Eur J 
Cancer, 107: 8-14. 

Havel, J. J., D. Chowell, and T. A. Chan. 2019. 'The evolving landscape of 
biomarkers for checkpoint inhibitor immunotherapy', Nat Rev Cancer, 19: 133-
50. 

Henricks, L. M., Catc Lunenburg, F. M. de Man, D. Meulendijks, G. W. J. Frederix, E. 
Kienhuis, G. J. Creemers, A. Baars, V. O. Dezentje, A. L. T. Imholz, F. J. F. 
Jeurissen, J. E. A. Portielje, R. L. H. Jansen, P. Hamberg, A. J. Ten Tije, H. J. 
Droogendijk, M. Koopman, P. Nieboer, M. H. W. van de Poel, Cmpw 
Mandigers, H. Rosing, J. H. Beijnen, E. V. Werkhoven, A. B. P. van 
Kuilenburg, R. H. N. van Schaik, R. H. J. Mathijssen, J. J. Swen, H. 
Gelderblom, A. Cats, H. J. Guchelaar, and J. H. M. Schellens. 2018. 'DPYD 
genotype-guided dose individualisation of fluoropyrimidine therapy in patients 
with cancer: a prospective safety analysis', Lancet Oncol, 19: 1459-67. 



14 

 

Hertz, D. L., and H. L. McLeod. 2013. 'Use of pharmacogenetics for predicting cancer 
prognosis and treatment exposure, response and toxicity', J Hum Genet, 58: 
346-52. 

Jin, Y., G. H. L. Roberts, T. M. Ferrara, S. Ben, N. van Geel, A. Wolkerstorfer, K. 
Ezzedine, J. Siebert, C. P. Neff, B. E. Palmer, S. A. Santorico, and R. A. 
Spritz. 2019. 'Early-onset autoimmune vitiligo associated with an enhancer 
variant haplotype that upregulates class II HLA expression', Nat Commun, 10: 
391. 

Karimian, A., K. Azizian, H. Parsian, S. Rafieian, V. Shafiei-Irannejad, M. Kheyrollah, 
M. Yousefi, M. Majidinia, and B. Yousefi. 2019. 'CRISPR/Cas9 technology as 
a potent molecular tool for gene therapy', J Cell Physiol. 

Kelly, A., and J. Trowsdale. 2019. 'Genetics of antigen processing and presentation', 
Immunogenetics, 71: 161-70. 

King-Kallimanis, B. L., B. Kanapuru, G. M. Blumenthal, M. R. Theoret, and P. G. 
Kluetz. 2018. 'Age-related differences in patient-reported outcomes in patients 
with advanced lung cancer receiving anti-PD-1/PD-L1 therapy', Semin Oncol, 
45: 201-09. 

Kugel, C. H., 3rd, S. M. Douglass, M. R. Webster, A. Kaur, Q. Liu, X. Yin, S. A. 
Weiss, F. Darvishian, R. N. Al-Rohil, A. Ndoye, R. Behera, G. M. Alicea, B. L. 
Ecker, M. Fane, M. J. Allegrezza, N. Svoronos, V. Kumar, D. Y. Wang, R. 
Somasundaram, S. Hu-Lieskovan, A. Ozgun, M. Herlyn, J. R. Conejo-Garcia, 
D. Gabrilovich, E. L. Stone, T. S. Nowicki, J. Sosman, R. Rai, M. S. Carlino, G. 
V. Long, R. Marais, A. Ribas, Z. Eroglu, M. A. Davies, B. Schilling, D. 
Schadendorf, W. Xu, R. K. Amaravadi, A. M. Menzies, J. L. McQuade, D. B. 
Johnson, I. Osman, and A. T. Weeraratna. 2018. 'Age Correlates with 
Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral 
Effector and Regulatory T-Cell Populations', Clin Cancer Res, 24: 5347-56. 

Le, D. T., J. N. Uram, H. Wang, B. R. Bartlett, H. Kemberling, A. D. Eyring, A. D. 
Skora, B. S. Luber, N. S. Azad, D. Laheru, B. Biedrzycki, R. C. Donehower, A. 
Zaheer, G. A. Fisher, T. S. Crocenzi, J. J. Lee, S. M. Duffy, R. M. Goldberg, A. 
de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R. H. Hruban, L. D. Wood, 
N. Cuka, D. M. Pardoll, N. Papadopoulos, K. W. Kinzler, S. Zhou, T. C. 
Cornish, J. M. Taube, R. A. Anders, J. R. Eshleman, B. Vogelstein, and L. A. 
Diaz, Jr. 2015. 'PD-1 Blockade in Tumors with Mismatch-Repair Deficiency', N 
Engl J Med, 372: 2509-20. 

