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In this study, we determine certain constants which naturally occur in the Laurent expansion of harmonic zeta functions.

Introduction

Let us consider an analytic function f defined in the half-plane Re(z) > 0 and the function ζ f defined in a half-plane Re(s) > σ by the Dirichlet series n≥1 f (n) n s whose meromorphic continuation is supposed to have a pole of order m at s = a. The purpose of this study is to examine how the constant C a involved in the Laurent expansion

ζ f (s) = m n=1 b n (s -a) n + C a + O(s -a)
in a neighborhood of s = a is linked to the sum of the series n≥1 f (n) n a in the sense of Ramanujan's summation. To what extent does the knowledge of one enable to determine the other?

In the case where f (n) = 1 for all n, ζ f is Riemann ζ function. It is well-known that this famous function can be continued as an analytic function in C\{1} and, in a neighborhood of its pole s = 1, may be written

ζ(s) = 1 s -1 + γ + O(s -1) ,
where γ denotes Euler's constant

γ = lim N →∞ N n=1
1 n -ln N = 0.5772156649 . . . Furthermore, the Ramanujan summation method [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] enable to sum the series n≥1 1 n s for all complex values of s, and the sum of the series at s = 1 is nothing else than Euler's constant γ [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]Eq. (1.24)]. Thus, in this particular simple case, the constant C 1 at s = 1 and the sum in the sense of Ramanujan of the series at this point are the same.

In the first part of this study, we examine the more difficult case of the analytic function ζ H defined for Re(s) > 1 by

ζ H (s) = +∞ n=1 H n n s ,
where H = {H n } n is the sequence of harmonic numbers. Apostol-Vu [START_REF] Apostol | Dirichlet series related to the Riemann zeta function[END_REF] and Matsuoka [START_REF] Matsuoka | On the values of a certain Dirichlet series at rational integers[END_REF] have shown that this function, called the harmonic zeta function, can be continued as a meromorphic function with a double pole at s = 1, and an infinite number of simple poles at s = 0 and s = 1 -2k for each integer k ≥ 1. The Ramanujan summation method allows to sum the series n 1 Hn n s for all values of s, which make possible, for each pole s = a, to give an expression of the constant C a in terms of the sum R n 1

Hn n a of the series in the sense of Ramanujan's summation method. Regarding the poles at negative integers, we also find the results previously obtained by Boyadzhiev et al. [START_REF] Boyadzhiev | The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers[END_REF] using a different method. Nevertheless, our method has the advantage of reformulating these results in a more pleasant way, while computing at the same time the value of the constant at s = 1 (see formula [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]) that had not been done in [START_REF] Boyadzhiev | The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers[END_REF] nor, as far as we know, in any other article.

In the second part of this paper, we extend our study to a more general class of harmonic zeta functions denoted ζ H p for each integer p ≥ 2, which are defined by the sequence of generalized harmonic numbers H p = {H (p) n } n . This meromorphic function ζ H p has simple poles at s = 1, and s = m -p for m = 2, 1, 0, -2, -4, -6, etc. In the simplest case where p = 2, we obtain a complete determination of the constant C a at the corresponding pole s = a for all values of a (Propositions 3 and 2 4) as well as a determination of the special values of the function at negative odd integers (Proposition 5). In the general case, we give an expression of the constant C 1 at s = 1 for all integers p ≥ 2 (Proposition 6). Finally, we indicate a method to evaluate the constants at the poles s = m -p of ζ H p based on the one already used in the case p = 2.

The harmonic zeta function ζ H

If H = {H n } n is the sequence of harmonic numbers

H n := n j=1 1 j ,
then, for each integer n ≥ 1, we recall that

H n = ψ(n + 1) + γ ,
where ψ = Γ /Γ denotes the digamma function [8, p. 95].

Definition 1. We call harmonic zeta function and note ζ H 1 the analytic function defined in the half-plane Re(s) > 1 by

ζ H (s) = +∞ n=1 H n n s .
Let us remind that the special values of ζ H at positive integers are given by Euler's formula [START_REF] Apostol | Dirichlet series related to the Riemann zeta function[END_REF][START_REF] Sitaramachandrarao | A formula of S[END_REF]:

2ζ H (p) = (p + 2)ζ(p + 1) - p-2 k=1 ζ(k + 1)ζ(p -k) (p ≥ 2).
Apostol-Vu [START_REF] Apostol | Dirichlet series related to the Riemann zeta function[END_REF] and Matsuoka [START_REF] Matsuoka | On the values of a certain Dirichlet series at rational integers[END_REF] provided the meromorphic continuation of this function in C and investigated its values and poles at the negative integers. In particular, the special values at negative even integers are given by Matsuoka's

formula 2 ζ H (-2k) = - B 2k 4k + B 2k 2 (k ≥ 1) ,
where the B k are Bernoulli numbers. 

ζ H (s) = R n 1 H n n s - 1 0 ψ(x + 1) + γ x s dx - π sin(πs) ζ(s) . ( 1 
)
Proof. For Re(s) > 1, we have (by Definition 2 above) the relation

ζ H (s) = R n 1 H n n s + +∞ 1 ψ(x + 1) + γ x s dx .
Moreover, since ψ(x + 1) + γ = O(x) at 0 , then, for 1 < Re(s) < 2, we can split up the last integral into the difference

+∞ 0 ψ(x + 1) + γ x s dx - 1 0 ψ(x + 1) + γ x s dx .
For x ∈] -1, 1[, the expansion in power series

ψ(x + 1) + γ = n≥1 (-1) n+1 ζ(n + 1)x n , gives for x ∈]0, 1[ the expansion ψ(x + 1) + γ x = n≥0 (-1) n ζ(n + 2)x n .
This enable to evaluate the first integral by means of the Ramanujan master's theorem [START_REF] Amdeberhan | Ramanujan's Master Theorem[END_REF]Theorem 3.2]. We apply this theorem to the function ϕ defined by ϕ(s) = ζ(s+2) (this function verifies the hypotheses of the theorem for Re(s) ≥ -δ with δ = 1 -ε, for any ε with 0 < ε < 1). For 0 < Re(s) < 1 -ε, this gives

+∞ 0 x s-1 ( ψ(x + 1) + γ x ) dx = π sin(πs) ζ(2 -s) ,
or equivalently, for 1 + ε < Re(s) < 2,

+∞ 0 ψ(x + 1) + γ x s dx = -π sin(πs) ζ(s) .
This completes the proof of Theorem 1.

Remark 1. The decomposition of ζ H given by formula (1) immediately provides the meromorphic continuation of the harmonic zeta function in the half-plane Re(s) < 2. Indeed, since the function

s → R n 1 H n n s
is analytic in the entire complex plane [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]Theorem 9], the values of this function at points s = -k (k = -1, 0, 1, 2, 3, . . .) are nothing else than the sums, in the sense of Ramanujan summation, of the divergent series

n 1 n k H n . Furthermore, since ψ(x + 1) + γ = O(x) at 0 , the function s → 1 0 ψ(x + 1) + γ x s dx
is analytic for Re(s) < 2. In formula (1), the function

s → -π sin(πs) ζ(s)
is the only one to have singularities in this half-plane. It admits a double pole at s = 1 and simple poles at s = 0, -1, -3, -5, . . .

The constant at s = 1

We first write the expansion at s = 1 of the function s → -π sin(πs)

ζ(s).

Proposition 1. In a neighborhood of s = 1, we have the representation

-π sin(πs) ζ(s) = 1 (s -1) 2 + γ (s -1) + ζ(2) -γ 1 + O(s -1) (2) 
where γ 1 is the first Stieltjes constant:

γ 1 = lim N →∞ N n=1 ln n n - 1 2 ln 2 (N ) .
Proof. We have

-π sin(πs) = π sin(π(s -1)) = exp(iπ(s -1)) s -1 2iπ(s -1) exp(2iπ(s -1)) -1 = 1 s -1 ( k≥0 i k π k 1 k! (s -1) k )( k≥0 i k (2π) k B k k! (s -1) k ) = 1 s -1 k≥0 ( i+j=2k 2 j B j i!j! )(-1) k π 2k (s -1) 2k = 1 s -1 + k≥1 (-1) k   2k j=0 2 j B j (2k -j)!j!   π 2k (s -1) 2k-1 ,
where the B k are Bernoulli numbers. It follows that

-π sin(πs) = 1 s -1 + π 2 6 (s -1) + • • •
On the other hand, we have the expansion

ζ(s) = 1 s -1 + γ -γ 1 (s -1) + • • •
Making the product of these expansions leads immediately to formula (2) .