Lima, L., D. Oliveira, J. A. Ferreira, A. Tavares, R. Cruz, R. Medeiros, and L. Santos. 
2015. 'The role of functional polymorphisms in immune response genes as 
biomarkers of bacille Calmette-Guerin (BCG) immunotherapy outcome in 
bladder cancer: establishment of a predictive profile in a Southern Europe 
population', BJU Int, 116: 753-63. 

Liu, X., J. J. Swen, M. H. M. Diekstra, E. Boven, D. Castellano, H. Gelderblom, R. H. 
J. Mathijssen, S. H. Vermeulen, E. Oosterwijk, K. Junker, M. Roessler, K. 
Alexiusdottir, A. Sverrisdottir, M. T. Radu, V. Ambert, T. Eisen, A. Warren, C. 
Rodriguez-Antona, J. Garcia-Donas, S. Bohringer, K. K. M. Koudijs, Lalm 
Kiemeney, B. I. Rini, and H. J. Guchelaar. 2018. 'A Genetic Polymorphism in 
CTLA-4 Is Associated with Overall Survival in Sunitinib-Treated Patients with 
Clear Cell Metastatic Renal Cell Carcinoma', Clin Cancer Res, 24: 2350-56. 

Molineros, J. E., A. K. Maiti, C. Sun, L. L. Looger, S. Han, X. Kim-Howard, S. Glenn, 
A. Adler, J. A. Kelly, T. B. Niewold, G. S. Gilkeson, E. E. Brown, G. S. Alarcon, 
J. C. Edberg, M. Petri, R. Ramsey-Goldman, J. D. Reveille, L. M. Vila, B. I. 



15 

 

Freedman, B. P. Tsao, L. A. Criswell, C. O. Jacob, J. H. Moore, T. J. Vyse, C. 
L. Langefeld, J. M. Guthridge, P. M. Gaffney, K. L. Moser, R. H. Scofield, M. 
E. Alarcon-Riquelme, Biolupus Network, S. M. Williams, J. T. Merrill, J. A. 
James, K. M. Kaufman, R. P. Kimberly, J. B. Harley, and S. K. Nath. 2013. 
'Admixture mapping in lupus identifies multiple functional variants within IFIH1 
associated with apoptosis, inflammation, and autoantibody production', PLoS 
Genet, 9: e1003222. 

Nomizo, T., H. Ozasa, T. Tsuji, T. Funazo, Y. Yasuda, H. Yoshida, Y. Yagi, Y. 
Sakamori, H. Nagai, T. Hirai, and Y. H. Kim. 2017. 'Clinical Impact of Single 
Nucleotide Polymorphism in PD-L1 on Response to Nivolumab for Advanced 
Non-Small-Cell Lung Cancer Patients', Sci Rep, 7: 45124. 

Oh, J. H., S. Kerns, H. Ostrer, S. N. Powell, B. Rosenstein, and J. O. Deasy. 2017. 
'Computational methods using genome-wide association studies to predict 
radiotherapy complications and to identify correlative molecular processes', 
Sci Rep, 7: 43381. 

Oko, A., L. S. Wyrwicz, M. Glyda, I. Idasiak-Piechocka, A. Binczak-Kuleta, M. 
Kaczmarczyk, A. Drozd, A. Ciechanowicz, and S. Czekalski. 2009. 'CD52 
gene polymorphism and its potential effect on the response to alemtuzumab in 
renal transplant recipients', Ann Acad Med Stetin, 55: 22-6. 

Ott, P. A., Y. J. Bang, S. A. Piha-Paul, A. R. A. Razak, J. Bennouna, J. C. Soria, H. 
S. Rugo, R. B. Cohen, B. H. O'Neil, J. M. Mehnert, J. Lopez, T. Doi, E. M. J. 
van Brummelen, R. Cristescu, P. Yang, K. Emancipator, K. Stein, M. Ayers, A. 
K. Joe, and J. K. Lunceford. 2019. 'T-Cell-Inflamed Gene-Expression Profile, 
Programmed Death Ligand 1 Expression, and Tumor Mutational Burden 
Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: 
KEYNOTE-028', J Clin Oncol, 37: 318-27. 

Paez, D., M. Tobena, J. Fernandez-Plana, A. Sebio, A. C. Virgili, L. Cirera, A. 
Barnadas, P. Riera, I. Sullivan, and J. Salazar. 2019. 'Pharmacogenetic 
clinical randomised phase II trial to evaluate the efficacy and safety of 
FOLFIRI with high-dose irinotecan (HD-FOLFIRI) in metastatic colorectal 
cancer patients according to their UGT1A 1 genotype', Br J Cancer, 120: 190-
95. 