Lemma 1. For each integer p ≥ 1, let

τ p := ∞ n=1 (-1) n+p ζ(n + p) n , (3) 
then

τ 1 = 1 0 ψ(x + 1) + γ x dx ,
and for p ≥ 2,

τ p = 1 0 ψ(x + 1) + γ -p-1 j=1 (-1) j-1 ζ(j + 1)x j x p dx .
Proof. For x ∈ ]0 , 1[, it follows from the expansion in power series

ψ(x + 1) + γ = ∞ n=1 (-1) n-1 ζ(n + 1)x n that ψ(x + 1) + γ x = ∞ n=1 (-1) n-1 ζ(n + 1)x n-1 ,
and

x -p (ψ(x + 1) + γ - p-1 j=1 (-1) j-1 ζ(j + 1)x j ) = ∞ n=p (-1) n-1 ζ(n + 1)x n-p (p ≥ 2) .
For 0 < a < 1, we have

∞ n=p (-1) n+1 ζ(n + 1) n -p + 1 a n-p+1 = a 0 ∞ n=p (-1) n-1 ζ(n + 1)x n-p dx (the permutation of et Σ is justified by the fact that ∞ n=p ζ(n + 1) n -p + 1 a n-p+1 < +∞).
By Leibniz criterion, the alternating series n≥p (-1) n+1 ζ(n+1) n-p+1 is convergent, hence by Abel's lemma for power series, we have

lim a→1 ∞ n=p (-1) n+1 ζ(n + 1) n -p + 1 a n-p+1 = ∞ n=p (-1) n+1 ζ(n + 1) n -p + 1 = τ p ,
this leads to the desired result.

Remark 2. The constant

τ 1 = 1 0 ψ(x + 1) + γ x dx = 1.2577468869 . . .
has been thoroughly studied by Boyadzhiev [START_REF] Boyadzhiev | A special constant and series with zeta values and harmonic numbers[END_REF] who provided several remarkable formulas (see also [8, p. 142] and [9, p. 1836]). The series τ p for p = 2, 3, 4, . . . have been extensively studied in [START_REF] Dil | On values of the Riemann zeta function at positive integers[END_REF], they also appear in [START_REF] Boyadzhiev | A special constant and series with zeta values and harmonic numbers[END_REF] and [START_REF] Coppo | New reflection formulas for Euler sums[END_REF].

We can deduce from formulae (1) and ( 2) the following corollary:

Corollary 1. In a neighborhood of s = 1, the function ζ H is represented as ζ H (s) = 1 (s -1) 2 + γ (s -1) + C 1 + O(s -1)
with

C 1 = R n 1 H n n -τ 1 + ζ(2) -γ 1 . ( 4 
)
This expression of C 1 may be highly simplified by means of the following lemma:

Lemma 2. We have the relation

R n 1 H n n = τ 1 + γ 1 + γ 2 2 - ζ(2) 2 . ( 5 
)
It follows from ( 5) that the value of the constant C 1 is

C 1 = 1 2 γ 2 + 1 2 ζ(2) . ( 6 
)
Proof of Lemma 2. We start from the relation [6, Eq. (2.6)]

R n 1

H n n = 1 2 γ 2 + 1 2 ζ(2) - 1 2 + 1 2 1 0 ψ 2 (x + 1) dx which is a direct consequence of [6, Theorem 3]. Since ψ(x + 1) = ψ(x) + 1/x, this relation can be rewritten 2 R n≥1 H n n -γ 2 -ζ(2) + 1 = 1 0 ψ 2 (x) + 2 ψ(x) x + 1 x 2 dx .
Moreover, from [8, p. 145], we have

1 0 ψ 2 (x) - 2γ x - 1 x 2 dx = 2γ 1 -2ζ(2) + 1 .
Subtracting these two expressions, we obtain the following

2 R n 1 H n n -γ 2 -ζ(2) + 1 -(2γ 1 -2ζ(2) + 1) = 2 1 0 (ψ(x) + γ) 1 x + 1 x 2 dx . Since (ψ(x) + γ) 1 x + 1 x 2 = ψ(x + 1) + γ x , we deduce the relation 2 R n 1 H n n + ζ(2) -γ 2 -2γ 1 = 2 1 0 ψ(x + 1) + γ x dx = 2τ 1
which is nothing else than formula (5) after division by 2.

Remark 3.

a) In particular, formulas ( 5) and ( 6) above show that the value of the constant C 1 differs from that of R 

N n=1 H n n = 1 2 ln 2 (N ) + γ ln(N ) + 1 2 γ 2 + 1 2 ζ(2) + o(1) ,
we can easily deduce an asymptotic representation of C 1 :

C 1 = lim N →∞ N n=1 H n n - 1 2 ln 2 (N ) -γ ln(N ) .
c) More generally, if the numbers γk (that we propose to call harmonic Stieltjes constants) are defined by the Laurent expansion

ζ H (s) = 1 (s -1) 2 + γ (s -1) + ∞ k=0 (-1) k k! γk (s -1) k (0 < |s -1| < 1) ,
then one can prove via an adaptation of [START_REF] Briggs | The power series coefficients of functions defined by Dirichlet series[END_REF] that γk = lim

N →∞ N n=1 H n ln k (n) n - 1 k + 2 ln k+2 (N ) - γ k + 1 ln k+1 (N ) .

The constants at zero and negative integers

The constants at zero and at the negative poles of ζ H have been evaluated by Boyadzhiev et al. [START_REF] Boyadzhiev | The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers[END_REF]Corollaries 2 and 3]. We now find again these results by another method. Indeed, formula [START_REF] Amdeberhan | Ramanujan's Master Theorem[END_REF] gives in a neighborhood of s = -k (with k = 0, 1, 2, . . .) the representation

ζ H (s) = (-1) k-1 ζ(-k) s + k + R n 1 n k H n -ν k + (-1) k-1 ζ (-k) + O(s + k) , ( 7 
)
where ν k is defined (cf. [START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF]) by

ν k := ∞ n=2 (-1) n ζ(n) n + k = 1 0 x k (ψ(x + 1) + γ) dx (k ≥ 0) . Let us recall (cf. [8, p. 76]) that ζ(-k) = -B k+1 k+1 (k ≥ 1) and ζ(0) = -1 2 .
We can deduce from formula (7) the following corollary:

Corollary 2.
a) In a neighborhood of s = 0, we have the representation

ζ H (s) = - ζ(0) s + C 0 + O(s)
with

C 0 = R n 1 H n -ν 0 -ζ (0) .
Since we know that ν 0 = γ, ζ (0) = -1 2 log(2π), and

R n 1 H n = 3 2 γ + 1 2 - 1 2 log (2π) 
(cf. [6, p. 44]), it follows that a simpler expression of C 0 is

C 0 = 1 2 γ + 1 2 . ( 8 
)
b) In a neighborhood of s = -1, we have the representation

ζ H (s) = ζ(-1) s + 1 + C -1 + O(s + 1) , with C -1 = R n 1 nH n -ν 1 + ζ (-1) . Since R n 1 nH n = 5 12 γ - 1 2 log(2π) -ζ (-1) + 7 8 ,
and

ν 1 = 1 2 γ - 1 2 log(2π) + 1 (cf.
[6, pp. 93-99], [START_REF] Coppo | A note on some alternating series involving zeta and multiple zeta values[END_REF]), it follows that a simpler expression of C -1 is

C -1 = - 1 12 γ - 1 8 . ( 9 
)
Formula ( 9) can be generalized as follows:

Proposition 2. In a neighborhood of s = 1 -2k with k ≥ 1, the function ζ H is represented as ζ H (s) = ζ(1 -2k) s + 2k -1 + C 1-2k + O(s + 2k -1)
with

C 1-2k = - B 2k 2k γ + D 2k-1 ,
where D 2k-1 are the rationals:

D 1 = - 1 8 ,
and

D 2k-1 = 1 2k   H 2k-1 B 2k + 2k-2 j=0 2k j B j B 2k-j 2k -j   (k ≥ 2) . ( 10 
)
Proof. From formula (7), we have

C 1-2k = R n 1 n 2k-1 H n -ν 2k-1 + ζ (1 -2k) .
This may be rewritten

C 1-2k = D 2k-1 -γ B 2k 2k with D 2k-1 = R n 1 n 2k-1 H n -ν 2k-1 + ζ (1 -2k) + γ B 2k 2k .
From Corollary 2, b), we have D 1 = -1 8 , and for k ≥ 2, we deduce from [5, Eq. ( 22)] the relation

D 2k-1 = H 2k-1 B 2k 2k + 2k-2 j=0 2k -1 j B j B 2k-j (2k -j) 2
which leads to [START_REF] Coppo | New reflection formulas for Euler sums[END_REF].