Pasolli, E., F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini, P. 
Manghi, A. Tett, P. Ghensi, M. C. Collado, B. L. Rice, C. DuLong, X. C. 
Morgan, C. D. Golden, C. Quince, C. Huttenhower, and N. Segata. 2019. 
'Extensive Unexplored Human Microbiome Diversity Revealed by Over 
150,000 Genomes from Metagenomes Spanning Age, Geography, and 
Lifestyle', Cell, 176: 649-62 e20. 

Paternoster, L., M. Standl, J. Waage, H. Baurecht, M. Hotze, D. P. Strachan, J. A. 
Curtin, K. Bonnelykke, C. Tian, A. Takahashi, J. Esparza-Gordillo, A. C. Alves, 
J. P. Thyssen, H. T. den Dekker, M. A. Ferreira, E. Altmaier, P. M. Sleiman, F. 
L. Xiao, J. R. Gonzalez, I. Marenholz, B. Kalb, M. P. Yanes, C. J. Xu, L. 
Carstensen, M. M. Groen-Blokhuis, C. Venturini, C. E. Pennell, S. J. Barton, 
A. M. Levin, I. Curjuric, M. Bustamante, E. Kreiner-Moller, G. A. Lockett, J. 
Bacelis, S. Bunyavanich, R. A. Myers, A. Matanovic, A. Kumar, J. Y. Tung, T. 
Hirota, M. Kubo, W. L. McArdle, A. J. Henderson, J. P. Kemp, J. Zheng, G. D. 
Smith, F. Ruschendorf, A. Bauerfeind, M. A. Lee-Kirsch, A. Arnold, G. 
Homuth, C. O. Schmidt, E. Mangold, S. Cichon, T. Keil, E. Rodriguez, A. 
Peters, A. Franke, W. Lieb, N. Novak, R. Folster-Holst, M. Horikoshi, J. 
Pekkanen, S. Sebert, L. L. Husemoen, N. Grarup, J. C. de Jongste, F. 



16 

 

Rivadeneira, A. Hofman, V. W. Jaddoe, S. G. Pasmans, N. J. Elbert, A. G. 
Uitterlinden, G. B. Marks, P. J. Thompson, M. C. Matheson, C. F. Robertson, 
Consortium Australian Asthma Genetics, J. S. Ried, J. Li, X. B. Zuo, X. D. 
Zheng, X. Y. Yin, L. D. Sun, M. A. McAleer, G. M. O'Regan, C. M. Fahy, L. E. 
Campbell, M. Macek, M. Kurek, D. Hu, C. Eng, D. S. Postma, B. Feenstra, F. 
Geller, J. J. Hottenga, C. M. Middeldorp, P. Hysi, V. Bataille, T. Spector, C. M. 
Tiesler, E. Thiering, B. Pahukasahasram, J. J. Yang, M. Imboden, S. 
Huntsman, N. Vilor-Tejedor, C. L. Relton, R. Myhre, W. Nystad, A. Custovic, 
S. T. Weiss, D. A. Meyers, C. Soderhall, E. Melen, C. Ober, B. A. Raby, A. 
Simpson, B. Jacobsson, J. W. Holloway, H. Bisgaard, J. Sunyer, N. M. P. 
Hensch, L. K. Williams, K. M. Godfrey, C. A. Wang, D. I. Boomsma, M. 
Melbye, G. H. Koppelman, D. Jarvis, W. I. McLean, A. D. Irvine, X. J. Zhang, 
H. Hakonarson, C. Gieger, E. G. Burchard, N. G. Martin, L. Duijts, A. 
Linneberg, M. R. Jarvelin, M. M. Noethen, S. Lau, N. Hubner, Y. A. Lee, M. 
Tamari, D. A. Hinds, D. Glass, S. J. Brown, J. Heinrich, D. M. Evans, and S. 
Weidinger. 2015. 'Multi-ancestry genome-wide association study of 21,000 
cases and 95,000 controls identifies new risk loci for atopic dermatitis', Nat 
Genet, 47: 1449-56. 