Example 1. In particular, we calculate D 3 = 1 288 . Hence the value of the constant at pole s = -3 is

C -3 = 1 120 γ + 1 288 .
Remark 4. We can define numbers D k for all integers k ≥ 0 by

D k := R n 1 n k H n -ν k + (-1) k-1 ζ (-k) + γ B k+1 k + 1 .
By Corollary 2, a), we have D 0 = 1 2 , and formula [START_REF] Candelpergher | Ramanujan summation and the exponential generating function ∞ k=0 z k k! ζ (-k)[END_REF] shows that, for k ≥ 1, the

R-sum R n 1 n 2k H n is linked to the expansion of ζ H at s = -2k by ζ H (s) = R n 1 n 2k H n -ν 2k -ζ (-2k) + O(s + 2k) .
It follows immediately (since B 2k+1 = 0) that

D 2k = ζ H (-2k) .
From Matsuoka's formula, we deduce the following identity:

D 2k = - B 2k 4k + B 2k 2 = (2k -1) B 2k 4k . ( 11 
)
Hence formulas [START_REF] Coppo | New reflection formulas for Euler sums[END_REF] and [START_REF] Dil | On values of the Riemann zeta function at positive integers[END_REF] show that D k are rational numbers for all k. In the case where k is positive and even, D k is the value of ζ H at s = -k, whereas in the odd case, D k is the rational part of C -k at pole s = -k .

The generalized harmonic zeta function ζ H p

For each integer p > 1, we now consider the sequence H p = {H (p) n } n of harmonic generalized numbers

H (p) n := n j=1 1 j p .
Nota bene. In the remainder of the text, we adopt the lighter notation H p n in place of H (p) n . To avoid confusions, we will take care to write (H n ) p the p-th power of H n .

For each integer n ≥ 1, we recall [8, p. 95] that H p n = ψ p (n) where ψ p is the analytic function defined in the half-plane Re(x) > 1 by

ψ p (x) = ζ(p) + (-1) p-1 (p -1)! ∂ p-1 ψ(x + 1) .
Definition 3. Let p ≥ 2 be an integer. We call harmonic zeta function of order p and note ζ H p the analytic function defined in the half-plane Re(s) > 1 by

ζ H p (s) = +∞ n=1 H p n n s . Definition 4. The function s → R n 1 H p n n s
is defined by analytic continuation of the function defined for Re(s) > 1 by

ζ H p (s) - +∞ 1 ψ p (x)
x s dx . It results from [START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]Theorem 9] that this function is analytic in the whole C.

We can establish for the function ζ H p a result very similar to Theorem 1.

Theorem 2. If 1 < Re(s) < 2, then the function ζ H p can be decomposed as

ζ H p (s) = R n 1 H p n n s - 1 0 ψ p (x)
x s dx -

π sin(πs) Γ(s + p -1) Γ(s)Γ(p) ζ(s + p -1) . ( 12 
)
Proof. As in Theorem 1, for 1 < Re(s) < 2, we have the relation

+∞ n=1 H p n n s = R n 1 H p n n s + +∞ 0 ψ p (x) x s dx - 1 0 ψ p (x)
x s dx .

By deriving p -1 times the expansion of x → ψ(x + 1), we obtain for x ∈]0, 1[, the expansion in power series

ψ p (x) x = n≥0 (-1) n (n + 2) • • • (n + p) (p -1)! ζ(n + p + 1)x n .
Then an application of the Ramanujan master's theorem gives for 1 < Re(s) < 2, +∞ 0

ψ p (x) x s dx = -π sin(πs) s(s + 1) • • • (s + p -2) (p -1)! ζ(s + p -1) = -π sin(πs) Γ(s + p -1) Γ(s)Γ(p) ζ(s + p -1).
Moreover, formula [START_REF] Matsuoka | On the values of a certain Dirichlet series at rational integers[END_REF] 

The case p = 2

We deduce immediately from Theorem 2 the decomposition

ζ H 2 (s) = R n 1 H 2 n n s - 1 0 ζ(2) -ψ (x + 1) x s dx - π sin(πs) s ζ(s + 1) (1 < Re(s) < 2) . ( 13 
)
The poles of ζ H 2 are all simple poles located at points s = 1, 0, -1, -2, -4, -6, . . . which are the poles of the function s → -π sin(πs) s ζ(s + 1) .

We now fully determine the constants at the poles of

ζ H 2 . Proposition 3. a) In a neighborhood of s = 1, ζ H 2 is represented as ζ H 2 (s) = ζ(2) s -1 + C (2) 1 + O(s -1)
with C

(2)

1 = γζ(2) -ζ(3) . ( 14 
) b) In a neighborhood of s = 0, ζ H 2 is represented as ζ H 2 (s) = - 1 s + C (2) 0 + O(s) with C (2) 0 = 1 2 ζ(2) -γ -1 . (15) c) In a neighborhood of s = -1, ζ H 2 is represented as ζ H 2 (s) = 1 2(s + 1)
+ C

(2)

-1 + O(s + 1)
with C

(2)

-1 = - 1 12 ζ(2) + 1 2 γ + 1 4 . ( 16 
)
Proof. a) We deduce from ( 13) that an expression of the constant at s = 1 is

C (2) 1 = R n 1 H 2 n n + ζ(2) + ζ (2) + 1 0 ψ (x + 1) -ζ(2) x dx .
We have calculated the value of R n 1

H 2 n n (cf. [10, Eq. (3)]). We have R n 1 H 2 n n = γζ(2) -ζ(3) -1 -ζ (2) -τ 2 with τ 2 = ∞ n=1 (-1) n ζ(n + 2) n .
We evaluate the integral

1 0 ψ (x + 1) -ζ(2)
x dx by an integration by parts, that gives

1 0 ψ (x + 1) -ζ(2) x dx = 1 -ζ(2) + 1 0 ψ(x + 1) + γ -ζ(2)x x 2 dx .
By Lemma 1, we have seen that

1 0 ψ(x + 1) + γ -ζ(2)x x 2 dx = τ 2 .
Thus, after cancellation of the term τ 2 , we obtain the simpler expression

C (2) 1 = γζ(2) -ζ(3) .
b) We deduce from ( 13) that an expression of the constant at s = 0 is

C (2) 0 = R n 1 H 2 n -γ -ζ(2) + 1 .
We have calculated the value of R n 1 H 2 n (cf. [6, p. 44]). We have

R n 1 H 2 n = 3 2 ζ(2) -2 .
Therefore C

(2)

0 = 1 2 ζ(2) -γ -1 .
c) We deduce from ( 13) that an expression of the constant at s = -1 is

C (2) -1 = R n 1 nH 2 n + 1 2 log(2π) + 1 2 -γ - 1 2 ζ(2) .
We have calculated the value of the R-sum R n 1 nH 2 n (cf. [6, p. 82]). We have

R n 1 nH 2 n = 5 12 ζ(2) - 1 2 log(2π) + 3 2 γ - 1 4 .

It follows that C

(2)

-1 = - 1 12 ζ(2) + 1 2 γ + 1 4 .
Regarding the determination of the constants at poles s = -2, -4, -6, . . . of ζ H 2 , we prove the following result:

Proposition 4. In a neighborhood of s = -2k, ζ H 2 is represented as ζ H 2 (s) = - B 2k s + 2k + C (2) -2k + O(s + 2k)
with C

(2)

-2k = -B 2k γ + D (2) 2k , ( 17 
)
where D

(2)

2 = - 5 36 ,
and

D (2) 2k = B 2k H 2k-1 + 2k-2 j=0 2k j B j B 2k-j 2k -j - 2k j=0 (-1) j 2k j B j B 2k-j j + 1 (k ≥ 2) . ( 18 
)
The proof of Proposition 4 is based on the following lemma:

Lemma 3. For all integers k ≥ 1, we have the relation

R n 1 n k H 2 n = k R n 1 n k-1 H n + 1 -B k+1 k + 1 ζ(2) -b k (19) with b k = 1 + k j=0 (-1) j k j B j B k-j j + 1 .
Proof. We can write the following identities