Reck, M., D. Rodriguez-Abreu, A. G. Robinson, R. Hui, T. Csoszi, A. Fulop, M. 
Gottfried, N. Peled, A. Tafreshi, S. Cuffe, M. O'Brien, S. Rao, K. Hotta, M. A. 
Leiby, G. M. Lubiniecki, Y. Shentu, R. Rangwala, J. R. Brahmer, and Keynote- 
Investigators. 2016. 'Pembrolizumab versus Chemotherapy for PD-L1-Positive 
Non-Small-Cell Lung Cancer', N Engl J Med, 375: 1823-33. 

Refae, Sadal, Nathalie Ebran, Jocelyn Gal, Josiane Otto, Damien Giacchero, 
Delphine Borchiellini, Joel Guigay, Frederique Peyrade, Gerard Milano, and 
Esma Saada. 2018. 'Abstract 4548: Host immunogenetics and 
hyperprogression under PD1/PD-L1 checkpoint inhibitors', Cancer Research, 
78: 4548-48. 

Refae, Sadal, Jocelyn Gal, Nathalie Ebran, Josiane Otto, Delphine Borchiellini, 
Frederic Peyrade, Emmanuel Chamorey, Patrick Brest, Gérard Milano, and 
Esma Saada. 2019. 'Abstract 1070: Germinal immunogenetics predicts 
treatment outcome for PD1 PD-L1 checkpoint inhibitors', Cancer Research. 

Rendleman, J., M. Vogelsang, A. Bapodra, C. Adaniel, I. Silva, D. Moogk, C. N. 
Martinez, N. Fleming, J. Shields, R. Shapiro, R. Berman, A. Pavlick, D. Polsky, 
Y. Shao, I. Osman, M. Krogsgaard, and T. Kirchhoff. 2015. 'Genetic 
associations of the interleukin locus at 1q32.1 with clinical outcomes of 
cutaneous melanoma', J Med Genet, 52: 231-9. 

Ribas, A., and J. D. Wolchok. 2018. 'Cancer immunotherapy using checkpoint 
blockade', Science, 359: 1350-55. 

Rizvi, N. A., M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, W. 
Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. 
Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B. 
Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, and T. A. Chan. 2015. 
'Cancer immunology. Mutational landscape determines sensitivity to PD-1 
blockade in non-small cell lung cancer', Science, 348: 124-8. 

Robert, J., V. Le Morvan, E. Giovannetti, G. J. Peters, and Pamm Group of EORTC. 
2014. 'On the use of pharmacogenetics in cancer treatment and clinical trials', 
Eur J Cancer, 50: 2532-43. 

Schmiedel, B. J., D. Singh, A. Madrigal, A. G. Valdovino-Gonzalez, B. M. White, J. 
Zapardiel-Gonzalo, B. Ha, G. Altay, J. A. Greenbaum, G. McVicker, G. 



17 

 

Seumois, A. Rao, M. Kronenberg, B. Peters, and P. Vijayanand. 2018. 'Impact 
of Genetic Polymorphisms on Human Immune Cell Gene Expression', Cell, 
175: 1701-15 e16. 

Sharma, P., and J. P. Allison. 2015. 'The future of immune checkpoint therapy', 
Science, 348: 56-61. 

Visscher, P. M., N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown, and J. 
Yang. 2017. '10 Years of GWAS Discovery: Biology, Function, and 
Translation', Am J Hum Genet, 101: 5-22. 

Wallis, C. J. D., M. Butaney, R. Satkunasivam, S. J. Freedland, S. P. Patel, O. 
Hamid, S. K. Pal, and Z. Klaassen. 2019. 'Association of Patient Sex With 
Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced 
Cancers: A Systematic Review and Meta-analysis', JAMA Oncol. 

Wang, D. Y., J. E. Salem, J. V. Cohen, S. Chandra, C. Menzer, F. Ye, S. Zhao, S. 
Das, K. E. Beckermann, L. Ha, W. K. Rathmell, K. K. Ancell, J. M. Balko, C. 
Bowman, E. J. Davis, D. D. Chism, L. Horn, G. V. Long, M. S. Carlino, B. 
Lebrun-Vignes, Z. Eroglu, J. C. Hassel, A. M. Menzies, J. A. Sosman, R. J. 
Sullivan, J. J. Moslehi, and D. B. Johnson. 2018. 'Fatal Toxic Effects 
Associated With Immune Checkpoint Inhibitors: A Systematic Review and 
Meta-analysis', JAMA Oncol, 4: 1721-28. 

Weber, J., M. Mandala, M. Del Vecchio, H. J. Gogas, A. M. Arance, C. L. Cowey, S. 
Dalle, M. Schenker, V. Chiarion-Sileni, I. Marquez-Rodas, J. J. Grob, M. O. 
Butler, M. R. Middleton, M. Maio, V. Atkinson, P. Queirolo, R. Gonzalez, R. R. 
Kudchadkar, M. Smylie, N. Meyer, L. Mortier, M. B. Atkins, G. V. Long, S. 
Bhatia, C. Lebbe, P. Rutkowski, K. Yokota, N. Yamazaki, T. M. Kim, V. de Pril, 
J. Sabater, A. Qureshi, J. Larkin, P. A. Ascierto, and Collaborators 
CheckMate. 2017. 'Adjuvant Nivolumab versus Ipilimumab in Resected Stage 
III or IV Melanoma', N Engl J Med, 377: 1824-35. 

Welter, D., J. MacArthur, J. Morales, T. Burdett, P. Hall, H. Junkins, A. Klemm, P. 
Flicek, T. Manolio, L. Hindorff, and H. Parkinson. 2014. 'The NHGRI GWAS 
Catalog, a curated resource of SNP-trait associations', Nucleic Acids Res, 42: 
D1001-6. 

Winters, I. P., C. W. Murray, and M. M. Winslow. 2018. 'Towards quantitative and 
multiplexed in vivo functional cancer genomics', Nat Rev Genet, 19: 741-55. 

 



 
Figure 1: Germinal immunogenetics wheel within the CPI response machinery. SNPs (germinal immunogenetics) hold a place in the global machinery linked to the response to CPI. They can interfere with the immune 

system itself but also with the microbiota, the tumoral microenvironment (TME) and the tumor. Other potential influencing factors may (non-exclusively) implicate race, sex, age and inflammation. 



Table 1: A tentative global approach for optimizing CPI-based treatment 

THE CURRENT APPROACH THE COMPLEMENTARY PART OF THE HOST 

MARKERS 

Tumor and environnement-related 

MARKERS 

  Germinal immunogenetics (SNP score) 

- Target expression (PD-L1) - Tumor-related factors (PD-L1, CTLA-4, IDO, HLA…) 

- Tumor mutational load - Microenvironment-related (INF, TCR…) 

- Tumor T cell infiltrate (quantitative, qualitative) � 

- MSS / MSI Risk Score Calculation  

DECISIONS 

- Go/No Go 

DECISIONS 

- Individual dose adjustment  

- Combine with CPI (plus chemotherapy, plus TKIs…) - Schedule adaptation  

 - PK survey incorporation  

 



Table 2: Free available tools to analyze SNPs 

 

NAME Link Description 

HAPLOREG 

 

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php 

 

Explores annotations of the noncoding genome at variants on haplotype blocks, such as 

candidate regulatory SNPs at disease-associated loci. HaploReg returns SNPs in LD with 

query SNPs, their frequency in 4 populations from 1000 Genomes Phase1, and also tells 

you what evidence ENCODE has found for regulatory protein binding, chromatin 

structure, the chromatin state of the region, and putative transcription factor binding 

motifs that are altered by the variant.  

ENSEMBL https://www.ensembl.org/index.html Gives the location of the variant on the gene 

GTEX 

 

https://gtexportal.org/home/ 

 

The Genotype-Tissue Expression (GTEx) project is an ongoing effort to build a 

comprehensive public resource to study tissue-specific gene expression and regulation. 

Samples were collected from 53 non-diseased tissue sites across nearly 1000 individuals, 

primarily for molecular assays including WGS, WES, and RNA-Seq. The GTEx Portal 

provides open access to data including gene expression, QTLs, and histology images. 

REGULOMEDB 

 

http://www.regulomedb.org/index 

 

RegulomeDB is a database that annotates SNPs with known and predicted regulatory 

elements in the intergenic regions of the H.Sapiens genome. Known and predicted 

regulatory DNA elements include regions of DNAase hypersensitivity, binding sites of 

transcription factors, and promoter regions that have been biochemically characterized 

to regulation transcription. Sources of these data include public datasets from GEO, the 

ENCODE project, and published literature. 

SNIPMIR http://www.genomique.info:8080/merge/index?action=MISNP Tests the gain/loss of microRNA binding induced by a SNP 

 

 



Graphical abstract 

Germinal immunogenetics as a predictive factor for immunotherapy 

 

Clinical response to checkpoint inhibitors-based (CPIs) therapies can vary among 

tumor types and between patients according to several factors.  

Entering host-related parameters (germinal immunogenetics) into the biomarker panel 

of CPI should provide a valuable strategy for identifying not only factors predictive of 

treatment efficacy but also of treatment-related toxicity.  

A major issue concerns the real functional significance of the reported single-

nucleotide polymorphisms (SNPs) linked to CPI-treatment outcome. 