R n 1 H n e -nz = ∞ n=1 H n e -nz - ∞ 1 (ψ(x + 1) + γ)e -xz dx = - log(1 -e -z ) 1 -e -z - e -z z γ - ∞ 1 ψ(x + 1)e -xz dx and R n 1 H 2 n e -nz = ∞ n=1 H 2 n e -nz + ∞ 1 (ψ (x + 1) -ζ(2))e -xz dx = 1 1 -e -z Li 2 (e -z ) - e -z z ζ(2) + ∞ 1 ψ (x + 1)e -xz dx .
By integration by parts of the last integral, this may be rewritten

R n 1 H 2 n e -nz = 1 1 -e -z Li 2 (e -z ) - e -z z ζ(2) -e -z (1 -γ) + z ∞ 1 ψ(x + 1)e -xz dx .
Thus, after cancellation of the integral term in both formulas, we obtain the relation

R n 1 H 2 n e -nz = -z R n 1 H n e -nz + 1 1 -e -z Li 2 (e -z ) -z log(1 -e -z ) 1 -e -z - e -z z ζ(2) -e -z .
(20) Then, using the following expansions:

-z log(1 -e -z ) 1 -e -z = -z 1 -e -z log 1 -e -z z + -z 1 -e -z log z = -z 1 -e -z ∞ k=1 B k 1 k z k k! + -z 1 -e -z log z and 1 1 -e -z Li 2 (e -z ) = 1 1 -e -z ζ(2) + z log z -z + z ∞ k=1 B k 1 k(k + 1) z k k! (cf.
[7, Eq. ( 133)]), we can simplify this relation as follows:

R n 1 H 2 n e -nz = -z R n 1 H n e -nz + ( 1 1 -e -z - e -z z )ζ(2) + -z 1 -e -z + -z 1 -e -z ∞ k=1 B k 1 k + 1 z k k! -e -z .
Expanding each term in powers of z, this translates into the relation (valid for k ≥ 1):

R n≥1 n k H 2 n = k R n 1 n k-1 H n + ( 1 -B k+1 k + 1 )ζ(2) -1 -B k - k j=1 k j (-1) j j + 1 B j B k-j ,
which is nothing else than (19).

We are now in a position to prove Proposition 4.

Proof of Proposition 4. We deduce from ( 13) that an expression of the constant at s = -2k is

C (2) -2k = R n 1 n 2k H 2 n + B 2k 2k + 2kζ (1 -2k) - 1 2k + 1 ζ(2) + 1 0 x 2k ψ (x + 1) dx .
We now evaluate this last integral. An integration by parts gives

1 0 x 2k ψ (x + 1) dx = 1 -γ -2k 1 0 x 2k-1 ψ(x + 1) dx .
We can write

1 0 x 2k-1 ψ(x + 1) dx = ν 2k-1 - 1 2k γ , with ν 2k-1 = R n 1 n 2k-1 H n + ζ (1 -2k) + B 2k 2k γ -D 2k-1 ,
where D 1 = -1 8 , and D 2k-1 is given for k ≥ 2 by formula [START_REF] Coppo | New reflection formulas for Euler sums[END_REF] . It follows that

1 0 x 2k ψ (x + 1) dx = 1 -2kζ (1 -2k) -B 2k γ -2k R n 1 n 2k-1 H n + 2kD 2k-1 .
We can now write a simpler expression of C

(2)

-2k using Lemma 3. Indeed, we deduce from (19) the following relation between the R-sums:

R n 1 n 2k H 2 n = 2k R n 1 n 2k-1 H n + 1 2k + 1 ζ(2) -b 2k with b 2k = 1 + 2k j=0 (-1) j 2k j B j B 2k-j j + 1 .

It follows that C

(2)

-2k = -B 2k γ + D (2) 2k with D (2) 2k := B 2k 2k + 2kD 2k-1 -b 2k + 1 .
This last expression gives In addition, formula (13) allows us to evaluate the special values of ζ H 2 at odd negative integers s = -3, -5, -7, . . . . More precisely, we show the following result: Proposition 5. For each integer k ≥ 2, we have

D (2) 2 = - 5 
ζ H 2 (1 -2k) = - B 2k 2k ζ(2) + k(2k -3) 4(k -1) B 2k-2 . ( 21 
)
Proof. From (13) we deduce that

ζ H 2 (1 -2k) = (1 -2k)ζ (2 -2k) - 1 2k ζ(2) + 1 0 x 2k-1 ψ (x + 1) dx + R n 1 n 2k-1 H 2 n .
Proceeding in the same manner as in the proof of Proposition 4, we obtain

ζ H 2 (1 -2k) = R n 1 n 2k-1 H 2 n -(2k -1) R n 1 n 2k-2 H n - 1 2k ζ(2) + 1 + (2k -1)D 2k-2 ,
where D 2k is given by formula [START_REF] Dil | On values of the Riemann zeta function at positive integers[END_REF]. Using the relation ( 19) linking the R-sums

R n 1 n 2k-1 H 2 n and R n 1 n 2k-2
H n , we deduce the following formula: 

ζ H 2 (1 -2k) = - B 2k 2k 

The constant at s = 1 in the general case

The following proposition extends our formula [START_REF] Sury | Identities involving reciprocals of binomial coefficients[END_REF] We suppose now that p ≥ 3. We deduce from (12) that, in a neighborhhood of s = 1, we have the representation 

  5290529699 . . . , whereas C 1 = 0.989055995 . . . b) From the knowledge of the asymptotic expansion of N n=1 Hn n at infinity:

  provides the meromorphic continuation of ζ H p in the halfplane Re(s) < 2. This function has only simple poles at s = 1 and s = m -p with m = 2, 1, 0, -2, -2 -2k for each k ≥ 1 , which are the poles of the function s → -π sin(πs) Γ(s + p -1) Γ(s)Γ(p) ζ(s + p -1) .

2 . 2 .

 22 36 , and translates into formula (18) for k ≥ Example The value of the constant at s = -4 is C

2 j=1(- 1 )Example 3 . 2 (

 2132 ζ(2) + (2k -1)(2k -3)B 2k-2 4(k -1) -2kj 2k -1 j B j B 2k-1-j j +1 which reduces to formula (21) since almost all terms of the sum Σ are null. The value of ζ H 2 at s = -3 is ζ H

1 = 1 .(- 1 )

 111 H p-1 ζ(p) + ζ (p) + (-1) p I p + 1 ψ(x + 1) -(-1) p (p -1)! ζ(p) x dx .We evaluate I p by integrating p -1 times by parts, this leads to the relation(-1) p I p = (-1) p τ p -H p-1 ζ(p) j ζ(p -j)(p -jk k!(p -k -2)! ,with (by Lemma 1)(-1) p τ p = ∞ n=1 (-1) n ζ(n + p) n = (-1) p 1 0 ψ(x + 1) + γ -p-1 j=1 (-1) j-1 ζ(j + 1)x j x p dx .We obtain a much simpler expression of I p by means of the following identities [This allows us to write(-1) p I p = (-1) p τ p -H p-1 ζ(p) + σ p j ζ(p -j) (p -j -1)!(jp) + ζ(p + 1) -ζ H (p) -σ p -ζ (p) -(-1) p τ p . (26)By substituting (25) and (26) into (24), we then obtain (23).

  established in the case p = 2. In a neighborhood of s = 1, for all integers p ≥ 2, the function ζ H p is represented as Proof. For p = 2, formula (23) is nothing else than (14) because ζ H (2) = 2ζ(3).

	Proposition 6. ζ H p (s) =	ζ(p) s -1	+ C	(p) 1 + O(s -1) ,	(22)
	with				
	C	(p)				(23)

1 = γζ(p) + ζ(p + 1) -ζ H (p) .

which admits formula (6) as solution .

A method to evaluate the constants at poles s = m -p

In the general case, we have seen that all poles of ζ H p (apart from 1) are located at points s = m -p with m = 2, 1, 0, -2, -4, -6, . . . In a neighborhood of s = m -p, we have the representation

where A m et B m are the constants defined by the expansion

To evaluate the R-sum R n 1 n p-m H p n , we can use the same method as in the proof of Lemma 3. We have the following extension of (20):

21

For example, for p = 3, we get

This enable to express the R-sum R n 1 n k H p n in terms of R n 1 n k H n . All constants C m-p can then be determined by the same method used in section 2.1.